

Numerical Experiments with AMLET, a New Monte-Carlo Algorithm for Estimating Mixed Logit Models

Monte-Carlo methods with variable sampling size for mixed logit

Fabian Bastin, Cinzia Cirillo, Philippe L. Toint

Department of Mathematics

University of Namur

Namur, Belgium

Contact: philippe.toint@fundp.ac.be

10th International Conference on Travel Behaviour Research

PART I: Theoretical investigations

- Introduction: the mixed logit problem
- Properties
 - Convergence of solutions
 - Asymptotic properties: bias and error estimation
- Estimation algorithm
 - Trust region methods
 - Variable sampling size technique

University of Namur www.fundp.ac.be

Outline (2)

PART II: Numerical investigations

- The software AMLET
- Optimization framework: linesearch vs trust-region
- Tests on simulated data
- Comparison with Halton sequences
- Tests on real data (MobiDrive)
- Conclusions and research perspectives

Discrete choice models

Individual I

alternatives

. . .

$\begin{array}{l} \textbf{Outline} \\ \rightarrow \textit{Introduction} \end{array}$

- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Set of alternatives available for individual *i*: $\mathcal{A}(i)$. Utility U_{ij} of $A_j \in \mathcal{A}(i)$: $U_{ij} = V(\beta) + \epsilon_{ij}$.

 β : parameters to be estimated.

Discrete choice models

Individual I

alternatives

. . .

 $\begin{array}{l} \textbf{Outline} \\ \rightarrow \textit{Introduction} \end{array}$

- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Set of alternatives available for individual *i*: $\mathcal{A}(i)$. Utility U_{ij} of $A_j \in \mathcal{A}(i)$: $U_{ij} = V(\beta) + \epsilon_{ij}$. β : parameters to be estimated. Utility maximization principle: choice

of
$$A_j$$
 if $U_{ij} \ge U_{in}, \forall A_n \in \mathcal{A}(i)$.

Discrete choice models

Individual I

alternatives

- $\begin{array}{l} \textbf{Outline} \\ \rightarrow \textit{Introduction} \end{array}$
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Set of alternatives available for individual *i*: $\mathcal{A}(i)$. Utility U_{ij} of $A_j \in \mathcal{A}(i)$: $U_{ij} = V(\beta) + \epsilon_{ij}$. β : parameters to be estimated.

Utility maximization principle: choice

of
$$A_j$$
 if $U_{ij} \ge U_{in}, \forall A_n \in \mathcal{A}(i)$.

Gumbel distributed residuals ϵ_{ij} (mean 0, scale factor μ): multinomial logit (MNL).

Probability that individual *i* choose A_j :

$$P_{ij} = \frac{e^{\mu V_{ij}(\beta)}}{\sum_{n=1}^{N} e^{\mu V_{in}(\beta)}}$$

UII (Q)

Allow heterogeneity in parameters inside the population.

$$oldsymbol{eta}=eta(oldsymbol{\gamma}, heta)$$
 ,

- Outline \rightarrow Introduction
- Properties
- Trust-regior
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

 θ : vector of parameters, e.g. vector of means and std dev.

Allow heterogeneity in parameters inside the population.

$$oldsymbol{eta}=eta(oldsymbol{\gamma}, heta)$$
 ,

- Outline → Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

 γ : random vector, e.g. vector of independent N(0,1);

 θ : vector of parameters, e.g. vector of means and std dev. Probability choice of A_i by individual *i*:

$$P_{ij}(\theta) = E_P \left[L_{ij}(\gamma, \theta) \right] = \int L_{ij}(\gamma, \theta) f(\gamma) d\gamma$$

Allow heterogeneity in parameters inside the population.

$$oldsymbol{eta}=eta(oldsymbol{\gamma}, heta)$$
 ,

- Outline \rightarrow *Introduction*
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

 γ : random vector, e.g. vector of independent N(0,1);

 θ : vector of parameters, e.g. vector of means and std dev. Probability choice of A_i by individual *i*:

$$P_{ij}(\theta) = E_P \left[L_{ij}(\gamma, \theta) \right] = \int L_{ij}(\gamma, \theta) f(\gamma) d\gamma$$

This integral is approximated by

$$SP_{ij}^R = \frac{1}{R} \sum_{r=1}^R L_{ij}(\gamma_r, \theta)$$

Allow heterogeneity in parameters inside the population.

$$oldsymbol{eta}=eta(oldsymbol{\gamma}, heta)$$
 ,

- Outline \rightarrow *Introduction*
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

 γ : random vector, e.g. vector of independent N(0,1);

 θ : vector of parameters, e.g. vector of means and std dev. Probability choice of A_i by individual *i*:

$$P_{ij}(\theta) = E_P \left[L_{ij}(\gamma, \theta) \right] = \int L_{ij}(\gamma, \theta) f(\gamma) d\gamma$$

This integral is approximated by

$$SP_{ij}^R = \frac{1}{R} \sum_{r=1}^R L_{ij}(\gamma_r, \theta)$$

Sample average approximation (SAA) problem:

$$\max_{\theta} \hat{g}_R(\theta) = \max_{\theta} SLL(\theta) = \max_{\theta} \frac{1}{I} \sum_{i=1}^{I} \ln SP_{ij_i}^R$$

• Properties

• Variable size

Simulated data

Conclusions

• AMLET

HaltonReal data

 \rightarrow Introduction

Numerical issues

Reduction of numerical cost:

- 1. work on the objective form: quasi Monte-Carlo;
 - 2. adapt the optimization method: little exploration.

• Properties

• Variable size

Simulated data

Conclusions

• AMLET

HaltonReal data

 \rightarrow Introduction

Numerical issues

Reduction of numerical cost:

- 1. work on the objective form: quasi Monte-Carlo;
- 2. adapt the optimization method: little exploration.
- Two ideas to develop point 2:

• Properties

• Variable size

Simulated data

• AMLET

Halton

• Real data

Conclusions

 \rightarrow Introduction

Numerical issues

Reduction of numerical cost:

- 1. work on the objective form: quasi Monte-Carlo;
- 2. adapt the optimization method: little exploration.
- Two ideas to develop point 2:
 - 1. do not use full precision when far of the solution;

Outline \rightarrow Introduction

- Properties
- Trust-regior
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Numerical issues

Reduction of numerical cost:

- 1. work on the objective form: quasi Monte-Carlo;
- 2. adapt the optimization method: little exploration.
- Two ideas to develop point 2:
 - 1. do not use full precision when far of the solution;
 - 2. stop optimization when no signification reduction can be obtained.

Outline \rightarrow Introduction

- Properties
- Trust-regior
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Numerical issues

Reduction of numerical cost:

- 1. work on the objective form: quasi Monte-Carlo;
- 2. adapt the optimization method: little exploration.
- Two ideas to develop point 2:
 - 1. do not use full precision when far of the solution;
 - 2. stop optimization when no signification reduction can be obtained.

Requirement: ability to estimate the approximation's accuracy.

Analogy to stochastic programming:

- Introduction
- ightarrow Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Analogy to stochastic programming:

$$\min_x g(x) = \min_x E[f(x, \boldsymbol{\omega})]$$

 $\max_{\theta} g\left(\theta\right) = \max_{\theta} LL(\theta) = \frac{1}{I} \sum_{i} \ln E_P \left[L_{ij_i}\left(\boldsymbol{\gamma}, \theta\right) \right]$

Outline

- Introduction
- \rightarrow **Properties**

Mixed logit:

- Irust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Analogy to stochastic programming:

$$\min_x g(x) = \min_x E[f(x, \boldsymbol{\omega})]$$

Outline

- Introduction
- \rightarrow **Properties**
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Mixed logit:

$$\max_{\theta} g\left(\theta\right) = \max_{\theta} LL(\theta) = \frac{1}{I} \sum_{i} \ln E_P \left[L_{ij_i}\left(\boldsymbol{\gamma}, \theta\right) \right]$$

Known properties can be adapted. Assume I fixed and R grows toward ∞ .

Analogy to stochastic programming:

 $\min_x g(x) = \min_x E[f(x, \boldsymbol{\omega})]$

Outline

- Introduction
- \rightarrow Properties
- Irust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Mixed logit:

$$\max_{\theta} g\left(\theta\right) = \max_{\theta} LL(\theta) = \frac{1}{I} \sum_{i} \ln E_P \left[L_{ij_i}\left(\boldsymbol{\gamma}, \theta\right) \right]$$

Known properties can be adapted.

Assume I fixed and R grows toward ∞ .

If θ_R^* , $R = 1, \ldots$, is first-order critical for the corresponding SAA problem, any limit point θ^* of $(\theta_R^*)_{R=1}^{\infty}$ is first-order critical, almost surely.

- Introduction
- ightarrow Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Error and bias of simulation

With an i.i.d. sample for each individual, we have, from the delta method (see Shapiro and Rubinstein):

$$LL(\theta) - SLL^{R}(\theta) \Rightarrow N\left(0, \frac{1}{I}\sqrt{\sum_{i=1}^{I} \frac{\sigma_{ij_{i}}^{2}(\theta)}{R(P_{ij_{i}}(\theta))^{2}}}\right)$$

- Introduction
- ightarrow Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Error and bias of simulation

With an i.i.d. sample for each individual, we have, from the delta method (see Shapiro and Rubinstein):

$$LL(\theta) - SLL^{R}(\theta) \Rightarrow N\left(0, \frac{1}{I}\sqrt{\sum_{i=1}^{I} \frac{\sigma_{ij_{i}}^{2}(\theta)}{R(P_{ij_{i}}(\theta))^{2}}}\right)$$

Asymptotic value of the confidence interval radius:

$$\epsilon_{\delta} = \alpha_{\delta} \frac{1}{I} \sqrt{\sum_{i=1}^{I} \frac{\sigma_{ij_i}^2(\theta)}{R(P_{ij_i}(\theta))^2}}$$

 δ : signification level; $\alpha_{0.9} \approx 1.65$.

- Introduction
- ightarrow Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Error and bias of simulation

With an i.i.d. sample for each individual, we have, from the delta method (see Shapiro and Rubinstein):

$$LL(\theta) - SLL^{R}(\theta) \Rightarrow N\left(0, \frac{1}{I}\sqrt{\sum_{i=1}^{I} \frac{\sigma_{ij_{i}}^{2}(\theta)}{R(P_{ij_{i}}(\theta))^{2}}}\right)$$

Asymptotic value of the confidence interval radius:

$$\epsilon_{\delta} = \alpha_{\delta} \frac{1}{I} \sqrt{\sum_{i=1}^{I} \frac{\sigma_{ij_i}^2(\theta)}{R(P_{ij_i}(\theta))^2}}$$

 δ : signification level; $\alpha_{0.9} \approx 1.65$. Bias of simulation (Taylor expansion):

$$B := E[SLL^{R}(\theta)] - LL(\theta) = -\frac{I\epsilon_{\delta}^{2}}{2\alpha_{\delta}^{2}}$$

University ^{of} Namur www.fundp.ac.be

10th International Conference on Travel Behaviour Research – p.

- Introduction
- ightarrow Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Error and bias of simulation

With an i.i.d. sample for each individual, we have, from the delta method (see Shapiro and Rubinstein):

$$LL(\theta) - SLL^{R}(\theta) \Rightarrow N\left(0, \frac{1}{I}\sqrt{\sum_{i=1}^{I} \frac{\sigma_{ij_{i}}^{2}(\theta)}{R(P_{ij_{i}}(\theta))^{2}}}\right)$$

Asymptotic value of the confidence interval radius:

$$\epsilon_{\delta} = \alpha_{\delta} \frac{1}{I} \sqrt{\sum_{i=1}^{I} \frac{\sigma_{ij_i}^2(\theta)}{R(P_{ij_i}(\theta))^2}}$$

 δ : signification level; $\alpha_{0.9} \approx 1.65$. Bias of simulation (Taylor expansion):

$$B := E[SLL^{R}(\theta)] - LL(\theta) = -\frac{I\epsilon_{\delta}^{2}}{2\alpha_{\delta}^{2}}$$

In practice, use of SAA estimators $\sigma_{ij_i}^R(\theta)$ and $P_{ij_i}^R(\theta)$.

^{of} Namur www.fundp.ac.be

<u>University</u>

10th International Conference on Travel Behaviour Research – p.

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Trust-region methods

Basic principle: at iteration k, k = 1, ..., approximately minimize a model of the objective over a trust region (\mathcal{B}_k). It gives a (candidate iterate).

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Trust-region methods

Basic principle: at iteration k, k = 1, ..., approximately minimize a model of the objective over a trust region (\mathcal{B}_k). It gives a (candidate iterate).

Compute the following ratio:

 $\rho = \frac{\text{real reduction}}{\text{predicted reduction}}$

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Trust-region methods

Basic principle: at iteration k, k = 1, ..., approximately minimize a model of the objective over a trust region (\mathcal{B}_k). It gives a (candidate iterate).

Compute the following ratio:

$$\rho = \frac{\rm real \ reduction}{\rm predicted \ reduction}$$

• If $\rho \ge \eta_1$, accept the candidate.

If $\rho \geq \eta_2$, enlarge \mathcal{B}_k , otherwise keep it the same, or reduce it.

• If $\rho < \eta_1$, reject the candidate and reduce \mathcal{B}_k .

For instance,
$$\eta_1 = 0.01$$
 and $\eta_2 = 0.75$.

Example (Conn, Gould, Toint 2000):

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Model and objective comparison

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Model and objective comparison

Outline

- Introduction
- Properties
- ightarrow Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

Variable sampling size technique

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- Conclusions

- Introduction
- Properties
- Trust-regior
- Variable size
- ightarrow Amlet
- Simulated data
- Halton
- Real data
- Conclusions

New software: AMLET (Another Mixed Logit Estimation Tool)

- Introduction
- Properties
- Trust-regior
- Variable size
- ightarrow Amlet
- Simulated data
- Halton
- Real data
- Conclusions

New software: AMLET (Another Mixed Logit Estimation Tool)

 multinomial logit and mixed logit models support;

- Introduction
- Properties
- Trust-regior
- Variable size
- ightarrow Amlet
- Simulated data
- Halton
- Real data
- Conclusions

New software: AMLET (Another Mixed Logit Estimation Tool)

- multinomial logit and mixed logit models support;
- works on real and simulated data;

- Introduction
- Properties
- Variable size
- \rightarrow AMLET
- Simulated data
- Halton
- Real data
- Conclusions

New software: AMLET (Another Mixed Logit Estimation Tool)

- multinomial logit and mixed logit models support;
- works on real and simulated data;
- optimization algorithm: BFGS, BTR, BTRDA;

University of Namur www.fundp.ac.be

- Introduction
- Properties
- Variable size
- \rightarrow AMLET
- Simulated data
- Halton
- Real data
- Conclusions

New software: AMLET (Another Mixed Logit Estimation Tool)

- multinomial logit and mixed logit models support;
- works on real and simulated data;
- optimization algorithm: BFGS, BTR, BTRDA:
- written in C, tested on a Linux system.

University of Namur www.fundp.ac.be

- Introduction
- Properties
- Trust-regior
- Variable size
- ightarrow AMLET
- Simulated data
- Halton
- Real data
- Conclusions

New software: AMLET (Another Mixed Logit Estimation Tool)

- multinomial logit and mixed logit models support;
- works on real and simulated data;
- optimization algorithm: BFGS, BTR, BTRDA;
- written in C, tested on a Linux system.

Working environment: Pentium IV, 2Ghz.

Tests on simulated data

Experimental design:

Outline

- Introduction
- Properties
- Trust-regior
- Variable size
- AMLET
- ightarrow Simulated data
- Halton
- Real data
- Conclusions

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- ightarrow Simulated data
- Halton
- Real data
- Conclusions

Tests on simulated data

Experimental design:

- attribute values drawn drom a N(0,1);
- random parameters $\sim N(0.5, 1)$;
- linear utilities;
- number of alternatives: 2, 3, 5, 10;
- observations: 2000, 5000, 7500, 1000.

University ^{of} Namur www.fundp.ac.be

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- ightarrow Simulated data
- Halton
- Real data
- Conclusions

University ^{of} Namur www.fundp.ac.be

Tests on simulated data

Experimental design:

- attribute values drawn drom a N(0,1);
- random parameters $\sim N(0.5, 1)$;
- linear utilities;
- number of alternatives: 2, 3, 5, 10;
- observations: 2000, 5000, 7500, 1000.

Comparisons with Gauss 5.0 with MaxLik modules, and code of Train (Halton, tol=10⁻⁶). Note: Gauss tested on Pentium III (1 licence); reported times are accordingly corrected.

Linesearch versus Trust-Region

Is the trust-region choice appropriate?

Outline

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- ightarrow Simulated data
- Halton
- Real data
- Conclusions

Linesearch versus Trust-Region

Is the trust-region choice appropriate?

Outline Introduction Properties 	Gauss	MaxLik module: BFGS with Dennis and Schn-		
Trust-regionVariable size		abel linesearch (STEPBT)		
 • AMLET → Simulated data 	AMLET	BFGS with More-Thuente linesearch (recom-		
HaltonReal data		mendation of Nocedal and Wright)		
 Conclusions 		Basic Trust-Region (BTR)		
		BTR with dynamic accuracy (BTRDA)		

Linesearch versus Trust-Region

Is the trust-region choice appropriate?

Outline Introduction 	Gauss	MaxLik module: BFGS with Dennis and Schn-			
 Properties Trust-region Variable size 		abel linesearch (STEPBT)			
 AMLET → Simulated data 	AMLET	BFGS with More-Thuente linesearch (recom-			
HaltonReal data		mendation of Nocedal and Wright)			
 Conclusions 		Basic Trust-Region (BTR)			
		BTR with dynamic accuracy (BTRDA)			

Simulation experiment:

> 5000 individuals, 5 alternatives, 5 independent random parameters (N(0.5, 1.0));

 \triangleright minimization over 10 random samples of size 2000.

University of Namur www.fundp.ac.be

Outl

Varia
AML
→ Sin
Halto
Real
Cono

Linesearch versus Trust-Region (2)

	Set	BFGS		BTR		BTRDA	
ine		Likelihood	Time (s)	Likelihood	Time (s)	Likelihood	Time (s)
oduction perties	1	-1.40529	1421	-1.40529	1103	-1.40529	722
st-region iable size	2	-1.40532	1455	-1.40532	997	-1.40532	618
LET	3	-1.40519	1691	-1.40519	1090	-1.40519	730
<i>imulated data</i> ton	4	-1.40409	1736	-1.40409	997	-1.40409	564
al data nclusions	5	-1.40525	1702	-1.40525	1017	-1.40525	531
	6	-1.40499	1707	-1.40499	1089	-1.40499	587
	7	-1.40437	1475	-1.40437	1045	-1.40437	560
	8	-1.40530	1706	-1.40530	998	-1.40530	781
	9	-1.40532	1701	-1.40532	1028	-1.40532	724
	10	-1.40441	1729	-1.40441	1044	-1.40441	546
	Mean	-1.40495	1632	-1.40495	1040	-1.40495	636

Outli

Trust
Varia
AML
→ Sin
Halto
Real
Conc

Linesearch versus Trust-Region (2)

	Set	BFGS		BTR		BTRDA	
ine		Likelihood	Time (s)	Likelihood	Time (s)	Likelihood	Time (s)
oduction perties	1	-1.40529	1421	-1.40529	1103	-1.40529	722
st-region able size	2	-1.40532	1455	-1.40532	997	-1.40532	618
LET	3	-1.40519	1691	-1.40519	1090	-1.40519	730
<i>mulated data</i> ton	4	-1.40409	1736	-1.40409	997	-1.40409	564
al data nclusions	5	-1.40525	1702	-1.40525	1017	-1.40525	531
	6	-1.40499	1707	-1.40499	1089	-1.40499	587
	7	-1.40437	1475	-1.40437	1045	-1.40437	560
	8	-1.40530	1706	-1.40530	998	-1.40530	781
	9	-1.40532	1701	-1.40532	1028	-1.40532	724
	10	-1.40441	1729	-1.40441	1044	-1.40441	546
	Mean	-1.40495	1632	-1.40495	1040	-1.40495	636

▷ Clear advantage to the trust-region approach.

Tests on simulated data

Outline

- Introduction
- Properties
- Trust-regior
- Variable size
- AMLET
- ightarrow Simulated data
- Halton
- Real data
- Conclusions

Comparison with Halton sequences

Halton sequences are popular: allow smaller sizes.

Outline

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

- Introduction
- Properties
- Trust-regior
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

Comparison with Halton sequences

Halton sequences are popular: allow smaller sizes. Comparisons with Gauss for low dimensions (≤ 5 random parameters): similar results, but AMLET remains faster (2 to 5 times for 1000 Monte-Carlo, compared to 125 Halton).

- Introduction

- Variable size
- AMLET
- Simulated data
- \rightarrow Halton
- Real data
- Conclusions

Comparison with Halton sequences

Halton sequences are popular: allow smaller sizes. Comparisons with Gauss for low dimensions (≤ 5 random parameters): similar results, but AMLET remains faster (2 to 5 times for 1000 Monte-Carlo, compared to 125 Halton). High dimensions with Halton sequences: loss of uniform coverage. Graphs with 250 Halton numbers:

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

Comparison with Halton sequences

Halton sequences are popular: allow smaller sizes. Comparisons with Gauss for low dimensions (≤ 5 random parameters): similar results, but AMLET remains faster (2 to 5 times for 1000 Monte-Carlo, compared to 125 Halton). High dimensions with Halton sequences: loss of uniform coverage. Graphs with 250 Halton numbers:

University ^{of} Namur www.fundp.ac.be

Halton vs Monte-Carlo

· MAMUR. T	Variable	125 Halt.	250 Halt.	1000 MC	2000 MC	3000 MC
	P1 mean	0.4022	0.4371	0.437926	0.451574	0.452668
	P1 std. dev.	0.9575	1.0546	1.06785	1.10345	1.10275
	P2 mean	0.4237	0.4586	0.460888	0.47644	0.476496
Outline	P2 std. dev.	0.8423	0.8646	0.889336	0.924625	0.929872
 Introduction 	P3 mean	0.3903	0.4305	0.428926	0.442901	0.444273
 Properties 	P3 std. dev.	0.7959	0.8812	0.881386	0.934353	0.934465
 Trust-region 	P4 mean	0.4700	0.5129	0.51648	0.533209	0.534616
 Variable size 	P4 std. dev.	0.6744	0.7205	0.744546	0.77631	0.780702
• AMLET	P5 mean	0.4808	0.5308	0.531721	0.549948	0.5521
 Simulated data 	P5 std. dev.	0.7027	0.8312	0.847629	0.883452	0.886892
ightarrow Halton	P6 mean	0.3782	0.4100	0.412724	0.425807	0.426386
 Real data 	P6 std. dev.	0.8297	0.9163	0.947523	0.987107	0.986711
 Conclusions 	P7 mean	0.3920	0.4337	0.435504	0.450424	0.450725
	P7 std. dev.	0.9116	1.0398	1.03509	1.07814	1.0786
	P8 mean	0.4895	0.5310	0.534592	0.551502	0.552986
	P8 std. dev.	0.9198	1.0022	1.02172	1.054758	1.06168
	P9 mean	0.4441	0.4768	0.481642	0.498321	0.49854
	P9 std. dev.	0.9048	0.9694	0.977834	1.02296	1.02425
	P10 mean	0.3702	0.4149	0.412852	0.426316	0.426021
	P10 std. dev.	0.6250	0.8482	0.808399	0.835485	0.840841
	Log-likelihood	-1.44244	-1.43990	-1.44132	-1.44086	-1.44077
	Accuracy	NA	NA	0.001032	0.0007402	0.0006049
The	Bias	NA	NA	-0.0009844	-0.0005062	-0.0003381
University of Namur	Time (s)	2077	4252	435.8	890	1349.1

www.fundp.ac.be

Halton vs Monte-Carlo: remarks

• AMLET very fast compared to Gauss;

Outline

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

Halton vs Monte-Carlo: remarks

- AMLET very fast compared to Gauss;
- Poor results with 125 Halton;

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

Halton vs Monte-Carlo: remarks

- AMLET very fast compared to Gauss;
- Poor results with 125 Halton;
- 250 Halton give similar solution to 1000 Monte-Carlo, but results change with 2000 Monte-Carlo, and Gauss underevaluates the objective;

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

Halton vs Monte-Carlo: remarks

- AMLET very fast compared to Gauss;
- Poor results with 125 Halton;
- 250 Halton give similar solution to 1000 Monte-Carlo, but results change with 2000 Monte-Carlo, and Gauss underevaluates the objective;
- Tests with 2000 individuals has given better results with 125 Halton than 250 Halton.

- Introduction
- Properties
- Trust-regior
- Variable size
- AMLET
- Simulated data
- ightarrow Halton
- Real data
- Conclusions

Halton vs Monte-Carlo: remarks

- AMLET very fast compared to Gauss;
- Poor results with 125 Halton;
- 250 Halton give similar solution to 1000 Monte-Carlo, but results change with 2000 Monte-Carlo, and Gauss underevaluates the objective;
- Tests with 2000 individuals has given better results with 125 Halton than 250 Halton.

Quid of Halton sequences? Our results incite us to be careful concerning their usage, but we still guess that good results can be obtained with scrambled sequences (see Bhat).

University

Tests on real data

Outline

- Introduction
- Truet-region
- Variable size
- AMLET
- Simulated data
- Halton
- ightarrow Real data
- Conclusions

Mode choice model: Mobidrive data (Axhausen and al.)

- \rightarrow 5799 observations;
- \rightarrow 5 alternatives;
- \rightarrow 3 random parameters (normally distributed).

Tests on real data

Outline

- Introduction
- Properties
 Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- ightarrow Real data
- Conclusions

Mode choice model: Mobidrive data (Axhausen and al.)

- \rightarrow 5799 observations;
- \rightarrow 5 alternatives;
- \rightarrow 3 random parameters (normally distributed).

Note: correlation between observations not considered (feature planned for next AMLET release).

- Introduction
- Properties
 Trust region
- Variable size
- AMLET
- Simulated data
- Halton
- ightarrow Real data
- Conclusions

Tests on real data

Mode choice model: Mobidrive data (Axhausen and al.) \rightarrow 5799 observations;

- \rightarrow 5 alternatives;
- \rightarrow 3 random parameters (normally distributed).

Note: correlation between observations not considered (feature planned for next AMLET release).

Evolution of sample sizes (2000 Monte-Carlo)

10th International Conference on Travel Behaviour Research – p. 2

University ^{of} Namur www.fundp.ac.be

Tests on real data: results

	Variable	Gauss (125 Halt.)	<u>АМLЕТ</u> (1000 MC)	AMLET (2000 MC)		
	Car Passenger (CD)	-1.4511	-1.45104	-1.4527		
Outline	Public Transport (PT)	-0.9355	-0.932594	-0.932458		
 Introduction 	Walk (W)	0.1081	0.109186	0.108793		
 Properties 	Bike (B)	-0.6355	-0.634269	-0.635217		
 Trust-region 	Urban household location (PT)	0.560609	0.557866	0.561515		
• Variable size	Suburban household location (W, B)	-0.3451	-0.345403	-0.345113		
• AMLET	Full-time worker (PT)	0.2690	0.269265	0.268996		
 Simulated data 	Female and part-time (CP)	0.9133	0.912925	0.913835		
● Halton → Real data	Married with children (CD)	0.9716	0.970755	0.971656		
 Conclusions 	Annual mileage (CD)	0.0518	0.0518679	0.0519161		
	Number of stop (CD)	0.1349	0.135187	0.135817		
	Time mean	-0.0268	-0.0268882	-0.0269985		
	Time std. dev.	0.0205	0.0206265	0.0208197		
	Cost mean	-0.1683	-0.168923	-0.169365		
	Cost std. dev.	-0.0452	0.0465829	0.0465628		
	Time budget/100 mean (CD, CP)	-0.1249	-0.124816	-0.125128		
	Time budget/100 std. dev. (CD, CP)	-0.1136	0.112801	0.113803		
	Log-likelihood	-1.16489	-1.16479	-1.16470		
The	Bias	Not available	-0.00009117	-0.0000463		
University ^{of} Namur	Accuracy	Not available	0.0002916	0.0002086		
	Time (s)	2439	936	1549		
www.fundp.ac.be						

10th International Conference on Travel Behaviour Research – p. 2

• Introduction

• Variable size

• Simulated data

 \rightarrow Conclusions

• AMLET

HaltonReal data

Conclusions

 New Monte-Carlo algorithm for nonlinear stochastic programming;

- Introduction
- Properties
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- \rightarrow Conclusions

Conclusions

- New Monte-Carlo algorithm for nonlinear stochastic programming;
- Estimation of error and bias in the objective
 - allow variable sampling size techniques;
 - not sufficient to know stability of solutions;

- Introduction
- Properties
- Trust-regior
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- ightarrow Conclusions

Conclusions

- New Monte-Carlo algorithm for nonlinear stochastic programming;
- Estimation of error and bias in the objective
 - allow variable sampling size techniques;
 - not sufficient to know stability of solutions;
- Behaviour seems to be better when the number of alternatives rises;

- Introduction
- Properties
- Trust-regior
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- ightarrow Conclusions

University ^{of} Namur www.fundp.ac.be

Conclusions

- New Monte-Carlo algorithm for nonlinear stochastic programming;
- Estimation of error and bias in the objective
 - allow variable sampling size techniques;
 - not sufficient to know stability of solutions;
- Behaviour seems to be better when the number of alternatives rises;
- Implementation issues are important:
 - choice of optimization method;
 - implementation tricks (e.g.: possible to compute objective and gradient simultaneously).

- Introduction
- Properties
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- \rightarrow Conclusions

Perspectives

- AMLET still on a prototype level:
 - more tests on real data would be useful;
 - planned features:
 - other distributions than normals;
 - correlation between observations;

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- ightarrow Conclusions

Perspectives

- AMLET still on a prototype level:
 - more tests on real data would be useful;
 - planned features:
 - other distributions than normals;
 - correlation between observations;
- variable sampling size algorithm could be certainly refined;

- Introduction
- Properties
- Trust-region
- Variable size
- AMLET
- Simulated data
- Halton
- Real data
- ightarrow Conclusions

University ^{of} Namur www.fundp.ac.be

Perspectives

- AMLET still on a prototype level:
 - more tests on real data would be useful;
 - planned features:
 - other distributions than normals;
 - correlation between observations;
- variable sampling size algorithm could be certainly refined;
- investigation of quasi Monte-Carlo methods:
 - exploitable error bounds?
 - exploration of scrambled sequences;
 - could reduce computation time and memory needs.