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Regularization for unconstrained problems

The problem (again)

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

For now, focus on the

unconstrained case

but we are also interested in the case featuring

inexpensive constraints
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Regularization for unconstrained problems

Adaptive regularization

Adaptive regularization methods iteratively compute steps by minimizing

m(s)
def
= f (x) + sTg(x) + 1

2
sTH(x)s + 1

3
σk‖s‖3

2 = Tf ,2(x , s) + 1
3
σk‖s‖3

2

until an approximate first-order minimizer is obtained:

‖∇sm(s)‖ ≤ κstop‖s‖2

Note: no global optimization involved.
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Regularization for unconstrained problems

Second-order Adaptive Regularization (AR2)

Algorithm 1.1: The AR2 Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Termination: If ‖gk‖ ≤ ε, terminate.

Step 2: Step computation:
Compute sk such that mk(sk) ≤ mk(0) and ‖∇sm(sk)‖ ≤ κstop‖sk‖2.

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,2(xk , sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 4: Update the regularization parameter:

σk+1 ∈


[σmin, σk ] = 1

2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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Regularization for unconstrained problems

Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

If H is globally Lipschitz and the s-rule is applied, the AR2
algorithm requires at most⌈

κS
ε3/2

⌉
evaluations

for some κS independent of ε.

“Nesterov & Polyak”,
Cartis, Gould, T., 2011, Birgin, Gardenghi, Martinez, Santos, T., 2017

Note:

The above result is sharp (in order of ε)!

An O(ε−3) bound holds for convergence to second-order critical
points.
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Regularization for unconstrained problems

Evaluation complexity: sharpness

Is the bound in O(ε−3/2) sharp? YES!!!
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Regularization for unconstrained problems

An example of slow AR2 (2)
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Regularization for unconstrained problems

An example of slow AR2 (3)
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Regularization for unconstrained problems

An example of slow AR2 (4)
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Unregularized methods

Slow steepest descent (1)

The steepest descent method with requires at most⌈
κC
ε2

⌉
evaluations

for obtaining ‖gk‖ ≤ ε.

Nesterov

Sharp??? YES

Newton’s method (when convergent) requires at most

O(ε−2) evaluations

for obtaining ‖gk‖ ≤ ε !!!!
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General regularization methods

High-order models for first-order points (1)

What happens if one considers the model

mk(s) = Tf ,p(xk , s) +
σk
p!
‖s‖p+1

2

where

Tf ,p(x , s) = f (x) +

p∑
j=1

1

j!
∇j

x f (x)[s]j

terminating the step computation when

‖∇sm(sk)‖ ≤ κstop‖sk‖p
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General regularization methods

High-order models for first-order points (2)

unconstrained ε-approximate 1rst-order-necessary minimizer after at
most

f (x0)− flow
κ

ε
− p+1

p

function and gradient evaluations

Birgin, Gardhenghi, Martinez, Santos, T., 2017
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General regularization methods

One then wonders. . .

If one uses a model of degree p (Tf ,p(x , s)), why be satisfied
with first- or second-order critical points???

What do we mean by critical points of order larger than 2 ???

What are necessary optimality conditions for order larger
than 2 ???

Not an obvious question!
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General regularization methods

A sobering example (1)

Consider the unconstrained minimization of

f (x1, x2) =

{
x2

(
x2 − e−1/x2

1

)
if x1 6= 0,

x2
2 if x1 = 0,

Peano (1884), Hancock (1917)
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General regularization methods

A sobering example (2)

Conclusions:

looking at optimality along straight lines is not enough

depending on Taylor’s expansion for necessary conditions is not always
possible

Even worse:

f (x1, x2) =

{
x2

(
x2 − sin(1/x1)e−1/x2

1

)
if x1 6= 0,

x2
2 if x1 = 0,

(no continuous descent path from 0, although not a local minimizer!!!)

Hopeless?
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General regularization methods

A new (approximate) optimality measure

Define, for some small δ > 0, (F = IRn)

φδf ,j(x)
def
= f (x)− globmin

x+d∈F
‖d‖≤δ

Tf ,j(x , d),

x is a (strong) (ε, δ)-approximate qth-order-necessary minimizer

⇔

φ
δj
f ,j(x) ≤ εj

δjj
j!

for j ∈ {1, . . . , q}

for some δ ∈ (0, 1]q.

φδf ,j(x) is continuous as a function of x for all j .

φδf ,j(x) = o
(
δj

j!

)
is a necessary optimality condition
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General regularization methods

Approximate unconstrained optimality

Familiar results for low orders: when q = 1

φδf ,1(x) = ‖∇x f (x)‖ δ ⇒ ‖∇x f (x)‖ ≤ ε1

while, for q = 2,

‖∇x f (x)‖ = 0
λmin(∇2

x f (x)) ≥ −ε

}
⇒ φδf ,2(x) ≤ ε2

δ2

2

Philippe Toint (naXys, UNamur, Belgium) Complexity for nonconvex optimization SFO 2021 17 / 44



General regularization methods

Introducing inexpensive constraints

Constraints are inexpensive

⇔
their evaluation/enforcement has negligible cost

(compared with that of evaluating f )

evaluation complexity for the constrained problem well measured in
counting evaluations of f and its derivatives
many well-known and important examples

bound constraints
convex constraints with cheap projections
parametric constraints
. . .

the global minimization defining φδf ,j(x) must be conducted in F !

From now on: F def
= (inexpensive) feasible set
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General regularization methods

A very general optimization problem

Our aim:

Compute an (ε, δ)-approximate qth-order-necessary minimizer for the
problem

min
x∈F

f (x)

where

p ≥ q ≥ 1,

{∇j
x f (x)}pj=1 are Lipschitz continuous

F is an inexpensive feasible set

Note:

1 no convexity assumption of f

2 no convexity assumption on F
3 Lipschitz can be extended to Hölder
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General regularization methods

A (theoretical) regularization algorithm

Algorithm 3.1: The ARqp algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 ∈ (0, 1]q and σ0 > 0 given. Set k = 0

Step 1: Stop?: If φ
δk−1,j

f ,j (xk) ≤ εjδjk−1,j/j! for j ∈ {1, . . . , q}, stop.

Step 2: Step computation:
Compute∗ sk such that xk + sk∈ F , mk(sk) ≤ mk(0) and

φ
δk,j
mk ,j

(xk + sk) ≤ θεj
δk,j

j

j!
(j ∈ {1, . . . , q})

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,p(xk , sk)

and set xk+1 = xk + sk if ρk > 0.1 or xk+1 = xk otherwise.

Step 4: Update the regularization parameter:

σk+1 ∈


[σmin, σk ] = 1

2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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General regularization methods

Comments on the algorithm

1 for q = 1 and q = 2, computing φ
δk−1,j

f ,j (xk) is easy

q = 1: analytic solution
q = 2: trust-region subproblem with unit radius

⇒ practical algorithm

2 for q > 2: hard problem in general
⇒ conceptual algorithm

Define

easy case:
[
q ≤ 2 and F = IRn

]
or[

q = 1 and F is convex
]

hard case: all other cases.
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General regularization methods

The main result

The ARqp algorithm is well-defined and

The ARqp algorithm finds an (ε, δ)-approximate qth-order-
necessary minimizer for the problem

min
x∈F

f (x)

in at most  O
(
ε
− p+1

p−q+1

)
if easy

O
(
ε
−q p+1

p

)
if hard

iterations and evaluations of the objective function and its p
first derivatives. Moreover, this bound is sharp.
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General regularization methods

What this theorem does

1 generalizes ALL known complexity results for regularization methods
to

arbitrary degree p, arbitrary order q and arbitrary smoothness
p + 1

2 applies to very general constrained problems

3 generalizes the lower complexity bound of Carmon at al., 2018, to
arbitrary dimension, arbitrary order and to constrained problems

4 provides a considerably better complexity order than the bound

O
(
ε−(q+1)

)
known for unconstrained trust-region algorithms (Cartis, Gould, T., 2017)

Note: linesearch methods all fail for q > 3!

5 is provably optimal within a wide class of algorithms (Cartis, Gould, T.,
2018 for p ≤ 2)
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General regularization methods

Further extensions

Recent advances:

in smooth Banach spaces (for q = 1), using a new method to
minimize polynomials using a Hölder regularization
(Gratton, Jerad, T., 2021)

when using a regularization in general possibly non-smooth norms
(for q ≤ p ≤ 2), despite the non-smoothness of the model mk

step termination tests not on mk but on Tf ,2(xk , sk)
(⇒ allows Newton steps)
even more compact complexity analysis!
a specialized method for finding “second-order” points when
minimizing quadratic polynomials regularized with a non-smooth norm
(and its complexity)

(Gratton, T., 2021)
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Inexact deterministic variants

Moving on: allowing inexact evaluations

A common observation:

In many applications, it is necessary/useful to evaluate f (x) and/or ∇j
x f (x)

inexactly

1 complicated computations involving truncated iterative processes

2 variable accuracy schemes

3 sampling techniques (machine learning)

4 finite-differences,

5 . . .

Focus on the case where f and/or all its derivatives are inexact
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Inexact deterministic variants

The implicit dynamic accuracy (IDA) framework

Suppose that

f is exact

the absolute accuracies of the i-th derivative satisfy a bound

‖∇i
x f (xk)−∇i

x f (xk)‖ ≤ κ∇,i hk,i (i ∈ {1, . . . , j})

for some accuracy goal hk,i specified by the algorithm before their
computation and some unknown constant κ∇,i .

Implicit Dynamic Accuracy (IDA)

Examples:

finite-difference estimations

multivariate polynomial interpolation/regression (DFO)

. . .
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Inexact deterministic variants

Inexactness consequences and accuracy enforcement

Denote inexact quantities with overbars.

Because only inexact derivatives are available:

∇i
x f (xk)→ ∇i

x f (xk), Tf ,j(xk , s)→ T f ,j(xk , s) φ
δk,j
f ,j (xk)→ φ

δk,j
f ,j (xk)

Accuracy goal management: require

hk,i ≤ κs‖sk‖p−i+1 (i ∈ {1, . . . , p})

⇒ more accuracy for low-order derivatives
Consequences:

|Tf ,j(xk , s)− T f ,j(xk , s)| ≤ 2κ∇,max‖s‖p+1

φ
δk,j
f ,j (xk) ≤ φδk,jf ,j (xk) + 6κ∇,maxhk,max
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Inexact deterministic variants

An IDA regularization algorithm

Algorithm 4.1: The ARqpIDA algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 ∈ (0, 1]q and σ0 > 0 given. Set k = 0

Step 1: Approx. optimal? Set δk = δsk−1
. If

φ
δk,j
f ,j (xk) ≤ 1

2
εjδ

j
k,j/j! for j ∈ {1, . . . , q},

go to Step 5. Else, ensure that ∆mk(dk,j) ≥ 1
4
εjδ

j
k,j/j! by possibly

reducing δk and returning to Step 1.

Step 2: Step computation:
Compute sk such that xk + sk ∈ F , ∆mk(sk) ≥ ∆mk(dk,j) and

φ
δsk ,i
mk ,i

(sk) ≤ θεi δisk ,i/i ! (i ∈ {1, . . . , q})
If accuracy test fails, go to Step 5.

Step 3: Step acceptance: [As before.]

Step 4: Update the regularization parameter: [As before.]

Step 5: Improve accuracy: hk+1,i = 1
2
hk,i (i ∈ {1, . . . , p}).
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Inexact deterministic variants

An IDA regularization algorithm: comments

Notes:

no termination rule, but optimality reached. . .

dk,j plays the role of a generalized Cauchy point

some hidden (unimportant) details

approx. optimality test can be organized in a loop over successive
orders j = 1, . . . , q

no need to check the condition on φ
δsk ,i
mk ,i

(sk) if the step is large.

A trust-region variant (TRqIDA) exists
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Inexact deterministic variants

An IDA regularization algorithm: complexity

The ARqpIDA algorithm finds an (ε, δ)-approximate qth-order-
necessary minimizer for the problem

min
x∈F

f (x)

in at most  O
(
ε
− p+1

p−q+1 +| log(ε)|
)

if easy

O
(
ε
−q p+1

p +| log(ε)|
)

if hard

iterations and evaluations of the objective function and its p
first derivatives.

Complexity for TRqIDA: O
(
ε−(q+1) + | log(ε)|

)
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Inexact deterministic variants

The explicit dynamic accuracy (EDA) framework

Suppose now that

the absolute accuracy of f

the absolute accuracies of the i-th derivative satisfy a bound

‖∇i
x f (xk)−∇i

x f (xk)‖ ≤ ζk,i (i ∈ {1, . . . , j})

for some accuracy requests ζk,i specified by the algorithm before their com-
putation

Explicit Dynamic Accuracy (EDA)

Examples:

truncated iterative processes

variable accuracy computations

. . .
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Inexact deterministic variants

Inexactness consequences and accuracy enforcement

Again using

∇i
x f (xk), T f ,j(xk , s) and φ

δk,j
f ,j (xk)

because of inexact derivatives, but also now

f (xk) and f (xk + sk)

Control both

the relative error of ∆T f ,j(xk , sk)

the absolute error of f (xk) and f (xk + sk)

by suitably adapting the requests ζk,i .
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Inexact deterministic variants

Inexactness consequences and accuracy enforcement (2)

• need of a VERIFY algorithm to check if the ζk,i are small enough to
ensure that

|∆Tf ,j(xk , sk)−∆T f ,j(xk , sk)| ≤ ω|∆T f ,j(xk , sk)|

VERIFY for

φ
δk,j
f ,j (xk) → V [φ

δk,j
f ,j (xk)]

∆T f ,j(xk , dk,j) → V [∆T f ,j(xk , dk,j)]

φ
δsk ,i
mk ,i

(sk) → V [φ
δsk ,i
mk ,i

(sk)]

• need to ensure that ζk,i are small enough to ensure that

|f (xk + sk)− f (xk + sk)| ≤ ω|∆T f ,j(xk , sk)|

|f (xk)− f (xk)| ≤ ω|∆T f ,j(xk , sk)|
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Inexact deterministic variants

An EDA regularization algorithm

Algorithm 4.2: The ARqpEDA algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 ∈ (0, 1]q and σ0 > 0 given. Set k = 0

Step 1: Terminate? Set δk = δsk−1
. Terminate if

V [φ
δk,j
f ,j (xk)] ≤ (εj/(1 + ω)δjk,j/j! for j ∈ {1, . . . , q}.

If VERIFY fails for φ
δk,j
f ,j (xk), go to Step 5. Else, reduce δk to

ensure that ∆mk(dk,j) ≥ (εj/2(1+ω))δjk,j/j! and go to Step 1.

Step 2: Step computation:
Compute sk such that xk + sk ∈ F , V [∆mk(sk)] ≥ ∆mk(dk,j) and

V [φ
δsk ,i
mk ,i

(sk)] ≤ (θ(1− ω)/(1 + ω))εi δ
i
sk ,i
/i ! (i ∈ {1, . . . , q})

If one of the two calls to VERIFY fails, go to Step 5.

Step 3: Step acceptance: [As before using f (xk) and f (xk + sk).]

Step 4: Update the regularization parameter: [As before.]

Step 5: Improve accuracy: ζk+1,i = 1
2
ζk,i (i ∈ {1, . . . , p}).
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Inexact deterministic variants

An EDA regularization algorithm: comments

Notes:

uses a proper termination rule!

as before, dk,j plays the role of a generalized Cauchy point

lots of hidden details

approx. optimality test can be organized in a loop over successive
orders j = 1, . . . , q

no need to check the condition on φ
δsk ,i
mk ,i

(sk) if the step is large.

A trust-region variant (TRqEDA) exists
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Inexact deterministic variants

An EDA regularization algorithm: complexity

The ARqpEDA algorithm finds an (ε, δ)-approximate qth-order-
necessary minimizer for the problem

min
x∈F

f (x)

in at most O
(
ε
− p+1

p−q+1 + | log(ε)|
)

if easy

O
(
ε
−q p+1

p + | log(ε)|
)

if hard

iterations and evaluations of the objective function and its p
first derivatives.

Complexity for TRqEDA: O
(
ε−(q+1) + | log(ε)|

)
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An inexact semi-stochastic variant

A semi-stochastic context

Suppose now that the inequalities

|f (xk + sk)− f (xk + sk)| ≤ ω|∆T f ,j(xk , sk)|

|f (xk)− f (xk)| ≤ ω|∆T f ,j(xk , sk)|

are enforceable, but that derivatives values are affected by random noise.
=⇒ no way to ensure any of the two above accuracy models (IDA, EDA)!

Semi-stochastic framework

Example: DFO using a smoothed objective function value and random
finite-differences for derivatives.
Question: Can ARqp still be applied?
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An inexact semi-stochastic variant

A semi-stochastic regularization algorithm

Algorithm 5.1: The SARqp algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 ∈ (0, 1]q and σ0 > 0 given. Set k = 0

Step 1: Step computation:
Compute sk such that xk + sk ∈ F , mk(sk) ≤ mk(0) and

φ
δk,j
mk ,j

(xk + sk) ≤ θεj
δjk,j
j!

(j ∈ {1, . . . , q})

Step 2: Step acceptance:
Compute “ω-accurate f (xk + sk) and (if necessary) f (xk). Set

ρk =

 f (xk)− f (xk + sk)
f (xk)− Tf ,p(xk , sk)

if f (xk) > Tf ,p(xk , sk)

+∞ otherwise.

and set xk+1 = xk + sk if ρk > 0.1 or xk+1 = xk otherwise.

Step 3: Update the regularization parameter: [As usual.]
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An inexact semi-stochastic variant

An semi-stochastic regularization algorithm: comments

Notes:

no termination at all!

no need to check the condition on φ
δsk ,i
mk ,i

(sk) if the step is large.

A trust-region variant (STRq) is being developped
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An inexact semi-stochastic variant

An semi-stochastic regularization algorithm: complexity

A informal statement of our assumptions:

Consider the events{
|∆T f ,p(Xk ,Sk)−∆Tf ,p(Xk , Sk)| ≤ ω∆T f ,p(Xk ,Sk)

}{
|∆Tmk ,j(Sk ,Dk,j)−∆Tmk ,j(Sk ,Dk,j)| ≤ ω∆Tmk ,j(Sk ,Dk,j)

}{
|∆Tmk ,j(Sk ,Dk,j)−∆Tmk ,j(Sk ,Dk,j)| ≤ ω∆Tmk ,j(Sk ,Dk,j)

}{
max`∈{2,...,p} ‖∇`x f (Xk)‖ ≤ Θ}.

We assume that

Pr
[
these events occur|conditioned by the past

]
> 1

2

+ f bounded below and Lipschitz continuity of {∇i
x f }

p
i=1

Let

Nε = inf

{
k ≥ 0 | φ∆k−1,j

f ,j (Xk) ≤ εj
∆j

k−1,j

j!
for j ∈ {1, . . . , q}

}
.
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An inexact semi-stochastic variant

An semi-stochastic regularization algorithm: complexity (2)

If the SARqp algorithm is applied to the problem

min
x∈F

f (x)

then, under the stated assumptions,

E
[
Nε
]

=

 O
(
ε
− p+1

p−q+1

)
if easy

O
(
ε
−q p+1

p

)
if hard

=⇒ the complexity of ARqp is unaffected provided the model is
“ω-accurate” sufficiently often
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Conclusions

Conclusions

A more global view (ignoring | log(ε)| terms)
weak minimizers strong minimizers

inexpensive non-composite non-composite composite
constraints (h = 0) (h = 0) h convex h non-convex

q = 1 none O
(
ε
− p+1

p

)
sharp O

(
ε
− p+1

p

)
sharp O

(
ε
− p+1

p

)
sharp O

(
ε−2

)
convex O

(
ε
− p+1

p

)
sharp O

(
ε
− p+1

p

)
sharp O

(
ε
− p+1

p

)
sharp O

(
ε−2

)
non-convex O

(
ε
− p+1

p

)
sharp O

(
ε
− p+1

p

)
sharp O

(
ε−2

)
O
(
ε−2

)
q = 2 none O

(
ε
− p+1

p−1

)
sharp O

(
ε
− p+1

p−1

)
sharp O

(
ε−3

)
O
(
ε−3

)
convex O

(
ε
− p+1

p−1

)
sharp O

(
ε
− p+1

p−1

)
sharp O

(
ε−3

)
O
(
ε−3

)
non-convex O

(
ε
− p+1

p−1

)
sharp O

(
ε
− 2(p+1)

p

)
sharp O

(
ε−3

)
O
(
ε−3

)
q > 2

none, or
general

O
(
ε
− p+1

p−q+1

)
sharp O

(
ε
− q(p+1)

p

)
sharp O

(
ε−(q+1)

)
O
(
ε−(q+1)

)

Inexact evaluations (deterministic or stochastic)
do not (significantly) affect the complexity
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Conclusions

Perspectives

Complexity for expensive constraints for q > 1?

A “completely” stochastic approach of inexact evaluation

Optimization in variable arithmetic precision

etc., etc., etc.

Thank you for your attention!
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