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Regularization for unconstrained problems

The problem (again)

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

For now, focus on the

unconstrained case

but we are also interested in the case featuring

inexpensive constraints
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Regularization for unconstrained problems

Adaptive regularization

Adaptive regularization methods iteratively compute steps by mimizing

m(s)
def
= f (x) + sTg(x) + 1

2
sTH(x)s + 1

3
σk‖s‖

3
2 = Tf ,2(x , s) + 1

3
σk‖s‖

3
2

until an approximate first-order minimizer is obtained:

‖∇sm(s)‖ ≤ κstop‖s‖
2

Note: no global optimization involved.
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Regularization for unconstrained problems

Second-order Adaptive Regularization (AR2)

Algorithm 1.1: The AR2 Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Termination: If ‖gk‖ ≤ ǫ, terminate.

Step 2: Step computation:
Compute sk such that mk(sk) ≤ mk(0) and ‖∇sm(sk)‖ ≤ κstop‖sk‖

2.

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,2(xk , sk)

and set xk+1 =

{

xk + sk if ρk > 0.1
xk otherwise

Step 4: Update the regularization parameter:

σk+1 ∈







[σmin, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful

[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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Regularization for unconstrained problems

Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ǫ?

If H is globally Lipschitz and the s-rule is applied, the AR2
algorithm requires at most

⌈

κS

ǫ3/2

⌉

evaluations

for some κS independent of ǫ.

“Nesterov & Polyak”,
Cartis, Gould, T., 2011, Birgin, Gardenghi, Martinez, Santos, T., 2017

Note:

The above result is sharp (in order of ǫ)!

An O(ǫ−3) bound holds for convergence to second-order critical
points.
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Regularization for unconstrained problems

Evaluation complexity: sharpness

Is the bound in O(ǫ−3/2) sharp? YES!!!
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Regularization for unconstrained problems

An example of slow AR2 (2)
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Regularization for unconstrained problems

An example of slow AR2 (3)
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Regularization for unconstrained problems

An example of slow AR2 (4)
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Unregularized methods

Slow steepest descent (1)

The steepest descent method with requires at most
⌈

κC
ǫ2

⌉

evaluations

for obtaining ‖gk‖ ≤ ǫ.

Nesterov

Sharp??? YES

Newton’s method (when convergent) requires at most

O(ǫ−2) evaluations

for obtaining ‖gk‖ ≤ ǫ !!!!
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General regularization methods

High-order models for first-order points (1)

What happens if one considers the model

mk(s) = Tf ,p(xk , s) +
σk
p!

‖s‖p+1
2

where

Tf ,p(x , s) = f (x) +

p
∑

j=1

1

j!
∇j

x f (x)[s]
j

terminating the step computation when

‖∇sm(sk)‖ ≤ κstop‖sk‖
p
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General regularization methods

High-order models for first-order points (2)

unconstrained ǫ-approximate 1rst-order-necessary minimizer after at
most

f (x0)− flow

κ
ǫ
− p+1

p

function and gradient evaluations

Birgin, Gardhenghi, Martinez, Santos, T., 2017
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General regularization methods

One then wonders. . .

If one uses a model of degree p (Tf ,p(x , s)), why be satisfied
with first- or second-order critical points???

What do we mean by critical points of order larger than 2 ???

What are necessary optimality conditions for order larger
than 2 ???

Not an obvious question!
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General regularization methods

A sobering example (1)

Consider the unconstrained minimization of

f (x1, x2) =

{

x2

(

x2 − e−1/x21

)

if x1 6= 0,

x22 if x1 = 0,

Peano (1884), Hancock (1917)
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General regularization methods

A sobering example (2)

Conclusions:

looking at optimality along straight lines is not enough

depending on Taylor’s expansion for necessary conditions is not always
possible

Even worse:

f (x1, x2) =

{

x2

(

x2 − sin(1/x1)e
−1/x21

)

if x1 6= 0,

x22 if x1 = 0,

(no continuous descent path from 0, although not a local minimizer!!!)

Hopeless?
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General regularization methods

A new (approximate) optimality measure

Define, for some small δ > 0, (F = IRn)

φδf ,q(x)
def
= f (x)− globmin

x+d∈F
‖d‖≤δ

Tf ,q(x , d).

x is a strong (ǫ, δ)-approximate qth-order-necessary minimizer

⇔

φδf ,j(x) ≤ ǫ
δj

j!
(j = 1, . . . , q)

φδf ,q(x) is continuous as a function of x for all q.

φδf ,j(x) = o
(

δj)
)

is a necessary optimality condition
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General regularization methods

Approximate unconstrained optimality

Familiar results for low orders: when q = 1

φδf ,1(x)

δ
= ‖∇x f (x)‖

while, for q = 2,

φδf ,2(x)

δ2
≤ ǫ⇒ max

[

0,−λmin(∇
2
x f (x))

]

≤ ǫ

Philippe Toint (naXys, UNamur, Belgium) Recent results in worst-case evaluation complexity for smooth and non-smooth, exact andBeijing 2020 17 / 37



General regularization methods

Introducing inexpensive constraints

Constraints are inexpensive

⇔

their evaluation/enforcement has negligible cost
(compared with that of evaluating f )

evaluation complexity for the constrained problem well measured in
counting evaluations of f and its derivatives
many well-known and important examples

bound constraints
convex constraints with cheap projections
sparse sets
manifold with known retraction, . . .

From now on: F
def
= (inexpensive) feasible set
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General regularization methods

A very general optimization problem

Our aim:

Compute an (ǫ, δ)-approximate qth-order-necessary minimizer for the
problem

min
x∈F

f (x)

where

p ≥ q ≥ 1,

∇p
x f (x) is β-Hölder continuous (β ∈ (0, 1])

F is an inexpensive feasible set

Note:

1 no convexity assumption of f

2 no convexity assumption on F (not even connectivity)

3 reduces to Lipschitz continuous ∇p
x f (x) when β = 1.
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General regularization methods

A (theoretical) regularization algorithm

Algorithm 3.1: The ARqp algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 and σ0 > 0 given. Set k = 0

Step 1: Termination: If φ
δk−1,j

f ,j (xk) ≤ ǫδjk−1,j/j! for j = 1, . . . , q, stop.

Step 2: Step computation:
Compute∗ sk such that xk + sk∈ F , mk(sk)<mk(0) and

‖sk‖ ≥ κs ǫ
1

p−q+β or φ
δk,j
mk ,j

(xk + sk) ≤ θǫjδ
j
k,j/j! (j = 1, . . . , q)

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,p(xk , sk)

and set xk+1 = xk + sk if ρk > 0.1 or xk+1 = xk otherwise.

Step 4: Update the regularization parameter:

σk+1 ∈







[σmin, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful

[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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General regularization methods

The main result

The ARp algorithm is well-defined and

The ARp algorithm finds an (ǫ, δ)-approximate qth-order-
necessary minimizer for the problem

min
x∈F

f (x)

in at most

O
(

ǫ
− p+β

p−q+β

)

(q = 1, 2) or O

(

ǫ
−

q(p+β)
p

)

(q > 2)

iterations and evaluations of the objective function and its p

first derivatives. Moreover, this bound is sharp.
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General regularization methods

What this theorem does

1 generalizes ALL known complexity results for regularization methods
to

arbitrary degree p, arbitrary order q and arbitrary smoothness
p + β

2 applies to very general constrained problems

3 generalizes the lower complexity bound of Carmon at al., 2018, to
arbitrary dimension, arbitrary order and to constrained problems

4 provides a considerably better complexity order than the bound

O
(

ǫ−(q+1)
)

known for unconstrained trust-region algorithms (Cartis, Gould, T., 2017)

Note: linesearch methods all fail for q > 3!

5 is provably optimal within a wide class of algorithms (Cartis, Gould, T.,
2018 for p ≤ 2)
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Inexact variants

Moving on: allowing inexact evaluations

A common observation:

In many applications, it is necessary/useful to evaluate f (x) and/or ∇j
x f (x)

inexactly

1 complicated computations involving truncated iterative processes

2 variable accuracy schemes

3 sampling techniques (machine learning)

4 noise

5 . . .

Focus on the case where f and all its derivatives are inexact
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Inexact variants

The dynamic accuracy framework

Suppose that

the absolute accuracy of f

the relative accuracy of the Taylors’ model ∆T

can be specified by the algorithm before their computation

(all examples cites above)

Note: relative accuracy of ∆T controlled via absolute accuracy of the
derivatives!

Denote inexact quantities with overbars.
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Inexact variants

The ARpDA algorithm

Algorithm 4.1: The ARpDA algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 and σ0 > 0 given. Set k = 0

Step 1: Termination: If φ
δk−1,j

f ,j (xk) ≤ 1
2
ǫjδ

j
k−1,j/j! for j = 1, . . . , q,

terminate.

Step 2: Step computation:
Compute∗ sk such that xk + sk ∈ F , mk(sk) < mk(0) and

‖sk‖ ≥ κs ǫ
1

p−q+β or φ
δk,j
mk ,q(xk + sk) ≤ θǫj

δjk,j
j!

Step 3: Step acceptance:

Compute ρk = f (xk)− f (xk + sk)

∆T f ,p(xk , sk)

and set xk+1 = xk + sk if ρk > 0.1 or xk+1 = xk otherwise.

Step 4: Update the regularization parameter:
(as in ARp)

Philippe Toint (naXys, UNamur, Belgium) Recent results in worst-case evaluation complexity for smooth and non-smooth, exact andBeijing 2020 25 / 37



Inexact variants

Evaluation complexity for the ARpDA algorithm

And then (sweeping some dust under the carpet). . .

The ARpDA algorithm finds an (ǫ, δ)-approximate qth-order-
necessary minimizer for the problem

min
x∈F

f (x)

in at most

O
(

ǫ
− p+β

p−q+β

)

or O

(

ǫ
−

q(p+β)
p

)

iterations (inexact) evaluations of the objective function, and
at most

O
(

| log(ǫ)|+ ǫ
− p+β

p−q+β

)

or O

(

| log(ǫ)|+ ǫ
−

q(p+β)
p

)

(inexact) evaluations of its p first derivatives.
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Inexact variants

A probabilistic complexity bound

Suppose that absolute evaluation errors are random and independent,
q ∈ {1, 2} and that, for given ε,

Pr

[

‖ ∇j
x f (xk)−∇j

x f (xk)‖ ≤ ε

]

≥ 1− t (j ∈ {1, . . . , p})

where

t = O

(

tfinal ǫ
p+1

p−q+β

p + q + 2

)

Then the ARpDA algorithm finds an (ǫ, δ)-approximate qth-order-
necessary minimizer for the problem minx∈F f (x) in at most

O
(

ǫ−
p+β

p−q+β

)

iterations and (inexact) evaluations of the objective

function, and at most O
(

| log(ǫ)|+ ǫ−
p+β

p−q+β

)

(inexact) evaluations

of its p first derivatives, with probability 1− tfinal.
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Inexact variants

Selecting a sample size in subsampling methods (1)

Now consider p = 2, β = 1, F = IRn and (as in machine learning)

f (x) =
1

N

N
∑

i=1

ψi (x)

Estimating the values of {∇j
x f (xk)}

2
j=0 by sampling:

f (xk) =
1

|Dk |

∑

i∈Dk

ψi (xk), ∇1
x f (xk) =

1

|Gk |

∑

i∈Gk

∇1
xψi (xk),

∇2
x f (xk) =

1

|Hk |

∑

i∈Hk

∇2
xψi (xk),

and applying the Operator-Bernstein matrix concentration inequality. . .
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Inexact variants

Selecting a sample size in subsampling methods (2)

Suppose that β = 1 ≤ q ≤ 2 = p, that, for all k and j ∈ {0, 1, 2},

max
i∈{1,...,N}

‖∇j
xψi (xk)‖ ≤ κj(xk)

and that, for given ε,

|Dk | ≥ ϑ0,k(ε) log (2/t) , |Gk | ≥ ϑ1,k(ε) log ((n + 1)/t) ,

|Hk | ≥ ϑ2,k(ε) log (2n/t) ,
where

ϑj,k(ε)
def
=

4κj(xk)

ε

(

2κj(xk)

ε
+

1

3

)

and t = O

(

tfinal ǫ
3

3−q

4 + q

)

.

Then the AR2DA algorithm finds an ǫ-approximate qth-order-
necessary minimizer for the problem minx∈IRn f (x) in at most

O
(

ǫ−
3

3−q

)

iterations and subsampled evaluations of f , and at most

O
(

| log(ǫ)|+ ǫ−
3

3−q

)

subsampled evaluations ∇1
x f and ∇2

x f , with

probability 1− tfinal.
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Inexact variants

Non-smooth Lipschitzian composite problems

Finally, consider

min
x

w(x) = f (x) + h(c(x))

where f and c have Lipschitz p-th derivative but are inexact, and h is
subadditive, h(0) = 0, Lispchitz and exact (lots of examples: norms. . . )

not a special case of smooth inexact case because ∆f now involves h

as well as ∇j
x f and ∇j

xc

allows high-order minimizers for non-smooth problem by using

φδw ,q(x) = w(x)− globmin
x+d∈F ;‖d‖≤δ

[Tf ,q(x , d)− h(Tc,q(x , d))]

O
(

ǫ−
p+1
p

)

(q = 1,F convex), or O
(

ǫ−(q+1)
)

otherwise

evaluations of f , h, c and derivatives.

Also for problems with inexpensive constraints
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Inexact variants

Tentative new results

1 for inexpensively constrained problems:

O
(

ǫ−(p+1)/(p−q+1)
)

[sharp] for q ∈ {1, 2} and F convex,

O
(

ǫ−q(p+1)/p
)

[sharp] otherwise.

2 for inexpensively constrained composite problems:

O
(

ǫ−(p+1)/p
)

[sharp] for q = 1 and F convex,

O
(

ǫ−(q+1)
)

[?] otherwise.
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Weak approximate minimizers

A weaker approximate optimality measure. . .

Can one generalize the good complexity orders for q = 1, 2 to higher order?
Yes, if one settles for a weaker notion of approximate optimality:

x is a weak (ǫ, δ)-approximate qth-order-necessary minimizer

⇔

φδf ,q(x) ≤ ǫ χq(δ)

where χj(δ) =
∑j

ℓ=1
δℓ

ℓ! .

(weak vs strong approximate minimizers)

O
(

ǫ−
p+β

p−q+β

)

evaluations of f and its derivatives
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Weak approximate minimizers

Turning to non-smooth problems: non-Lipschitzian
singularities 1

Now consider

min
x∈F

f (x) +
∑

i∈H

|xi |
a, a ∈ (0, 1)

with F convex and “kernel centered”
Define

C(x) = {i ∈ H | xi = 0} and R(x) =
⋂

i∈H\R(x)

span {ei}

Criticality measure

φδf ,q(x) = f (x)− globmin
x+d∈F

‖d‖≤δ,d∈R(x)

Tf ,q(x , d)
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Weak approximate minimizers

Non-Lipschitzian singularities 2

define a Lipschitzian model of the non-Lipschitzian singularities
based on inherent symmetry

prove that the related Lipschitz constant is independent of ǫ

assemble the singular and non-singular complexity estimates

For weak q-th order:

O
(

ǫ−
p+β

p−q+β

)

evaluations of f and its derivatives
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Conclusions

Conclusions

A global view (also tentative)

weak minimizers strong minimizers
inexpensive non-composite non-composite composite
constraints (h = 0) (h = 0) h convex h non-convex

q = 1 none O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ−2
)

convex O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ−2
)

non-convex O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ
−

p+1
p

)

sharp O

(

ǫ−2
)

O

(

ǫ−2
)

q = 2 none O

(

ǫ
−

p+1
p−1

)

sharp O

(

ǫ
−

p+1
p−1

)

sharp O

(

ǫ−3
)

O

(

ǫ−3
)

convex O

(

ǫ
−

p+1
p−1

)

sharp O

(

ǫ
−

p+1
p−1

)

sharp O

(

ǫ−3
)

O

(

ǫ−3
)

non-convex O

(

ǫ
−

p+1
p−1

)

sharp O

(

ǫ
−

2(p+1)
p

)

sharp O

(

ǫ−3
)

O

(

ǫ−3
)

q > 2
none, or
general

O

(

ǫ
−

p+1
p−q+1

)

sharp O

(

ǫ
−

q(p+1)
p

)

sharp O

(

ǫ−(q+1)
)

O

(

ǫ−(q+1)
)
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Conclusions

Perspectives

Complexity for expensive constraints for q > 1?

A purely probabilistic approach of inexact evaluation (partly done)

Optimization in variable arithmetic precision

etc., etc., etc.

Thank you for your attention!
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Conclusions
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