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Introduction

The (simple?) problem

We consider the unconstrained quadratic optimization (QO) problem:

minimize q(x) = 1
2
xTAx − bT x

for x , b ∈ IRn and A an n × n symmetric positive-definite matrix.

A truly “core” problem in optimization (and linear algebra)

the simplest nonlinear optimization problem

subproblem in many methods for general nonlinear unconstrained
optimization

central in linear algebra (including solving elliptic PDEs)
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Introduction

Working assumptions

For what follows, we assume that

the problem size n is large enough and A is dense enough to make
factorization of A unavailable

a Krylov iterative method (Conjugate Gradients, FOM ) is used

the cost of running this iterative method is dominated by the
products Av

Focus on an optimization point of view : look at decrease in q rather
than at decrease in the associated system’s residual

ex: ensuring sufficient decrease in trust-region methods

Our aim, for x∗ solution of QO,

Find xk such that |q(xk)− q(x∗)| ≤ ǫ|q(x0)− q(x∗)|.
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Introduction

A first motivating example: weather forecasting (1)

The weakly-constrained 4D-Var formulation:

min
x∈IRn

1

2
‖x0− xb‖2B−1 +

1

2

N∑

j=0

∥
∥Hj

(
xj
)
− yj

∥
∥
2

R
−1
j

+
1

2

N∑

j=1

‖xj −Mj(xj−1)
︸ ︷︷ ︸

qj

‖2
Q

−1
j

x = (x0, . . . , xN)
T is the state control variable (with xj = x(tj))

xb is the background given at the initial time (t0).

yj ∈ IRmj is the observation vector over a given time interval

Hj maps the state vector xj from model space to observation space

Mj is an integration of the numerical model from time tj−1 to tj

B , Rj and Qj are the covariance matrices of background, observation
and model error. B and Qj impractical to ”invert”
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Introduction

A first motivating example: weather forecasting (2)

Solve by a Gauss-Newton method whose subproblem (at iteration k) is

min
δx

1

2
‖δx0 − b

(k)‖2B−1 +
1

2

N∑

j=0

∥
∥
∥H

(k)
j δx j − d

(k)
j

∥
∥
∥

2

R
−1
j

+
1

2

N∑

j=1

‖δx j −M
(k)
j δx j−1

︸ ︷︷ ︸

δqj

−c
(k)
j ‖2

Q
−1
j

δx is the increment in x .

The vectors b(k), c
(k)
j and d

(k)
j are defined by

b(k) = xb − x0
(k), c

(k)
j = q

(k)
j , d

(k)
j = Hj(xj

(k))− yj

and are calculated at the outer loop.
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Introduction

A first motivating example: weather forecasting (3)

Can be rewritten as

min
δx

qst =
1

2
‖Lδx − b‖2D−1 +

1

2
‖Hδx − d‖2R−1

where

L =










I

−M1 I

−M2 I
. . .

. . .

−MN I










d = (d0, d1, . . . , dN)
T and b = (b, c1, . . . , cN)

T

H = diag(H0,H1, . . . ,HN)

D = diag(B ,Q1, . . . ,QN) and R = diag(R0,R1, . . . ,RN)
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Introduction

A first motivating example: weather forecasting (3)

min
δx

qst =
1

2
‖Lδx − b‖2D−1 +

1

2
‖Hδx − d‖2R−1

This is a standard QO, but HUGE! Note that

∇2qst = LTD−1L+ HTR−1H

In addition D−1 = diag(B−1,Q−1
1 , . . . ,Q−1

N ) is unavailable!

Thus ∇2qstv (a Hessian times vector product) must be computed by

w = Lv ,

solve Dz = w using some (preconditioned) Krylov
method

v = LT z + HTR−1Hv
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Introduction

A second motivating example: variable precision arithmetic

Next barrier in hyper computing: energy dissipation!

Heat production is proportional to chip surface, hence

energy output ≈
(

number of digits used
)2

Architectural trend: use multiprecision arithmetic

graphical processing units (GPUs)

hierarchy of specialized CPUs (double, single, half, . . . )

How to use this hierarchy optimally for fully accurate results?
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Introduction

Inaccuracy frameworks

Our proposal;

Make the Krylov methods for QO more efficient by allowing
error on the matrix-vector product (the dominant computation)

Two frameworks of interest:

Continuous accuracy levels
ex: WC-4D-VAR, where accuracy in the inversion Dz = w can be
continuously chosen

Discrete accuracy levels
ex: double-single-half precision arithmetic

Considered here:

Full orthonormalisation method (FOM)

Conjugate Gradients (CG)

with (wlog) x0 = 0 and q(x0) = 0.
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Theoretical results and resulting algorithms

A central equality

Define r(x)
def
= Ax − b = ∇q(x) and Ax∗ = b.

q(x)− q(x∗) = 1
2
‖r(x)‖2A−1

1
2
‖r(x)‖2

A−1 = 1
2
(Ax − b)TA−1(Ax − b)

= 1
2
(x − x∗)

TA(x − x∗)
= 1

2
(xTAx − 2xTAx∗ + xT∗ Ax∗)

= q(x)− q(x∗)

Hence

Decrease in q can be monitored by considering the A−1 norm
of its gradient
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Theoretical results and resulting algorithms

The primal-dual norm

⇒ natural to consider the inaccuracy on the product Av by measuring the
backward error

‖E‖A−1,A =
def
= sup

x 6=0

‖Ex‖A−1

‖x‖A
= ‖A−1/2EA−1/2‖2

(primal-dual norm)

Let A be a symmetric and positive definite matrix and E be any
symmetric perturbation. Then, if ‖E‖A−1,A < 1, the matrix
A+ E is symmetric positive definite.
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Theoretical results and resulting algorithms

The main idea

Krylov methods reduce the (internally recurred) residual rk on successive
nested Krylov spaces
⇒ can expect rk to converge to zero
⇒ keep r(xk)− rk small in the appropriate norm

For FOM and CG, if

max
[

‖rk − r(xk)‖A−1 , ‖rk‖A−1

]

≤
√
ǫ

2
‖b‖A−1

then |q(xk)− q(x∗)| ≤ ǫ|q(x∗)|
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Theoretical results and resulting algorithms

The inexact FOM algorithm

Theoretical inexact FOM algorithm
1. Set β = ‖b‖2, and v1 = [b/β],
2. For k=1, 2, . . . , do
3. wk = (A+ Ek)vk
4. For i = 1, . . . , k do
5. hi,k = vT

i wk

6. wk = wk − hi,kvi
7. EndFor
8. hk+1,k = ‖wk‖2
9. yk = H−1

k (βe1)
10. if |hk+1,ke

T
k yk | is small enough then go to 13

11. vk+1 = wk/hk+1,k

12. EndFor
13. xk = Vkyk
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Theoretical results and resulting algorithms

Results for the inexact FOM

Let ǫπ > 0 and let φ ∈ IRk
+ such that

∑k
j=1 φ

−1
j ≤ 1. Suppose

also that, for all j ∈ {1, . . . , k},

‖Ej‖A−1,A ≤ ωFOM
j

def
= min

[

1,
ǫπ ‖b‖A−1

φj‖vj‖A‖H−1
k ‖2‖rj−1‖2

]

(2.1)

Then ‖r(xk)− rk‖A−1 ≤ ǫπ ‖b‖A−1 .

Let ǫ > 0 and suppose that, at iteration k > 0 of the FOM
algorithm, ‖rk‖A−1 ≤ 1

2

√
ǫ ‖b‖A−1

and the product error matrices Ej satisfy (2.1) with ǫπ = 1
2

√
ǫ

for some φ ∈ IRk (as above). Then

|q(xk)− q(x∗)| ≤ ǫ|q(x∗)|
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Theoretical results and resulting algorithms

The inexact Conjugate Gradients algorithm

Theoretical inexact CG algorithm
1. Set x0 = 0, β0 = ‖b‖22, r0 = −b and p0 = r0
2. For k=0, 1, . . . , do
3. ck = (A+ Ek)pk
4. αk = βk/p

T
k ck

5. xk+1 = xk + αkpk
6. rk+1 = rk + αkck
7. if rk+1 is small enough then stop
8. βk+1 = rTk+1rk+1

9. pk+1 = −rk+1 + (βk+1/βk)pk
10. EndFor
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Theoretical results and resulting algorithms

Results for the inexact CG

Let ǫπ > 0 and let φ ∈ IRk
+ such that

∑k
j=1 φ

−1
j ≤ 1. Suppose

also that, for all j ∈ {0, . . . , k − 1},

‖Ej‖A−1,A ≤ ωCG
j

def
=

ǫπ ‖b‖A−1‖pj‖A
φj+1‖rj‖22 + ǫπ ‖b‖A−1‖pj‖A

(2.2)

Then ‖r(xk)− rk‖A−1 ≤ ǫπ ‖b‖A−1 .

Let ǫ > 0 and suppose that, at iteration k > 0 of the CG
algorithm, ‖rk‖A−1 ≤ 1

2

√
ǫ ‖b‖A−1

and the product error matrices Ej satisfy (2.2) with ǫπ = 1
2

√
ǫ

for some φ ∈ IRk (as above). Then

|q(xk)− q(x∗)| ≤ ǫ|q(x∗)|
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Theoretical results and resulting algorithms

Achieved vs optimal decrease

Let q be the value of the quadratic recurred internally by FOM or CG.

Let x be the result of applying the FOM or CG algorithm with
inexact products and suppose that the above error bounds hold
with ǫπ = 1

2

√
ǫ. Then

|q(x)− q|
|q(x∗)|

≤
√
ǫ(1 +

√
ǫ).

Can one trust the internally computed decrease? Rather pessismistic!
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Theoretical results and resulting algorithms

Managing the inaccuracy budget

Assume kmax, an estimate of the maximum number of iterations, is known.

At iteration j of FOM/CG:

vj
rj−1

φj






→ vj

ωj

}

→ product

routine
→ (A+ Ej)vj

‖Ej‖A−1,A → φ̂j → φj+1

where

φ̂FOM
j =

ǫπ ‖b‖A−1

‖Ej‖A−1,A‖vj‖A‖H−1
k ‖2‖rj−1‖2

φ̂CG
j =

(1− ‖Ej‖A−1,A) ǫπ ‖b‖A−1‖pj‖A
‖Ej‖A−1,A‖rj‖22

and φj+1 =
kmax − j

1−∑j
p=1 φ̂

−1
p
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Theoretical results and resulting algorithms

So what?

The primal-dual norm ‖Ej‖A−1,A is sometimes difficult to evaluate

The error bounds remain unfortunately impractical
(they involve ‖b‖A−1 , ‖vj‖A or ‖pj‖A, which cannot be computed
readily in the course of the FOM or CG algorithm).

The termination test ‖rk‖A−1 ≤ 1
2

√
ǫ ‖b‖A−1 also involves the

unavailable ‖rk‖A−1

Give up? Not quite. . .

the FOM error bound allows a growth of the error in ‖rj‖−1 while
(2.2) allows a growth of the order of ‖rj‖−2‖pj‖A instead.

The φj may be viewed as an error management strategy. A simple
choice is to define φj = n for all j but there may be better options
(discussed later).
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Theoretical results and resulting algorithms

Using the true (unavailable) quantities (1)

Would this work at all if using the true ‖b‖A−1 , ‖vj‖A and ‖pj‖A ?

Consider 6 algorithms:

FOM: the standard full-accuracy FOM

iFOM: the inexact FOM (with exact bounds, for now)

CG: the standard full-accuracy CG

CGR: the full-accuracy CG with reorthogonalization

iCG: the inexact CG (with exact bounds, for now)

iCGR: the inexact CGR (with exact bounds, for now)
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Theoretical results and resulting algorithms

Continuous accuracy levels (1)

Comparing equivalent numbers of full accuracy products:

Assume obtaining full accuracy is a linearly convergent process
of rate ρ
(realistic for our weather prediction data assimilation example)

Cost of an ǫ-accurate solution:

log(ǫ)

log(ρ)

Cost of an ω-accurate solution

log(ω)

log(ρ)

⇒ sum these values during computing and compare them.
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Theoretical results and resulting algorithms

Continuous accuracy levels (2)

Compare on:

synthetic matrices of size 1000× 1000 with varying conditioning
(from 101 to 108) and log-linearly spaced eigenvalues

“real” matrices from the NIST Matrix Market (paper only)

use different levels of final accuracy
(ǫ = 10−3, 10−5, 10−7)

Note that

Continuous accuracy levels ⇒ no room for inaccuracy budget
management!
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Theoretical results and resulting algorithms

Continuous accuracy levels (3)
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Figure: Exact bounds, κ(A) = 101, ǫ = 10−3 (continuous case)
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Theoretical results and resulting algorithms

Continuous accuracy levels (4)
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Figure: Exact bounds, κ(A) = 105, ǫ = 10−5 (continuous case)

Philippe Toint (naXys, UNamur, Belgium) XII BRAZOPT, Iguazu 25 / 39



Theoretical results and resulting algorithms

Continuous accuracy levels (5)
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Figure: Exact bounds, κ(A) = 103, ǫ = 10−7 (continuous case)
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Theoretical results and resulting algorithms

Discontinuous accuracy levels (1)

Focus on multiprecision arithmetic . Assume

3 levels of accuracy (double, single, half)

a ratio of 4 in efficiency when moving from one level to the next

Use the sames matrices and final accuracies as above.

Apply the inaccuracy budget management!
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Theoretical results and resulting algorithms

Discontinuous accuracy levels (2)

1 2 3
0

1

2

3

4

5

6

7

8

nit
cost

1 2 3
0

5

10

15

20

25

30

r.res.gap
r.sol.err
r.val.err

FOM CG CGR FOM CG CGR

Figure: Exact bounds, κ(A) = 101, ǫ = 10−3 (continuous case)
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Theoretical results and resulting algorithms

Discontinuous accuracy levels (3)
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Figure: Exact bounds, κ(A) = 105, ǫ = 10−5 (continuous case)
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Theoretical results and resulting algorithms

Discontinuous accuracy levels (4)
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Figure: Exact bounds, κ(A) = 103, ǫ = 10−7 (continuous case)
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Practical algorithms

Adhoc approximations

Abandon theoretical but unavailable quantities → approximate them:

‖E‖A−1,A ≥ λmin(A)
−1‖E‖2

‖p‖A ≈ 1
n
Tr(A)‖p‖2

(ok for p with random independent components)

‖b‖A−1 = |q(x∗)| ≈ qk ≈ 1
2
|bT xk |

‖H−1
k ‖ = 1

λmin(Hk )
≤ 1

λmin(A)
(FOM only)

kmax ≈ log(ǫ)
log(ρ) with ρ

def
=

√
λmax/λmin−1√
λmax/λmin+1

Termination test (Arioli & Gratton):

qk−d − qk ≤ 1
4
ǫ|qk |

for some stabilization delay d (e.g. 10)
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Practical algorithms

Does it still work (continuous accuracy levels, 1)?
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Figure: Approximate bounds, κ(A) = 101, ǫ = 10−3 (continuous case)

Philippe Toint (naXys, UNamur, Belgium) XII BRAZOPT, Iguazu 32 / 39



Practical algorithms

Does it still work (continuous accuracy levels, 2)?
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Figure: Approximate bounds, κ(A) = 105, ǫ = 10−5 (continuous case)
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Practical algorithms

Does it still work (continuous accuracy levels, 3)?
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Figure: Approximate bounds, κ(A) = 103, ǫ = 10−7 (continuous case)
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Practical algorithms

Does it still work (multiprecision, 1)?
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Figure: Approximate bounds, κ(A) = 101, ǫ = 10−3 (continuous case)
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Practical algorithms

Does it still work (multiprecision, 2)?
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Figure: Approximate bounds, κ(A) = 105, ǫ = 10−5 (continuous case)
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Practical algorithms

Does it still work (multiprecision, 3)?
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Figure: Approximate bounds, κ(A) = 103, ǫ = 10−7 (continuous case)
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Conclusions and perspectives

Conclusions and perspectives

Summary:

Optimization-focused theory for iterative QO with inexact products

Theoretical gains substantial

Translates well to practice after approximations

Perspectives:

More general (controlable) inexactness in optimization
(inexactly weighted least-squares, . . . )

Thank your for your attention!
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Conclusions and perspectives
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