Minimizing convex quadratics with variable precision Krylov methods

Philippe Toint (with Serge Gratton and Ehouarn Simon)

Namur Center for Complex Systems (naXys), University of Namur, Belgium CIMI, INP, Toulouse, France

(philippe.toint@unamur.be)

XII BRAZOPT, Iguazu, Brazil, July 2018

K ロチ K 御 H K 결 H K 결 H () 결

 $2Q$

- CIMI, Institut National Polytechnique, Toulouse, France (ANR-11-IDEX-0002-02)
- University of Namur, Belgium
- **Belgian National Fund for Scientific Research**

The (simple?) problem

We consider the unconstrained quadratic optimization (QO) problem:

$$
minimize \quad q(x) = \frac{1}{2}x^T A x - b^T x
$$

for $x, b \in \mathbb{R}^n$ and A an $n \times n$ symmetric positive-definite matrix.

A truly "core" problem in optimization (and linear algebra)

- the simplest nonlinear optimization problem
- subproblem in many methods for general nonlinear unconstrained optimization
- **•** central in linear algebra (including solving elliptic PDEs)

Working assumptions

For what follows, we assume that

- \bullet the problem size *n* is large enough and A is dense enough to make factorization of A unavailable
- **•** a Krylov iterative method (Conjugate Gradients, FOM) is used
- the cost of running this iterative method is dominated by the products Av

Focus on an optimization point of view : look at decrease in q rather than at decrease in the associated system's residual

ex: ensuring sufficient decrease in trust-region methods

Our aim, for x_* solution of QO,

Find x_k such that $|q(x_k) - q(x_*)| \leq \epsilon |q(x_0) - q(x_*)|$.

A first motivating example: weather forecasting (1)

The weakly-constrained $4D-Var$ formulation:

$$
\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x_0 - x_b\|_{B^{-1}}^2 + \frac{1}{2} \sum_{j=0}^N \left\| \mathcal{H}_j(x_j) - y_j \right\|_{R_j^{-1}}^2 + \frac{1}{2} \sum_{j=1}^N \|\underline{x_j} - \mathcal{M}_j(x_{j-1})\|_{Q_j^{-1}}^2
$$

- $\bm{\mathrm{x}} = (\mathsf{x}_0, \dots, \mathsf{x}_\mathsf{N})^{\mathsf{T}}$ is the state control variable (with $\mathsf{x}_j = \mathsf{x}(t_j))$ \bullet x_b is the background given at the initial time (t_0).
- $y_j \in \mathbb{R}^{m_j}$ is the observation vector over a given time interval
- \mathcal{H}_j maps the state vector x_j from model space to observation space
- \mathcal{M}_j is an integration of the numerical model from time t_{j-1} to t_j
- \bullet B, R_i and Q_i are the covariance matrices of background, observation and model error. B and Q_j impractical to ["in](#page-3-0)[ver](#page-5-0)[t](#page-3-0)["](#page-4-0)

 200

A first motivating example: weather forecasting (2)

Solve by a Gauss-Newton method whose subproblem (at iteration k) is

$$
\min_{\delta x} \frac{1}{2} \|\delta x_0 - b^{(k)}\|_{\mathbf{B}-1}^2 + \frac{1}{2} \sum_{j=0}^N \left\| H_j^{(k)} \delta x_j - d_j^{(k)} \right\|_{\mathbf{R}_j^{-1}}^2 + \frac{1}{2} \sum_{j=1}^N \|\delta x_j - M_j^{(k)} \delta x_{j-1} - c_j^{(k)}\|_{\mathbf{Q}_j^{-1}}^2
$$

- δx is the increment in x.
- The vectors $b^{(k)}$, $c_i^{(k)}$ $j^{(k)}_j$ and $d_j^{(k)}$ $\int_j^{(k)}$ are defined by

$$
b^{(k)} = x_b - x_0^{(k)},
$$
 $c_j^{(k)} = q_j^{(k)},$ $d_j^{(k)} = \mathcal{H}_j(x_j^{(k)}) - y_j$

and are calculated at the outer loop.

A first motivating example: weather forecasting (3)

Can be rewritten as

$$
\min_{\delta x} q_{\rm st} = \frac{1}{2} ||L\delta x - b||_{D^{-1}}^2 + \frac{1}{2} ||H\delta x - d||_{R^{-1}}^2
$$

where

$$
L = \begin{pmatrix} I & & & & \\ -M_1 & I & & & \\ & -M_2 & I & & \\ & & \ddots & \ddots & \\ & & & -M_N & I \end{pmatrix}
$$

\n• $d = (d_0, d_1, ..., d_N)^T$ and $b = (b, c_1, ..., c_N)^T$
\n• $H = \text{diag}(H_0, H_1, ..., H_N)$
\n• $D = \text{diag}(B, Q_1, ..., Q_N)$ and $R = \text{diag}(R_0, R_1, ..., R_N)$

 200

A first motivating example: weather forecasting (3)

$$
\min_{\delta x} q_{\rm st} = \frac{1}{2} \| L \delta x - b \|_{D^{-1}}^2 + \frac{1}{2} \| H \delta x - d \|_{R^{-1}}^2
$$

This is a standard QO, but $HUGE!$ Note that

$$
\nabla^2 q_{\rm st} = L^T D^{-1} L + H^T R^{-1} H
$$

In addition
$$
D^{-1} = \text{diag}(B^{-1}, Q_1^{-1}, \ldots, Q_N^{-1})
$$
 is unavailable!

Thus $\nabla^2 q_{st}$ a Hessian times vector product) must be computed by

\n- •
$$
w = Lv
$$
,
\n- • solve $Dz = w$ using some (preconditioned) Krylov method
\n- • $v = L^T z + H^T R^{-1} Hv$
\n

A second motivating example: variable precision arithmetic

Next barrier in hyper computing: energy dissipation!

Heat production is proportional to chip surface, hence

energy output $\;\approx\; (\;$ number of digits used $\; \big)^2$

Architectural trend: use multiprecision arithmetic

- **•** graphical processing units (GPUs)
- hierarchy of specialized CPUs (double, single, half, . . .)

How to use this hierarchy optimally for fully accurate results?

Inaccuracy frameworks

Our proposal;

Make the Krylov methods for QO more efficient by allowing error on the matrix-vector product (the dominant computation)

Two frameworks of interest:

• Continuous accuracy levels

ex: WC-4D-VAR, where accuracy in the inversion $Dz = w$ can be continuously chosen

• Discrete accuracy levels

ex: double-single-half precision arithmetic

Considered here:

Full orthonormalisation method (FOM)

• Conjugate Gradients (CG)

with (wlog)
$$
x_0 = 0
$$
 and $q(x_0) = 0$.

つひひ

A central equality

Define
$$
r(x) \stackrel{\text{def}}{=} Ax - b = \nabla q(x)
$$
 and $Ax_* = b$.

$$
q(x) - q(x_{*}) = \frac{1}{2} ||r(x)||_{A^{-1}}^{2}
$$

$$
\frac{1}{2} ||r(x)||_{A^{-1}}^2 = \frac{1}{2}(Ax - b)^T A^{-1}(Ax - b) \n= \frac{1}{2}(x - x_*)^T A(x - x_*) \n= \frac{1}{2}(x^T Ax - 2x^T Ax_* + x_*^T Ax_*) \n= q(x) - q(x_*)
$$

Hence

Decrease in q can be monitored by considering the A^{-1} norm of its gradient

 200

The primal-dual norm

 \Rightarrow natural to consider the inaccuracy on the product Av by measuring the backward error

$$
\|E\|_{A^{-1},A} = \stackrel{\text{def}}{=} \sup_{x \neq 0} \frac{\|Ex\|_{A^{-1}}}{\|x\|_{A}} = \|A^{-1/2}EA^{-1/2}\|_2
$$

(primal-dual norm)

Let A be a symmetric and positive definite matrix and E be any symmetric perturbation. Then, if $||E||_{A^{-1},A} < 1$, the matrix $A + E$ is symmetric positive definite.

The main idea

Krylov methods reduce the (internally recurred) residual r_k on successive nested Krylov spaces

- \Rightarrow can expect r_k to converge to zero
- \Rightarrow keep $r(x_k) r_k$ small in the appropriate norm

For FOM and CG, if
\n
$$
\max \left[||r_k - r(x_k)||_{A^{-1}}, ||r_k||_{A^{-1}} \right] \le \frac{\sqrt{\epsilon}}{2} ||b||_{A^{-1}}
$$
\nthen
\n
$$
|q(x_k) - q(x_*)| \le \epsilon |q(x_*)|
$$

つひひ

The inexact FOM algorithm

Theoretical inexact FOM algorithm 1. Set $\beta = ||b||_2$, and $v_1 = [b/\beta]$, 2. For $k=1, 2, \ldots$ do 3. $W_k = (A + E_k) v_k$ 4. For $i = 1, \ldots, k$ do 5. $h_{i,k} = v_i^T w_k$ 6. $w_k = w_k - h_{i,k} v_i$ 7. EndFor 8. $h_{k+1,k} = ||w_k||_2$ 9. $y_k = H_k^{-1}(\beta e_1)$ 10. if $|h_{k+1,k}e_{k}^{\mathsf{T}}y_{k}|$ is small enough then go to 13 11. $v_{k+1} = w_k / h_{k+1,k}$ 12. EndFor 13. $x_k = V_k v_k$

つへへ

Results for the inexact FOM

Let
$$
\epsilon_{\pi} > 0
$$
 and let $\phi \in \mathbb{R}_{+}^{k}$ such that $\sum_{j=1}^{k} \phi_{j}^{-1} \leq 1$. Suppose
also that, for all $j \in \{1, ..., k\}$,

$$
||E_{j}||_{A^{-1},A} \leq \omega_{j}^{\text{FOM}} \stackrel{\text{def}}{=} \min \left[1, \frac{\epsilon_{\pi} ||b||_{A^{-1}}}{\phi_{j} ||v_{j}||_{A} ||H_{k}^{-1} ||_{2} ||r_{j-1}||_{2}}\right] (2.1)
$$

Then
$$
||r(x_{k}) - r_{k}||_{A^{-1}} \leq \epsilon_{\pi} ||b||_{A^{-1}}.
$$

Let $\epsilon > 0$ and suppose that, at iteration $k > 0$ of the FOM algorithm, $\|r_k\|_{A^{-1}} \leq \frac{1}{2}\sqrt{\epsilon} \|b\|_{A^{-1}}$ and the product error matrices E_j satisfy (2.1) with $\epsilon_{\pi} = \frac{1}{2} \sqrt{\epsilon}$ for some $\phi \in \mathsf{R}^k$ (as above). Then

$$
|q(x_k)-q(x_*)|\leq \epsilon |q(x_*)|
$$

つひひ

The inexact Conjugate Gradients algorithm

Theoretical inexact CG algorithm 1. Set $x_0 = 0$, $\beta_0 = ||b||_2^2$, $r_0 = -b$ and $p_0 = r_0$ 2. For k=0, 1, . . . , do 3. $c_k = (A + E_k)p_k$ 4. $\alpha_k = \beta_k / p_k^T c_k$ 5. $x_{k+1} = x_k + \alpha_k p_k$ 6. $r_{k+1} = r_k + \alpha_k c_k$ 7. if r_{k+1} is small enough then stop 8. $\beta_{k+1} = r_{k+1}^T r_{k+1}$ 9. $p_{k+1} = -r_{k+1} + (\beta_{k+1}/\beta_k)p_k$
10. EndFor **EndFor**

つひひ

Results for the inexact CG

Let
$$
\epsilon_{\pi} > 0
$$
 and let $\phi \in \mathbb{R}_{+}^{k}$ such that $\sum_{j=1}^{k} \phi_{j}^{-1} \leq 1$. Suppose
also that, for all $j \in \{0, ..., k-1\}$,

$$
||E_{j}||_{A^{-1},A} \leq \omega_{j}^{CG} \stackrel{\text{def}}{=} \frac{\epsilon_{\pi} ||b||_{A^{-1}} ||p_{j}||_{A}}{\phi_{j+1} ||r_{j}||_{2}^{2} + \epsilon_{\pi} ||b||_{A^{-1}} ||p_{j}||_{A}}
$$
(2.2)
Then

$$
||r(x_{k}) - r_{k}||_{A^{-1}} \leq \epsilon_{\pi} ||b||_{A^{-1}}.
$$

Let $\epsilon > 0$ and suppose that, at iteration $k > 0$ of the CG algorithm, $||r_k||_{A^{-1}} \leq \frac{1}{2}\sqrt{\epsilon} ||b||_{A^{-1}}$ and the product error matrices E_j satisfy [\(2.2\)](#page-16-1) with $\epsilon_{\pi} = \frac{1}{2} \sqrt{\epsilon}$ for some $\phi \in \mathsf{R}^k$ (as above). Then $|q(x_k) - q(x_*)| \leq \epsilon |q(x_*)|$

Achieved vs optimal decrease

Let q be the value of the quadratic recurred internally by FOM or CG.

Let x be the result of applying the FOM or CG algorithm with inexact products and suppose that the above error bounds hold with $\epsilon_{\pi} = \frac{1}{2}\sqrt{\epsilon}$. Then $|q(x) - q|$ $\sqrt{|q(x_*)|}$ \geq $\sqrt{\epsilon}(1+\sqrt{\epsilon}).$

Can one trust the internally computed decrease? Rather pessismistic!

Managing the inaccuracy budget

Assume k_{max} , an estimate of the maximum number of iterations, is known.

At iteration j of FOM/CG:

$$
\begin{array}{c}\n\mathbf{v}_{j} \\
\mathbf{v}_{j-1} \\
\phi_{j}\n\end{array}\n\bigg\} \rightarrow \begin{array}{c}\n\mathbf{v}_{j} \\
\omega_{j}\n\end{array}\n\bigg\} \rightarrow \begin{array}{c}\n\text{product} \\
\text{routine}\n\end{array}\n\bigg] \rightarrow \begin{array}{c}\n\boxed{(A + E_{j})\mathbf{v}_{j}} \\
\parallel E_{j}\parallel_{A^{-1},A}\n\end{array}\n\rightarrow \begin{array}{c}\n\hat{\phi}_{j} \rightarrow \phi_{j+1}\n\end{array}
$$

where

$$
\hat{\phi}_j^{\text{FOM}} = \frac{\epsilon_{\pi} \, \|b\|_{A^{-1}}}{\|E_j\|_{A^{-1},A} \|v_j\|_{A} \|H_k^{-1}\|_{2} \|r_{j-1}\|_{2}}
$$
\n
$$
\hat{\phi}_j^{\text{CG}} = \frac{(1 - \|E_j\|_{A^{-1},A}) \epsilon_{\pi} \|b\|_{A^{-1}} \|p_j\|_{A}}{\|E_j\|_{A^{-1},A} \|r_j\|_{2}^{2}}
$$
\nand\n
$$
\phi_{j+1} = \frac{k_{\text{max}} - j}{1 - \sum_{p=1}^{j} \hat{\phi}_p^{-1}}
$$

 QQ

So what?

- The primal-dual norm $||E_j||_{A^{-1},A}$ is sometimes difficult to evaluate
- The error bounds remain unfortunately impractical (they involve $||b||_{A^{-1}}$, $||v_i||_A$ or $||p_i||_A$, which cannot be computed readily in the course of the FOM or CG algorithm).
- The termination test $||r_k||_{A^{-1}} \leq \frac{1}{2}\sqrt{\epsilon} ||b||_{A^{-1}}$ also involves the unavailable $||r_k||_{A^{-1}}$

Give up? Not quite. . .

- the FOM error bound allows a growth of the error in $||r_j||^{-1}$ while [\(2.2\)](#page-16-1) allows a growth of the order of $||r_j||^{-2}||p_j||_A$ instead.
- The ϕ_i may be viewed as an error management strategy. A simple choice is to define $\phi_i = n$ for all *j* but there may be better options (discussed later).

 QQ

Using the true (unavailable) quantities (1)

Would this work at all if using the true $||b||_{A^{-1}}$, $||v_i||_A$ and $||p_i||_A$?

Consider 6 algorithms:

FOM: the standard full-accuracy FOM iFOM: the inexact FOM (with exact bounds, for now) CG: the standard full-accuracy CG CGR: the full-accuracy CG with reorthogonalization iCG: the inexact CG (with exact bounds, for now) iCGR: the inexact CGR (with exact bounds, for now)

Continuous accuracy levels (1)

Comparing equivalent numbers of full accuracy products:

- Assume obtaining full accuracy is a linearly convergent process of rate ρ (realistic for our weather prediction data assimilation example)
- \bullet Cost of an ϵ -accurate solution:

$$
\frac{\log(\epsilon)}{\log(\rho)}
$$

 \bullet Cost of an ω -accurate solution

$$
\frac{\log(\omega)}{\log(\rho)}
$$

 \Rightarrow sum these values during computing and compare them.

Continuous accuracy levels (2)

Compare on:

- synthetic matrices of size 1000×1000 with varying conditioning (from 10^1 to $10^8)$ and log-linearly spaced eigenvalues
- "real" matrices from the NIST Matrix Market (paper only)
- **•** use different levels of final accuracy $(\epsilon=10^{-3},\; 10^{-5},\; 10^{-7})$

Note that

Continuous accuracy levels \Rightarrow no room for inaccuracy budget management!

Continuous accuracy levels (3)

Figure: Exact bounds, $\kappa(A) = 10^1$, $\epsilon = 10^{-3}$ (continuous case)

Continuous accuracy levels (4)

Figure: Exact bounds, $\kappa(A) = 10^5$, $\epsilon = 10^{-5}$ (continuous case)

 290

Continuous accuracy levels (5)

Figure: Exact bounds, $\kappa(A) = 10^3$, $\epsilon = 10^{-7}$ (continuous case)

Discontinuous accuracy levels (1)

Focus on multiprecision arithmetic . Assume

- 3 levels of accuracy (double, single, half)
- a ratio of 4 in efficiency when moving from one level to the next

Use the sames matrices and final accuracies as above.

Apply the inaccuracy budget management!

Discontinuous accuracy levels (2)

Figure: Exact bounds, $\kappa(A) = 10^1$, $\epsilon = 10^{-3}$ (continuous case)

Discontinuous accuracy levels (3)

Figure: Exact bounds, $\kappa(A) = 10^5$, $\epsilon = 10^{-5}$ (continuous case)

Discontinuous accuracy levels (4)

Figure: Exact bounds, $\kappa(A) = 10^3$, $\epsilon = 10^{-7}$ (continuous case)

Adhoc approximations

Abandon theoretical but unavailable quantities \rightarrow approximate them:

$$
\bullet \ \|E\|_{A^{-1},A} \geq \lambda_{\min}(A)^{-1} \|E\|_2
$$

 $\|\rho\|_A \approx \frac{1}{n}\text{Tr}(A)\|\rho\|_2$ (ok for p with random independent components)

\n- $$
||b||_{A^{-1}} = |q(x_*)| \approx q_k \approx \frac{1}{2} |b^T x_k|
$$
\n- $||H_k^{-1}|| = \frac{1}{\lambda_{\min}(H_k)} \leq \frac{1}{\lambda_{\min}(A)}$ (FOM only)
\n- $k_{\max} \approx \frac{\log(\epsilon)}{\log(\rho)}$ with $\rho \stackrel{\text{def}}{=} \frac{\sqrt{\lambda_{\max}/\lambda_{\min}-1}}{\sqrt{\lambda_{\max}/\lambda_{\min}+1}}$
\n

Termination test (Arioli & Gratton):

$$
q_{k-d}-q_k\leq \tfrac{1}{4}\epsilon|q_k|
$$

for some stabilization delay d (e.g. 10)

つひひ

Does it still work (continuous accuracy levels, 1)?

Figure: Approximate bounds, $\kappa(A) = 10^1$, $\epsilon = 10^{-3}$ (continuous case)

つひひ

Does it still work (continuous accuracy levels, 2)?

Figure: Approximate bounds, $\kappa(A) = 10^5$, $\epsilon = 10^{-5}$ (continuous case)

Does it still work (continuous accuracy levels, 3)?

Figure: Approximate bounds, $\kappa(A) = 10^3$, $\epsilon = 10^{-7}$ (continuous case)

Does it still work (multiprecision, 1)?

Figure: Approximate bounds, $\kappa(A) = 10^1$, $\epsilon = 10^{-3}$ (continuous case)

Does it still work (multiprecision, 2)?

Figure: Approximate bounds, $\kappa(A) = 10^5$, $\epsilon = 10^{-5}$ (continuous case)

Does it still work (multiprecision, 3)?

Figure: Approximate bounds, $\kappa(A) = 10^3$, $\epsilon = 10^{-7}$ (continuous case)

Conclusions and perspectives

Summary:

- Optimization-focused theory for iterative QO with inexact products
- Theoretical gains substantial
- **•** Translates well to practice after approximations

Perspectives:

• More general (controlable) inexactness in optimization (inexactly weighted least-squares, . . .)

Thank your for your attention!

S. Gratton, E. Simon, Ph. L. Toint,

Minimizing convex quadratics with variable precision Krylov methods, arXiv:1807.07476