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Regularization for unconstrained problems

The problem (again)

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

For now, focus on the

unconstrained case

but we are also interested in the case featuring

inexpensive constraints
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Regularization for unconstrained problems

An overestimating model

Note the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1
0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖32

︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).

Griewank, 1981
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Regularization for unconstrained problems

Approximate model minimization

Lipschitz constant L unknown ⇒ replace by adaptive parameter σk in the
model :

m(s)
def
= f (x) + sTg(x) + 1

2
sTH(x)s + 1

3
σk‖s‖

3
2 = Tf ,2(x , s) + 1

3
σk‖s‖

3
2

Computation of the step:

1 minimize m(s) until an approximate first-order minimizer is obtained:

‖∇sm(s)‖ ≤ κstop‖s‖
2

Note: no global optimization involved.
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Regularization for unconstrained problems

Second-order Adaptive Regularization (AR2)

Algorithm 1.1: The AR2 Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Termination: If ‖gk‖ ≤ ǫ, terminate.

Step 2: Step computation:
Compute sk such that mk(sk) ≤ mk(0) and ‖∇sm(sk)‖ ≤ κstop‖sk‖

2.

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,2(xk , sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 4: Update the regularization parameter:

σk+1 ∈







[σmin, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful

[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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Regularization for unconstrained problems

Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ǫ?

If H is globally Lipschitz and the s-rule is applied, the AR2
algorithm requires at most

⌈
κS

ǫ3/2

⌉

evaluations

for some κS independent of ǫ.

“Nesterov & Polyak”,
Cartis, Gould, T., 2011, Birgin, Gardenghi, Martinez, Santos, T., 2017

Note: an O(ǫ−3) bound holds for convergence to second-order critical
points.
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Regularization for unconstrained problems

Evaluation complexity: proof (1)

f (xk + sk) ≤ Tf ,2(xk , sk) +
Lf

p
‖sk‖

3

‖g(xk + sk)−∇sTf ,2(xk , sk)‖ ≤ Lf ‖sk‖
2

Lipschitz continuity of H(x) = ∇2
x f (x)

∀k ≥ 0 f (xk)− Tf ,2(xk , sk) ≥ 1
6
σmin‖sk‖

3

f (xk) = mk(0) ≥ mk(sk) = Tf ,2(xk , sk) + 1
6
σk‖sk‖

3
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Regularization for unconstrained problems

Evaluation complexity: proof (2)

∃σmax ∀k ≥ 0 σk ≤ σmax

Assume that σk ≥
Lf (p + 1)
p (1− η2)

. Then

|ρk − 1| ≤
|f (xk + sk)− Tf ,2(xk , sk)|

|Tf ,2(xk , 0)− Tf ,2(xk , sk)|
≤

Lf (p + 1)

p σk
≤ 1− η2

and thus ρk ≥ η2 and σk+1 ≤ σk .
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Regularization for unconstrained problems

Evaluation complexity: proof (3)

∀k successful ‖sk‖ ≥

(
‖g(xk+1)‖

Lf + κstop + σmax

) 1
2

‖g(xk + sk)‖ ≤ ‖g(xk + sk)−∇sTf ,2(xk , sk)‖

+
∥
∥
∥∇sTf ,2(xk , sk) + σk‖sk‖sk

∥
∥
∥+ σk‖sk‖

2

≤ Lf ‖sk‖
2 + ‖∇sm(sk)‖+ σk‖sk‖

2

≤ [Lf + κstop + σk ] ‖sk‖
2
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Regularization for unconstrained problems

Evaluation complexity: proof (4)

‖g(xk+1)‖ ≤ ǫ after at most
f (x0)− flow

κ ǫ−3/2 successful iterations

Let Sk = {j ≤ k ≥ 0 | iteration j is successful}.

f (x0)− flow ≥ f (x0)− f (xk+1) ≥
∑

i∈Sk

[

f (xi )− f (xi + si )
]

≥ 1
10

∑

i∈Sk

[

f (xi )− Tf ,2(xi , si )
]

≥ |Sk |
σmin

60
min
i
‖si‖

3

≥ |Sk |
σmin

60
(

Lf + κstop + σmax

)3/2 min
i
‖g(xi+1)‖

3/2

≥ |Sk |
σmin

60
(

Lf + κstop + σmax

)3/2 ǫ3/2
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Regularization for unconstrained problems

Evaluation complexity: proof (5)

k ≤ κu|Sk |, where κu
def
=

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(
σmax

σ0

)

,

σk ∈ [σmin, σmax] + mechanism of the σk update.

‖g(xk+1)‖ ≤ ǫ after at most
f (x0)− flow

κ ǫ−3/2 successful iterations

One evaluation per iteration (successful or unsuccessuful).
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Regularization for unconstrained problems

Evaluation complexity: sharpness

Is the bound in O(ǫ−3/2) sharp? YES!!!
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Regularization for unconstrained problems

An example of slow AR2 (2)
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Regularization for unconstrained problems

An example of slow AR2 (3)
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Regularization for unconstrained problems

An example of slow AR2 (4)
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Unregularized methods

Slow steepest descent (1)

The steepest descent method with requires at most
⌈
κC
ǫ2

⌉

evaluations

for obtaining ‖gk‖ ≤ ǫ.

Nesterov

Sharp??? YES

Newton’s method (when convergent) requires at most

O(ǫ−2) evaluations

for obtaining ‖gk‖ ≤ ǫ !!!!
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General regularization methods

High-order models for first-order points (1)

What happens if one considers the model

mk(s) = Tf ,p(xk , s) +
σk
p!
‖s‖p+1

2

where

Tf ,p(x , s) = f (x) +

p
∑

j=1

1

j!
∇j

x f (x)[s]
j

terminating the step computation when

‖∇sm(sk)‖ ≤ κstop‖sk‖
p

now the first-order ARp method!
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General regularization methods

High-order models for first-order points (2)

unconstrained ǫ-approximate 1rst-order-necessary minimizer after at
most

f (x0)− flow

κ
ǫ
− p+1

p

function and gradient evaluations

Birgin, Gardhenghi, Martinez, Santos, T., 2017

Technique of proof very similar to that used above.
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General regularization methods

Derivative tensors for partially separable problems

f is partially separable if

f (x) =
m∑

i=1

fi (Uix) =
m∑

i=1

fi (xi ) where rank(Ui )≪ n

Then

∇p
x f (x)[s]

p =
m∑

i=1

∇p
xi
fi (x)[Uix ]

p

Note:

size( ∇p
xi fi (x) ) ≪ size( ∇p

x f (x) )!!!
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General regularization methods

One then wonders. . .

If one uses a model of degree p (Tf ,p(x , s)), why be satisfied
with first- or second-order critical points???

What do we mean by critical points of order larger than 2 ???

What are necessary optimality conditions for order larger
than 2 ???

Not an obvious question!
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General regularization methods

A sobering example (1)

Consider the unconstrained minimization of

f (x1, x2) =

{

x2

(

x2 − e−1/x21

)

if x1 6= 0,

x22 if x1 = 0,

Peano (1884), Hancock (1917)
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General regularization methods

A sobering example (2)

Conclusions:

looking at optimality along straight lines is not enough

depending on Taylor’s expansion for necessary conditions is not always
possible

Even worse:

f (x1, x2) =

{

x2

(

x2 − sin(1/x1)e
−1/x21

)

if x1 6= 0,

x22 if x1 = 0,

(no continuous descent path from 0, although not a local minimizer!!!)

Hopeless?
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General regularization methods

A new (approximate) optimality measure

Define, for some small δ > 0,

φδf ,q(x)
def
= f (x)− globmin

x+d∈F
‖d‖≤δ

Tf ,q(x , d),

and

χq(δ)
def
=

q
∑

ℓ=1

δℓ

ℓ!

x is a (ǫ, δ)-approximate qth-order-necessary minimizer

⇔
φδf ,q(x) ≤ ǫ χq(δ)

φδf ,q(x) is continuous as a function of x for all q.

φδf ,q(x) = o
(
χq(δ)

)
is a necessary optimality condition
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General regularization methods

Approximate unconstrained optimality

Familiar results for low orders: when q = 1

φδf ,1(x) = ‖∇x f (x)‖ δ

χ1(δ) = δ

}

⇒ ‖∇x f (x)‖ ≤ ǫ

while, for q = 2,

‖∇x f (x)‖ ≤ ǫ
λmin(∇

2
x f (x)) ≥ −ǫ

}

⇒ φδf ,2(x) ≤ ǫχ2(δ)

Suppose that ∇q
x f is β-Hölder continous near xǫ and that

φδf ,q(xǫ) ≤ ǫχq(δ).

Then

f (xǫ + d) ≥ f (xǫ)− 2ǫχq(δ) ∀d | ‖d‖ ≤ min

[

δ,

(
(q + 1)! ǫ

Lf ,q

) 1
q−1+β

]

Philippe Toint (naXys, UNamur, Belgium) Kong Kong 2018 24 / 46



General regularization methods

The need for δ

Let x = 0 and T (x , s) = s2 − 2s3

-0.5 0 0.5 1
-1

-0.5

0

0.5

Then

the origin is a local minimizer of T

φ1T ,3(1) = −1 6= 0 but φδT ,3(x) = 0 for all δ ≤ 4/7.

Philippe Toint (naXys, UNamur, Belgium) Kong Kong 2018 25 / 46



General regularization methods

Introducing inexpensive constraints

Constraints are inexpensive

⇔

their evaluation/enforcement has negligible cost
(compared with that of evaluating f )

evaluation complexity for the constrained problem well measured in
counting evaluations of f and its derivatives
many well-known and important examples

bound constraints
convex constraints with cheap projections
parametric constraints
. . .

From now on: F
def
= (inexpensive) feasible set
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General regularization methods

A very general optimization problem

Our aim:

Compute an (ǫ, δ)-approximate qth-order-necessary minimizer for the
problem

min
x∈F

f (x)

where

p ≥ q ≥ 1,

∇p
x f (x) is β-Hölder continuous (β ∈ (0, 1])

F is an inexpensive feasible set

Note:

1 no convexity assumption of f

2 no convexity assumption on F (not even connectivity)

3 reduces to Lipschitz continuous ∇p
x f (x) when β = 1.
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General regularization methods

A (theoretical) regularization algorithm

Algorithm 3.1: The ARp algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 and σ0 > 0 given. Set k = 0

Step 1: Termination: If φ
δk−1

f ,q (xk) ≤ ǫχq(δ), terminate.

Step 2: Step computation:
Compute∗ sk such that xk + sk∈ F , mk(sk)<mk(0) and

‖sk‖ ≥ κs ǫ
1

p−q+β or φδkmk ,q
(xk + sk) ≤

θ ‖sk‖
p−q+β

(p − q + β)!
χq(δk)

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,p(xk , sk)

and set xk+1 = xk + sk if ρk > 0.1 or xk+1 = xk otherwise.

Step 4: Update the regularization parameter:

σk+1 ∈







[σmin, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful

[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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General regularization methods

Finding a step

Compute∗: does a suitable step always exists?

Either
globmin
xk+s∈F

mk(s) = 0

or there exists δk ∈ (0, 1] and a neighbourhood of

s∗k = arg globmin
xk+s∈F

mk(s)

such that, for all s in that neighbourhood

mk(s) < mk(0) and φδkmk ,q
(xk + s) ≤ ǫχq(δk).

Note: (ǫ, δ)-approximate pth-order-necessary minimizer in the first case!
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General regularization methods

Need for the first case

Let x = 0, T (x , s) = s2 − 2s3 (as above) and σk = 24, yielding

m(s) = s2 − 2s3 + s4 = s2(s − 1)2 ≥ 0
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General regularization methods

Further comments on the algorithm

1 when ‖sk‖ ≥ κs ǫ
1

p−q+β , no need for computing φδkmk ,q(xk + sk)!
2 for p = 1 and p = 2, computing it is easy

p = 1: analytic solution
p = 2: trust-region subproblem with unit radius

⇒ practical algorithm

3 for p > 2: hard problem in general
⇒ conceptual algorithm
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General regularization methods

The main result

The ARp algorithm finds an (ǫ, δ)-approximate qth-order-
necessary minimizer for the problem

min
x∈F

f (x)

in at most
O
(

ǫ
− p+β

p−q+β

)

iterations and evaluations of the objective function and its p

first derivatives. Moreover, this bound is sharp.
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General regularization methods

What this theorem does

1 generalizes ALL known complexity results for regularization methods
to

arbitrary degree p, arbitrary order q and arbitrary smoothness
p + β

2 applies to very general constrained problems

3 generalizes the lower complexity bound of Carmon at al., 2018, to
arbitrary dimension, arbitrary order and to constrained problems

4 provides a considerably better complexity order than the bound

O
(

ǫ−(q+1)
)

known for unconstrained trust-region algorithms (Cartis, Gould, T., 2017)

Note: linesearch methods all fail for q > 3!

5 is provably optimal within a wide class of algorithms (Cartis, Gould, T.,
2018 for p ≤ 2)
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General regularization methods

A slide from the ICM in August 2018. . .

Where do we stand (for convexly constrained problems)?

... − − − − ?

q − − − O(ǫ−(q+1)) ? ?
... − − ? ? ?

2 O(ǫ−3) · · · · · · [O(ǫ−(p+1)/(p−1))] · · ·

1 O(ǫ−2) O(ǫ−3/2) · · · · · · O(ǫ−(p+1)/p) · · ·

↑ q/p → 1 2 · · · · · · p · · ·
← sharp →

Complexity of optimality order q as a function of model degree p

Trust-region algo Regularization algo

[ ] for unconstrained problems only!
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Inexact variants

Moving on: allowing inexact evaluations

A common observation:

In many applications, it is necessary/useful to evaluate f (x) and/or ∇j
x f (x)

inexactly

1 complicated computations involving truncated iterative processes

2 variable accuracy schemes

3 sampling techniques (machine learning)

4 noise

5 . . .

Focus on the case where f and all its derivatives are inexact
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Inexact variants

The dynamic accuracy framework (1)

How are the values of f (x) and ∇j
x f (x) used in the ARp algorithm?

f (xk) and f (xk + sk) are used in order to accept/reject the step when
computing

ρk =
f (xk)− f (xk + sk)

f (xk)− Tf ,p(xk , sk)
=

f (xk)− f (xk + sk)

∆Tf ,p(xk , sk)

where

∆Tf ,p(xk , sk) = f (xk)− Tf ,p(xk , sk) = −

p
∑

ℓ=1

∇p
x f (xk)[sk ]

p

is the Taylor’s increment

∆Tf ,p(xk , sk) is independent of f (xk)

Hence we need

Absolute error in f (xk) and f (xk + sk)
′′ ≤′′ ∆Tf ,p(xk , sk)
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Inexact variants

The dynamic accuracy framework (2)

∇j
x f (xk) used in

computing

φ
δk−1

f ,q (xk) = min
{

0, globmin
xk+d∈F
‖d‖≤δ

[f (xk)− Tf ,q(xk , d)]
}

= max
{

0, globmax
xk+d∈F
‖d‖≤δ

∆Tf ,q(xk , d)
}

defining the model mk(s) which is minimized to compute sk , i.e.

max
xk+s∈F

∆Tf ,p(xk , s)

computing

φ
δk−1

f ,q (xk) = max
{

0, globmax
xk+d∈F
‖d‖≤δ

∆Tmk ,q(xk , d)
}

Relative error in ∆T•,• < 1
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Inexact variants

The dynamic accuracy framework (3)

Denote inexact quantities with overbars.

Note: ∆T •,• ≥ 0

Accuracy conditions (κ1, κ2 ∈ [0, 1)):

max
[

|f (xk)− f (xk)|, |f (xk + sk)− f (xk)|
]

≤ κ1∆T f ,p(xk , sk)

|∆T •,• −∆T•,•| ≤ κ2∆T •,•

The latter relative error bound can be obtained by

iteratively decreasing the absolute error until satisfied

Only impose absolute error levels ε on {∇j
x f (xk)}

p
j=0

Philippe Toint (naXys, UNamur, Belgium) Kong Kong 2018 38 / 46



Inexact variants

The ARpDA algorithm

Algorithm 4.1: The ARpDA algorithm for qth-order optimality

Step 0: Initialization: x0, δ−1 and σ0 > 0 given. Set k = 0

Step 1: Termination: If φ
δk−1

f ,q (xk) ≤ ǫχq(δ), terminate.

Step 2: Step computation:
Compute∗ sk such that xk + sk ∈ F , mk(sk) < mk(0) and

‖sk‖ ≥ κs ǫ
1

p−q+β or φδk
mk ,q

(xk + sk) ≤
θ ‖sk‖

p−q+β

(p − q + β)!
χq(δk)

Step 3: Step acceptance:

Compute ρk = f (xk)− f (xk + sk)

∆T f ,p(xk , sk)

and set xk+1 = xk + sk if ρk > 0.1 or xk+1 = xk otherwise.

Step 4: Update the regularization parameter:
(as in ARp)
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Inexact variants

Evaluation complexity for the ARpDA algorithm

And then (sweeping some dust under the carpet). . .

The ARpDA algorithm finds an (ǫ, δ)-approximate qth-order-
necessary minimizer for the problem

min
x∈F

f (x)

in at most
O
(

ǫ
− p+β

p−q+β

)

iterations and at most

O
(

| log(ǫ)|ǫ
− p+β

p−q+β

)

(inexact) evaluations of the objective function and its p first
derivatives.
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Inexact variants

A probabilistic complexity bound

Suppose that absolute evaluation errors are random and inde-
pendent, and that, for given ε,

Pr

[

‖ ∇j
x f (xk)−∇

j
x f (xk)‖ ≤ ε

]

≥ 1− t (j ∈ {1, . . . , p})

where

t = O

(

tfinal ǫ
p+1

p−q+β

p + q + 2

)

Then the ARpDA algorithm finds an (ǫ, δ)-approximate qth-
order-necessary minimizer for the problem minx∈F f (x) in at

most O
(

ǫ
− p+β

p−q+β

)

iterations and at most O
(

| log(ǫ)|ǫ
− p+β

p−q+β

)

(inexact) evaluations of the objective function and its p first
derivatives, with probability 1− tfinal.
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Inexact variants

Selecting a sample size in subsampling methods (1)

Now consider p = 2, β = 1, F = IRn and (as in machine learning)

f (x) =
1

N

N∑

i=1

ψi (x)

Estimating the values of {∇j
x f (xk)}

2
j=0 by sampling:

f (xk) =
1

|Dk |

∑

i∈Dk

ψi (xk), ∇1
x f (xk) =

1

|Gk |

∑

i∈Gk

∇1
xψi (xk),

∇2
x f (xk) =

1

|Hk |

∑

i∈Hk

∇2
xψi (xk),

and applying the Operator-Bernstein matrix concentration inequality. . .
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Inexact variants

Selecting a sample size in subsampling methods (2)

Suppose that β = 1 ≤ q ≤ 2 = p, that, for all k and j ∈ {0, 1, 2},

max
i∈{1,...,N}

‖∇j
xψi (xk)‖ ≤ κj(xk)

and that, for given ε,

|Dk | ≥ ϑ0,k(ε) log (2/t) , |Gk | ≥ ϑ1,k(ε) log ((n + 1)/t) ,

|Hk | ≥ ϑ2,k(ε) log (2n/t) ,
where

ϑj,k(ε)
def
=

4κj(xk)

ε

(
2κj(xk)

ε
+

1

3

)

and t = O

(

tfinal ǫ
3

3−q

4 + q

)

.

Then the AR2DA algorithm finds an ǫ-approximate qth-order-
necessary minimizer for the problem minx∈IRn f (x) in at most

O
(

ǫ−
3

3−q

)

iterations and at most O
(

| log(ǫ)|ǫ−
3

3−q

)

subsampled

evaluations of f , ∇1
x f and ∇2

x f , with probability 1− tfinal.
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Conclusions

Conclusions

Evaluation complexity for qth order approximate minimizers
using degree p models for β-Hölder continuous ∇p

x f

O
(
ǫ
− p+β

p−q+β
)

(unconstrained, inexpensive constraints)

This bound is sharp!

Extension to inexact evaluations:

O
(
| log(ǫ)|ǫ

− p+β
p−q+β

)
(unconstrained, inexpensive constraints)

Consequences in probabilistic complexity and subsampling
strategies
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Conclusions

Perspectives

Complexity for expensive constraints for q > 1?

Subsampling of derivative tensors

Optimization in variable arithmetic precision

etc., etc., etc.

Thank you for your attention!
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Conclusions

Some references

C. Cartis, N. Gould and Ph. L. Toint,
“Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex
optimization with inexpensive constraints”,
arXiv:1811.01220.

S. Bellavia, G. Gurioli, B. Morini and Ph. L. Toint,
“Deterministic and stochastic inexact regularization algorithms for nonconvex
optimization with optimal complexity”,
arXiv:1811.03831.

C. Cartis, N. Gould and Ph. L. Toint,
“Second-order optimality and beyond: characterization and evaluation complexity in
convexly-constrained nonlinear optimization”,
FoCM, to appear.

Also see http://perso.fundp.ac.be/~ phtoint/toint.html
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