Optimizing structured problems without derivatives

and other new developments in the BFO package

Philippe Toint (with Margherita Porcelli)

) NaXYs

UN'VERS'TE Namur Center kar Camples
DE NAMUR

Namur Center for Complex Systems (naXys), University of Namur, Belgium

(philippe.toint@unamur.be)

NAOIV-2017, Muscat, January 2017

How BFO was born. ..

@ working on an interpolation-based derivative free optimizer for

min
x subject to bounds
(more on that at the very end)
@ needed something quick and dirty to improve its parameter settings
@ wrote a “Brute Force” tool ...
@ ... which (after some years of tweaking) has turned into

: . . ?
simple ideas + some computing power = robust/useful tool?

Philippe Toint (naXys) Muscat, January 2017 2 /31

The context

Two common preoccupations in algorithm design/usage:

o For algorithms designers:

How to tune the parameters of an algorithm in order to ensure
the best possible performance on the /argest possible class of
applications?

@ For algorithm/code users:

How to tune the parameters of a code in order to ensure the
best possible performance on a specialized class of applications?

Does achieving the first does help the second?

Philippe Toint (naXys) Muscat, January 2017 3/31

Some flexibility is needed !

@ Provide a tuning methodology which is applicable to many algorithms
@ Provide code which allows user-tuning for his/her pet problem class
— optimization?

@ Need to define an objective function
(how to measure algorithm performance in this context?)

@ Need to define the constraints (on algorithmic parameters)

e simple bounds (algorithm dependent)
e continuous/integer/categorical variables 4+ mix
(ex: blocking size, model type, ...)

Philippe Toint (naXys) Muscat, January 2017 4 /31

Which objective function? (1)

Assume that the (negative) performance perf(params, prob) can be
measured by running the considered algorithm with parameters params on

problem prob (ex: number of function evaluations).
e First model: optimize the total/average performance (AO, OPAL):

min Z perf(params, prob)

problems

@ Second model: optimize the robust performance (RO):

min max Z perf(perturbed params, prob)

params perturbed params
problems

where

0.95 x params < perturbed params < 1.05 % params

Philippe Toint (naXys) Muscat, January 2017 5/31

Which objective function? (2)

@ Third model: optimize the performance profile HINEW!I!:

proportion of problems solved by variant v

m(t)=
v(t) within t times the performance of the best variant

(fixed accuracy of f(x))

Performance Profiles

Philippe Toint (naXys) Muscat, January 2017 6 /31

Which objective function? (3)

@ Third model: optimize the performance profile HINEW!I!:

proportion of problems solved by variant v

m(t)=
v(t) within t times the performance of the best variant

(fixed accuracy of f(x))

03
02 ’J—/ -
ot —
| 1 1 1 1
11 12 13 14 5 1 17 1 2

Philippe Toint (naXys) Muscat, January 2017 7/31

Which objective function? (4)

@ Fourth model: optimize the data profile '/NEW!!I:

proportion of problems solved by variant v
within a budget of t evaluations

o, (t) =

(fixed accuracy of f(x))

Data Profiles

T

08

07—
08—
05—
04—
03—
02—
01—

o I I I I I I
o 50 100 150 200 250 300 350

Philippe Toint (naXys) Muscat, January 2017 8 /31

500

Results for profile trainings

N . . . e i Prolil‘es . . . | . . . ‘Dala Pv?liles . . .
09 | 1
08 | N
07 H 1
06 1
05 N
04 B 04 1
03 B 03 1
02 B 02 B
01 B 01 1
ol — ; ; ; : : : : : 0 ; ; ; ; . ; L ; ;
2 4 6 8 10 12 14 16 18 20 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Philippe Toint (naXys)

uscat,

uary 2017 9

Which objective function? (5)

@ Fourth model: optimize the data profile '/NEW!!I:

proportion of problems solved by variant v
within a budget of t evaluations

o, (t) =

(fixed accuracy of f(x))

Data Profiles

T

08

07—
08—
05—
04—
03—
02—
01—

o I I I I I
o 50 100 150 200 250 300 350

Philippe Toint (naXys) Muscat, January 2017 10 / 31

500

In practice: BFO (the Brute Force Optimizer)

: a new /ocal optimization package with

@ randomized pattern search methodology
(does not require continuity of the objective function)

@ allows bounds on the variables
@ allows continuous/discrete or mixed integer/categorical variables

@ handles multilevel /equilibrium problems
(needed for the robust tuning strategy)

@ includes self-tuning facilities

Philippe Toint (naXys) Muscat, January 2017 11 /31

A simplified block view of BFO

| Check inputs + initialize |

!
‘ user-defined search step (optional) ‘
/! \J
randomized poll step
(fw/bw moves along random directions)

N 1

‘ termination + mesh ‘

—|= recursive (MIP, multilevel, training)

+ save/restore

Philippe Toint (naXys) Muscat, January 2017 12 /31

Bound constraints, integer, lattice and categorical variables

Bound constraints

@ detect which bounds are nearly active
@ force their normals to belong to the set of poll directions

@ include one-sided or truncated poll search
Integer or lattice variables
align the initial grid with the integer grid
avoid shrinking and rotations

recursively explore a local tree of discrete subspaces

keep track of record value in each such subspace to avoid
re-exploration

same thing if variables live on a user-specified lattice
o allows relaxation of integer variables '[N PROGRESS!!!

Categorical variables !NEW!!!

Philippe Toint (naXys) Muscat, January 2017 13 /31

Additional algorithmic features:

e accumulate successful descent directions (exploiting “inertia”)
@ optional user-defined variables’ scaling
@ provision for multilevel optimization

min max min f(x, y, z)
X y z

with level-dependent bounds (equilibrium/game theory computations)
incomplete function evaluations (crucial for training)

flexible termination rules (including objective-function target)

BFGS finish (for smooth problems)

allows randomized termination test

allows exploitation of problem structure !!!NEW!!!

Philippe Toint (naXys) Muscat, January 2017 14 / 31

Additional implementation features

check-pointing at user-specified frequency

allows objective functions with user-defined parameters
very flexible keyword-based calling sequence

MATLAB code (single file)

direct CUTEst interface (for those interested)

Philippe Toint (naXys) Muscat, January 2017 15 / 31

Algorithmic parameters

User may specify (amongst others):
@ grid shrinking/expansion factors
@ inertia for defining progress directions
@ initial scale in continuous variables
@ local tree-search strategy (depth-first vs breadth-first)

(7 algorithmic parameters in total)

Philippe Toint (naXys) Muscat, January 2017 16 / 31

BFO self tuning

| BFO has been self-tuned! |

@ on a large set of test problems (CUTEst) with continuous and
mixed-integer variables

@ using both the average and robust tuning strategies

o for all 7 algorithmic parameters
Outcome :

@ robust strategy slightly better
@ gains in performance of

o 30% for continuous problems
o 19% for mixed-integer problems

compared with "intuitively reasonable values”

o very competitive with NOMAD (state-of-the-art pattern search algo)

Philippe Toint (naXys) Muscat, January 2017 17 / 31

... the algorithm designer is (hopefully) happy !
But what about the user (with his/her own specific problems)?

IBFO allows training by the user for specific problem classes |

Does this work?

BFO paper (TOMS) reports experiments on specific problem classes
@ nonlinear nonconvex trajectory tracking least-squares

@ nonconvex regularized cubic models

|+ very positive return from users

Philippe Toint (naXys) Muscat, January 2017 18 / 31

Exploiting problem structure (1)

Consider coordinate partially-separable objective functions

p
f(x) = Z fi(x;) where x; only involves a (small) subset of variables
i=1

(very common, e.g, discretizations, block systems, ...)

Key: no need to compute all f; for moves along
well-chosen coordinate-spanned subspaces!

= allows parallel search along subspaces with independent f;.
(Price & T., 2006)
= allows independent mesh management within these subspaces

Philippe Toint (naXys) Muscat, January 2017 19 / 31

Exploiting problem structure (2)

‘Check inputs + initialize ‘ — ‘ analyze structure ‘
3 3
‘ user-defined search step (optional) ‘
e 3 3 N
T ‘ randomized poll step ‘ ‘ structured poll step +mesh ‘]
N 3 N 3 e
‘ termination + mesh ‘ \ struct. termination \

Philippe Toint (naXys) Muscat, January 2017 20 / 31

Exploiting problem structure (3)

‘ Extremely efficient to reduce the number of (full) evaluations‘

A few examples (ps/nops, co= "> 100000"):

test probs n= 10 50 100 500 1000 5000
ARWHEAD 133/967 402/13576 638/co 2245/00 3241/c0 1047100
BROYDEN3D 291/1298 256/23119 337/78777 398/cc 367/c0 989/00
BROYDENBD 628/1325 1650/98458 1761/co 2002/cc0 1986/cc 2083/c0
CONTACT — 222/29534 604 /00 895/c0 1814/c0 3620/c0
ENGVAL 166,/1483 171/34466 183/00 215/c0 253/c0 360/0c0
DIXON7DGI 202/8455 249/00 218/00 430/c0 304/c0 500/ 00
FREUDENROTH | 419/2866 365/84351 154 /00 145/00 178/¢ 299 /00
HEL. VALLEY 128/2265 128/25529 158/00 219/c0 348/ 875/c0
MINSURF — 393/21881 730/00 1771/00 3690/c0 8429/c0
NZF1 175/1899 217/00 570/cc 649/c0 630/cc 776/cc
POWELL SING | 554/26580 554 /0 604 /00 654/00 654/c0 914 /00
ROSENBROCK | 520/14270 707 /00 656/00 1109/00 1759/c0 4478/c0
TRIDIA 358/2440 293/c0 267 /00 353/00 353/c0 505/00
WOODS 1803/cc 1803/cc 1852/cc 1902/co 2102/co 2317/co

Most of the decrease in a number of evals independent of n

+ (relatively) slow checking for termination

Philippe Toint (naXys)

Muscat, January 2017

21 /31

Exploiting problem structure (4.1)

2
full, eps= 1e-4
ol full, eps= 1e-5]
ps, eps= 1e-5
2+ i
4+ i
-6 4
8t 4
-10
0 200 400 600 800 1000 1200 1400

Broyden 3D, n =10

Philippe Toint (naXys) Muscat, January 2017 22 /31

Exploiting problem structure (4.2)

full, eps= 1e-4
full, eps= 1e-5
ps, eps= 1e-5 i

0 200 400 600 800 1000 1200 1400

Broyden 3D, n =50

Philippe Toint (naXys) Muscat, January 2017 23 /31

Exploiting problem structure (4.3)

— full, eps= 1e-4
m— full, eps= 1e-5
ps, eps= 1e-5 B

0o 200 400 600 800 1000 1200 1400

Broyden 3D, n = 100

Philippe Toint (naXys) Muscat, January 2017 24 /31

Exploiting problem structure (4.4)

4

2 |- ‘ 4

O |- 4
m—— full, eps= 1e-4

oL e fUll, eps= 1e-5 |4

ps, eps= 1e-5

-4 + 4

6 4

8

0 200 400 600 800 1000 1200 1400

Philippe Toint (naXys)

Broyden 3D, n =500

Muscat, January 2017

25 / 31

Exploiting problem structure (4.5)

4

2 |- 4
full, eps= 1e-4

0r full, eps= 1e-5 7
ps, eps= 1e-5

2+ i

-4 + 4

6 4

8

0 200 400 600 800 1000 1200 1400

Philippe Toint (naXys)

Broyden 3D, n = 1000

Muscat, January 2017

26 / 31

Categorical variables

categorical variables =
variables whose values are user-defined (unordered) strings

@ two types of (user-defined) neighbouhoods:

e static: values are in a predefined list
ex: {{ {'blue’, 'black’}, ", {'blue’, 'green’, 'yellow'} }}

e dynamic: values are defined on the fly by the user with possible
changes in 'optimization context’, i.e.

@ bounds
@ number of active variables (and hence objective function)

extremely flexible, but burden of coherency on the user!

@ except for neighbouhood'’s definition and relaxation, handled as
integer variables

Philippe Toint (naXys) Muscat, January 2017 27 /31

Relaxable integer variables

Does relaxing integer variables to continuous make
the objective function undefined?

o (partially) solve the relaxed continuous problem

o find an integer (lattice) point close (in ¢1-norm) to the (approx)
continuous solution (crash)

@ use the result as starting point for full MIP optimization

Questions:
@ perform relaxation at root node? every node? user-chosen nodes?
@ relave accuracies of relaxed/unrelaxed optimization?
@ handle unboundedness of the relaxed objective

For now: good results for root relaxation with low accuracy on the relaxed
problem

Philippe Toint (naXys) Muscat, January 2017 28 /31

Examples of calls

[x, fx] = bfo(
[x, fx 1 = bfo(
[x, fx 1 = bfo(
[x, fx] = bfo(
[x, fx] = bfo(

[x, fx] = bfo(

Philippe Toint (naXys)

@banana, [-1.2, 1])

@banana, [-1.2, 1], ’xtype’, ’ic’)

@banana, [-1.2, 1], ’xlower’, O, ’epsilon’,0.01)
@banana, [-1.2, 1] ,

’save-freq’,10, ’restart-file’, ’bfo.rst’)
@banana, [-1.2, 1] ,

’training-mode’, ’train’,

’training-parameters’, ’fruity’,
’training-problems’, {@banana,@apple},...
’training-problems-data’, {@fruit_data})

@robust_training, [0, -1, 0, 11 ,
’xlevel’, [11 22],
’max-or-min’, [’min’, ’max’])

Muscat, January 2017 29 /31

| Some conclusions|

| *k% Use BFO *** |

‘ *** Use BFO to tune your algorithm! *** ‘

(you can even tune BFO to tune your own algorithms)

| More user-tunable codes? |

‘ Perspectives for the BFO v 2.0‘ (somewhere in the spring)

@ partially separable problems, categorical variables, profile training,
relaxable MIPs, forcing function, search-step library, options file, ...

Many thanks for your attention!

Philippe Toint (naXys) Muscat, January 2017 30 /31

Further info. ..

Reading

M. Porcelli and Ph. L. Toint,

“BFO, a trainable derivative-free Brute Force Optimizer for nonlinear bound-constrained
optimization and equilibrium computations with continuous and discrete variables”,
TOMS, to appear, 2017

available from http://perso.unamur.be/"phtoint/toint.html

Free download

Download BFO from the BFO site‘ https://sites.google.com/site/bfocode/‘ !

Philippe Toint (naXys) Muscat, January 2017 31/31

