
Optimizing structured problems without derivatives
and other new developments in the BFO package

Philippe Toint (with Margherita Porcelli)

Namur Center for Complex Systems (naXys), University of Namur, Belgium

(philippe.toint@unamur.be)

NAOIV-2017, Muscat, January 2017

How BFO was born. . .

working on an interpolation-based derivative free optimizer for

min
x subject to bounds

f (x)

(more on that at the very end)

needed something quick and dirty to improve its parameter settings

wrote a “Brute Force” tool . . .

... which (after some years of tweaking) has turned into BFO

simple ideas + some computing power
?

=⇒ robust/useful tool?

Philippe Toint (naXys) Muscat, January 2017 2 / 31

The context

Two common preoccupations in algorithm design/usage:

For algorithms designers:

How to tune the parameters of an algorithm in order to ensure
the best possible performance on the largest possible class of
applications?

For algorithm/code users:

How to tune the parameters of a code in order to ensure the
best possible performance on a specialized class of applications?

Does achieving the first does help the second?

Philippe Toint (naXys) Muscat, January 2017 3 / 31

A way out ?

Some flexibility is needed !

Provide a tuning methodology which is applicable to many algorithms

Provide code which allows user-tuning for his/her pet problem class

=⇒ optimization?

Need to define an objective function
(how to measure algorithm performance in this context?)

Need to define the constraints (on algorithmic parameters)

simple bounds (algorithm dependent)
continuous/integer/categorical variables + mix
(ex: blocking size, model type, . . .)

Philippe Toint (naXys) Muscat, January 2017 4 / 31

Which objective function? (1)

Assume that the (negative) performance perf(params, prob) can be
measured by running the considered algorithm with parameters params on
problem prob (ex: number of function evaluations).

First model: optimize the total/average performance (AO, OPAL):

min
params

∑
problems

perf(params, prob)

Second model: optimize the robust performance (RO):

min
params

max
perturbed params

∑
problems

perf(perturbed params, prob)

where

0.95 ∗ params ≤ perturbed params ≤ 1.05 ∗ params

Philippe Toint (naXys) Muscat, January 2017 5 / 31

Which objective function? (2)

Third model: optimize the performance profile !!!NEW!!!:

πv (t) =
proportion of problems solved by variant v
within t times the performance of the best variant

(fixed accuracy of f (x∗))

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profiles

Philippe Toint (naXys) Muscat, January 2017 6 / 31

Which objective function? (3)

Third model: optimize the performance profile !!!NEW!!!:

πv (t) =
proportion of problems solved by variant v
within t times the performance of the best variant

(fixed accuracy of f (x∗))

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profiles

Philippe Toint (naXys) Muscat, January 2017 7 / 31

Which objective function? (4)

Fourth model: optimize the data profile !!!NEW!!!:

δv (t) =
proportion of problems solved by variant v
within a budget of t evaluations

(fixed accuracy of f (x∗))

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data Profiles

Philippe Toint (naXys) Muscat, January 2017 8 / 31

Results for profile trainings

2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profiles

BFO - to beat

BFO - new

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data Profiles

BFO - to beat

BFO - new

Philippe Toint (naXys) Muscat, January 2017 9 / 31

Which objective function? (5)

Fourth model: optimize the data profile !!!NEW!!!:

δv (t) =
proportion of problems solved by variant v
within a budget of t evaluations

(fixed accuracy of f (x∗))

0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Data Profiles

Philippe Toint (naXys) Muscat, January 2017 10 / 31

In practice: BFO (the Brute Force Optimizer)

BFO : a new local optimization package with

randomized pattern search methodology
(does not require continuity of the objective function)

allows bounds on the variables

allows continuous/discrete or mixed integer/categorical variables

handles multilevel/equilibrium problems
(needed for the robust tuning strategy)

includes self-tuning facilities

Philippe Toint (naXys) Muscat, January 2017 11 / 31

A simplified block view of BFO

Check inputs + initialize

↓

user-defined search step (optional)

↗ ↓x randomized poll step
(fw/bw moves along random directions)

↖ ↓

termination + mesh

= recursive (MIP, multilevel, training)

+ save/restore

Philippe Toint (naXys) Muscat, January 2017 12 / 31

Bound constraints, integer, lattice and categorical variables

Bound constraints

detect which bounds are nearly active

force their normals to belong to the set of poll directions

include one-sided or truncated poll search

Integer or lattice variables

align the initial grid with the integer grid

avoid shrinking and rotations

recursively explore a local tree of discrete subspaces

keep track of record value in each such subspace to avoid
re-exploration

same thing if variables live on a user-specified lattice

allows relaxation of integer variables !!!IN PROGRESS!!!

Categorical variables !!!NEW!!!
Philippe Toint (naXys) Muscat, January 2017 13 / 31

Additional algorithmic features:

accumulate successful descent directions (exploiting “inertia”)

optional user-defined variables’ scaling

provision for multilevel optimization

min
x

max
y

min
z

f (x , y , z)

with level-dependent bounds (equilibrium/game theory computations)

incomplete function evaluations (crucial for training)

flexible termination rules (including objective-function target)

BFGS finish (for smooth problems)

allows randomized termination test

allows exploitation of problem structure !!!NEW!!!

Philippe Toint (naXys) Muscat, January 2017 14 / 31

Additional implementation features

check-pointing at user-specified frequency

allows objective functions with user-defined parameters

very flexible keyword-based calling sequence

MATLAB code (single file)

direct CUTEst interface (for those interested)

Philippe Toint (naXys) Muscat, January 2017 15 / 31

Algorithmic parameters

User may specify (amongst others):

grid shrinking/expansion factors

inertia for defining progress directions

initial scale in continuous variables

local tree-search strategy (depth-first vs breadth-first)

(7 algorithmic parameters in total)

Philippe Toint (naXys) Muscat, January 2017 16 / 31

BFO self tuning

BFO has been self-tuned!

on a large set of test problems (CUTEst) with continuous and
mixed-integer variables

using both the average and robust tuning strategies

for all 7 algorithmic parameters

Outcome :

robust strategy slightly better

gains in performance of

30% for continuous problems
19% for mixed-integer problems

compared with ”intuitively reasonable values”

very competitive with NOMAD (state-of-the-art pattern search algo)

Philippe Toint (naXys) Muscat, January 2017 17 / 31

And then...

... the algorithm designer is (hopefully) happy !
But what about the user (with his/her own specific problems)?

BFO allows training by the user for specific problem classes

Does this work?

BFO paper (TOMS) reports experiments on specific problem classes

nonlinear nonconvex trajectory tracking least-squares

nonconvex regularized cubic models

+ very positive return from users

Philippe Toint (naXys) Muscat, January 2017 18 / 31

Exploiting problem structure (1) !!!NEW!!!

Consider coordinate partially-separable objective functions

f (x) =

p∑
i=1

fi (xi) where xi only involves a (small) subset of variables

(very common, e.g, discretizations, block systems, . . .)

Key: no need to compute all fi for moves along
well-chosen coordinate-spanned subspaces!

⇒ allows parallel search along subspaces with independent fi .
(Price & T., 2006)

⇒ allows independent mesh management within these subspaces

Philippe Toint (naXys) Muscat, January 2017 19 / 31

Exploiting problem structure (2) !!!NEW!!!

Check inputs + initialize → analyze structure

↓ ↓

user-defined search step (optional)

↗ ↓ ↓ ↖x randomized poll step structured poll step +mesh

x
↖ ↓ ↖ ↓ ↗

termination + mesh struct. termination

Philippe Toint (naXys) Muscat, January 2017 20 / 31

Exploiting problem structure (3) !!!NEW!!!

Extremely efficient to reduce the number of (full) evaluations
A few examples (ps/nops, ∞= ’> 100000’):
test probs n ≈ 10 50 100 500 1000 5000

ARWHEAD 133/967 402/13576 638/∞ 2245/∞ 3241/∞ 10471/∞
BROYDEN3D 291/1298 256/23119 337/78777 398/∞ 367/∞ 989/∞
BROYDENBD 628/1325 1650/98458 1761/∞ 2002/∞ 1986/∞ 2083/∞
CONTACT — 222/29534 604/∞ 895/∞ 1814/∞ 3620/∞
ENGVAL 166/1483 171/34466 183/∞ 215/∞ 253/∞ 360/∞
DIXON7DGI 202/8455 249/∞ 218/∞ 430/∞ 304/∞ 500/∞
FREUDENROTH 419/2866 365/84351 154/∞ 145/∞ 178/∞ 299/∞
HEL. VALLEY 128/2265 128/25529 158/∞ 219/∞ 348/∞ 875/∞
MINSURF — 393/21881 730/∞ 1771/∞ 3690/∞ 8429/∞
NZF1 175/1899 217/∞ 570/∞ 649/∞ 630/∞ 776/∞
POWELL SING 554/26580 554/∞ 604/∞ 654/∞ 654/∞ 914/∞
ROSENBROCK 520/14270 707/∞ 656/∞ 1109/∞ 1759/∞ 4478/∞
TRIDIA 358/2440 293/∞ 267/∞ 353/∞ 353/∞ 505/∞
WOODS 1803/∞ 1803/∞ 1852/∞ 1902/∞ 2102/∞ 2317/∞

Note: Most of the decrease in a number of evals independent of n
+ (relatively) slow checking for termination

Philippe Toint (naXys) Muscat, January 2017 21 / 31

Exploiting problem structure (4.1) !!!NEW!!!

0 200 400 600 800 1000 1200 1400
-10

-8

-6

-4

-2

0

2

full, eps= 1e-4

full, eps= 1e-5

ps, eps= 1e-5

Broyden 3D, n = 10

Philippe Toint (naXys) Muscat, January 2017 22 / 31

Exploiting problem structure (4.2) !!!NEW!!!

0 200 400 600 800 1000 1200 1400
-8

-6

-4

-2

0

2

full, eps= 1e-4

full, eps= 1e-5

ps, eps= 1e-5

Broyden 3D, n = 50

Philippe Toint (naXys) Muscat, January 2017 23 / 31

Exploiting problem structure (4.3) !!!NEW!!!

0 200 400 600 800 1000 1200 1400
-8

-6

-4

-2

0

2

4

full, eps= 1e-4

full, eps= 1e-5

ps, eps= 1e-5

Broyden 3D, n = 100

Philippe Toint (naXys) Muscat, January 2017 24 / 31

Exploiting problem structure (4.4) !!!NEW!!!

0 200 400 600 800 1000 1200 1400
-8

-6

-4

-2

0

2

4

full, eps= 1e-4

full, eps= 1e-5

ps, eps= 1e-5

Broyden 3D, n = 500

Philippe Toint (naXys) Muscat, January 2017 25 / 31

Exploiting problem structure (4.5) !!!NEW!!!

0 200 400 600 800 1000 1200 1400
-8

-6

-4

-2

0

2

4

full, eps= 1e-4

full, eps= 1e-5

ps, eps= 1e-5

Broyden 3D, n = 1000

Philippe Toint (naXys) Muscat, January 2017 26 / 31

Categorical variables !!!NEW!!!

categorical variables =
variables whose values are user-defined (unordered) strings

two types of (user-defined) neighbouhoods:

static: values are in a predefined list
ex: {{ {’blue’, ’black’}, ”, {’blue’, ’green’, ’yellow’} }}
dynamic: values are defined on the fly by the user with possible
changes in ’optimization context’, i.e.

bounds
number of active variables (and hence objective function)

extremely flexible, but burden of coherency on the user!

except for neighbouhood’s definition and relaxation, handled as
integer variables

Philippe Toint (naXys) Muscat, January 2017 27 / 31

Relaxable integer variables !!!IN PROGRESS!!

Does relaxing integer variables to continuous make
the objective function undefined?

(partially) solve the relaxed continuous problem

find an integer (lattice) point close (in `1-norm) to the (approx)
continuous solution (crash)

use the result as starting point for full MIP optimization

Questions:

perform relaxation at root node? every node? user-chosen nodes?

relave accuracies of relaxed/unrelaxed optimization?

handle unboundedness of the relaxed objective

For now: good results for root relaxation with low accuracy on the relaxed
problem

Philippe Toint (naXys) Muscat, January 2017 28 / 31

Examples of calls

[x, fx] = bfo(@banana, [-1.2, 1])

[x, fx] = bfo(@banana, [-1.2, 1], ’xtype’, ’ic’)

[x, fx] = bfo(@banana, [-1.2, 1], ’xlower’, 0, ’epsilon’,0.01)

[x, fx] = bfo(@banana, [-1.2, 1] , ...

’save-freq’,10,’restart-file’,’bfo.rst’)

[x, fx] = bfo(@banana, [-1.2, 1] , ...

’training-mode’, ’train’, ...

’training-parameters’, ’fruity’, ...

’training-problems’, {@banana,@apple},...
’training-problems-data’, {@fruit data})

[x, fx] = bfo(@robust training, [0, -1, 0, 1] , ...

’xlevel’, [1 1 2 2], ...

’max-or-min’, [’min’, ’max’])

Philippe Toint (naXys) Muscat, January 2017 29 / 31

And now. . .

Some conclusions

*** Use BFO ***

*** Use BFO to tune your algorithm! ***

(you can even tune BFO to tune your own algorithms)

More user-tunable codes?

Perspectives for the BFO v 2.0 (somewhere in the spring)

partially separable problems, categorical variables, profile training,
relaxable MIPs, forcing function, search-step library, options file, . . .

Many thanks for your attention!

Philippe Toint (naXys) Muscat, January 2017 30 / 31

Further info. . .

Reading
M. Porcelli and Ph. L. Toint,
“BFO, a trainable derivative-free Brute Force Optimizer for nonlinear bound-constrained
optimization and equilibrium computations with continuous and discrete variables”,

TOMS, to appear, 2017

available from http://perso.unamur.be/˜phtoint/toint.html

Free download
Download BFO from the BFO site https://sites.google.com/site/bfocode/ !

Philippe Toint (naXys) Muscat, January 2017 31 / 31

