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In forecasting problems, a dynamical system{
∂u
∂t = f (t, u)
u(t0) = u0

involves a nonlinear differential operator f .

Vector u consists of state variables, e.g.

velocity components

pressure

density

temperature

gravitational potential

Goal : predict the state of the system at a future time from

dynamical integration model

observational data are very often needed

Applications : climate, meteorology, oceanography, neutronics, finance, ...
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The dynamical integration model predicts the state of the system given
the (initial) state at an earlier time.
−→ integrating may lead to very large prediction errors
−→ (inexact physics, discretization errors, approximated parameters)

Observational data are used to improve accuracy of the forecasts.
−→ but the data are inaccurate (measurement noise, under-sampling)
−→ 107 observations (109 variables) processed every day : structured big

data problem
−→ Need to be solved within a prescribed CPU time on a parallel

computer
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Data assimilation chart

−2 −1 0 1
−1

0

1

starting from a priori knowledge on the state, the forward model is run :
expensive in computer time, not always very parallel

data are processed : screened, agglomerated

adjustment with of model with respect to observations : best value to be
found by some ”form of optimization”

predictions are then issued
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Solve a large-scale non-linear weighted least-squares problem :

min
x∈Rn

1

2
‖x − xb‖2

B−1 +
1

2

N∑
j=0

∥∥Hj

(
Mj(x)

)
− yj

∥∥2

R−1
j

where

x ≡ x(t0) is the control variable in Rn, n ∼ 109

Mj are model operators : x(tj) =Mj(x(t0))

Hj are observation operators : yj ≈ Hj(x(tj)) in Rn, n ∼ 107

the observations yj and the background xb are noisy

B and Rj are covariance matrices

No model error here : the dynamical system is supposed to be known
exactly
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Most popular solution algorithm

→ Large-scale regularized nonlinear least-squares problem :

min
x∈Rn

J(x) =
1

2
||x − xb||2B−1 +

1

2

N∑
j=0

||Hj (M0,j (x))− yj ||2R−1
j

Typically solved by a standard Gauss-Newton method known as Incremental 4D-Var
in data assimilation community (series of paper by Courtier, Talagrand)

1 Solve the linearized subproblem at iteration k

minδxk∈Rn J(δxk) = 1
2
‖δxk − xb + xk‖2

B−1 + 1
2
‖Hkδxk − dk‖2

R−1

2 Perform update xk+1 = xk + δxk
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Structure of the linearized problem and ”dual
approach”

The exact solution is either

xb − xk + (B−1 + HT
k R
−1Hk)−1HT

k R
−1(dk − Hk(xb − xk))︸ ︷︷ ︸

linear system in Rn

or, by duality with respect to the observation term

xb − xk + BHT
k (R + HkBH

T
k )−1(dk − Hk(xb − xk))︸ ︷︷ ︸

Lagrange mult. : requires solving a linear system in Rm

These equations are the heart of most data assimilation systems

When solved directly they are considered as impractical in large scale
systems

Dual form is more than appealing for regularized under-determined
systems (107 observations but 109 variables)
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Iterative (primal) approach

Iterative minimization

1 Iteratively solve with PCG

(B−1 + HT
k R
−1Hk)sk = HT

k R
−1(dk − Hk(xb − xk))

2 Set δxk = xb − xk + sk

A good preconditionner is B

It is possible to derive to prove convergence with approximate solution of
the linear system. But

Repelling fixed points may exist (different from Newton’s method) !
Step-size control enables local convergence : trust-region, linesearch
Truncated iterative linear algebra methods are essential
Preconditioning is crucial for an acceptable (inner-)iteration count, i.e.
controlled computational time
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The ”dual approach”

Iterative minimization

1 Iteratively solve

(R + HkBH
T
k )λk = dk − Hk(xb − xk)

2 Set δxk = xb − xk + BHT
k λk

A good preconditioner is R−1

Non monotonic function values along
iterations for the dual

The effect of truncation may be catastrophic
in the dual solvers

This weakness of the method can be
completely overcome by change of scalar
product in dual CG (G., Tshimanga 2009)
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Restricted PCG (version 1)

Initialization

λ0 = 0, r̂0 = R−1(d − H(xb − x)), ẑ0 = Gr̂0,
p̂1 = ẑ0, k = 1

Loop on k

1 q̂i = Âp̂i

2 αi =< r̂i−1, ẑi−1 >M / < q̂i , p̂i >M

3 λi = λi−1 + αi p̂i

4 r̂i = r̂i−1 − αi q̂i

5 βi =< r̂i−1, ẑi−1 >M / <
r̂i−2, ẑi−2 >M

6 ẑi = Gr̂i

7 p̂i = ẑi−1 + βi p̂i−1

Â = Im + R−1HBHT

G is the preconditioner.

M is the inner-product.

RPCG Algorithm : M = HBHT lead to a
mathematically equivalent algorithm to
the primal one preconditioned by F :
preserves monotonic decrease of
quadratic cost

BHTG = FHT : G should be symmetric
w.r.t. to M

B−1 not involved
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Restricted PCG (version 2)

Initialization steps

Loop : WHILE

1 q̂i−1 = R−1ti−1 + p̂i−1

2 αi−1 = wT
i−1 r̂i−1 / q̂

T
i−1ti−1

3 v̂i = v̂i−1 + αi−1p̂i−1

4 r̂i = r̂i−1 + αi−1q̂i−1

5 ẑi = Gr̂i

6 wi = HBHTẑi

7 βi = wT
i r̂i /w

T
i−1 r̂i−1

8 p̂i = −ẑi + βi p̂i−1

9 ti = −wi + βi ti−1
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Explanation

Theorem

Let

1 F primal, G dual preconditioner. Suppose BHTG = FHT.

2 v0 = xb − x0.

Primal CG vectors write

ri = HTr̂i , pi = BHTp̂i , qi = HTq̂i , . . .

Note that For ”exact” preconditioners

BHT
(
I + R−1HBHT

)−1
=
(
B−1 + HTR−1H

)−1
HT

”With-hat” quantities can be generated by CG on the dual system with
inner-product HBHT

The method is parallel. It however offers limited parallelism not enough
for modern computers.
The advent of a new problem stimulates new developments...
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Weak-constraint 4D-Var

min
x∈Rn

1

2
‖x0 − xb‖2

B−1 +
1

2

N∑
j=0

∥∥Hj

(
xj
)
− yj

∥∥2

R−1
j

+
1

2

N∑
j=1

‖xj −Mj(xj−1)︸ ︷︷ ︸
qj

‖2

Q−1
j

x =

x0

...
xN

 ∈ Rn is the control variable (with xj = x(tj))

xb is the background given at the initial time (t0).

yj ∈ Rmj is the observation vector over a given time interval

Hj maps the state vector xj from model space to observation space

Mj represents an integration of the numerical model from time tj−1 to tj

B, Rj and Qj are the covariance matrices of background, observation and
model error. B and Qj impractical to ”invert”

We can work with longer time windows, accumulate more observations, forget
the influence of the regularization term, but larger problems
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The linearized subproblem (inner loop)

The linearized problem at the k-th outer loop is given by

min
δx

1

2
‖δx0 − b(k)‖2

B−1 +
1

2

N∑
j=0

∥∥∥H(k)
j δx j − d

(k)
j

∥∥∥2

R−1
j

+
1

2

N∑
j=1

‖δx j −M
(k)
j δx j−1︸ ︷︷ ︸

δqj

−c(k)
j ‖

2

Q−1
j

δx =


δx0

δx1

...
δxN

 ∈ Rn is the increment.

The vectors b(k), c
(k)
j and d

(k)
j are defined by

b(k) = xb − x0
(k)

c
(k)
j = q

(k)
j

d
(k)
j = Hj(xj

(k))− yj

and are calculated at the outer loop.
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Rewriting the linearized subproblem

min
δx∈Rn

1

2
‖Lδx− b‖2

D−1 +
1

2
‖Hδx− d‖2

R−1

where

L =


I
−M1 I

−M2 I
. . .

. . .

−MN I



d =


d0

d1

...
dN

 and b =


b
c1

...
cN


H = diag(H0,H1, . . . ,HN)

D = diag(B,Q1, . . . ,QN) and R = diag(R0,R1, . . . ,RN)
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Rewriting the linearized subproblem

min
δx∈Rn

1

2
‖Lδx− b‖2

D−1 +
1

2
‖Hδx− d‖2

R−1 = qst(δx)

Lδx =


I
−M1 I

−M2 I
. . .

. . .

−MN I




δx0

δx1

δx2

...
δxN

 =


δx0

δx1 −M1δx0

δx2 −M2δx1

...
δxN −MNδxN−1



Matrix-vector products with L can be parallelized in the time dimension

16 / 41

A primal-dual approach of weak-constrained variational data assimilation , (Iterate) History matters



Introduction. Single level primal and dual variational methods Parallel in time Limited memory preconditioning for saddle-point systems Conclusions

Rewriting the linearized subproblem

Making change of variables

δp = Lδx

the subproblem can also be rewritten as

min
δp∈Rn

1

2
‖δp− b‖2

D−1 +
1

2
‖HL−1δp− d‖2

R−1

δx = L−1δp is sequential → δx j = Mjδx j−1 + δqj
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The linearized subproblems
State Formulation

min
δx

1

2
‖Lδx− b‖2

D−1 +
1

2
‖Hδx− d‖2

R−1

Forcing Formulation

min
δp

1

2
‖δp−b‖2

D−1 +
1

2
‖HL−1δp−d‖2

R−1

Matrix-vector products with L can be
parallelized in the time dimension.

Solution algorithm : Preconditioned
Lanczos or PCG type methods.

Preconditioning is difficult since

D1/2L̃−T(LTD−1L)L̃−1D1/2

can be ill-conditioned depending on
the accuracy of L̃−1.

Matrix-vector products with L−1 is
sequential.

Solution algorithm : Preconditioned
Lanczos or PCG type methods.

Preconditioning is straightforward. The
structure is similar to the
strong-constraint case.

Inverse of convariance matrices involved : expensive operation for new
systems, where these matrices are sums of matrices
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Saddle Point Approach

Let us consider weak-constraint 4D-Var as a constrained problem :

min
(δp,δw)

1

2
‖δp− b‖2

D−1 +
1

2
‖δw − d‖2

R−1

subject to δp = Lδx and δw = Hδx

We can write the Lagrangian function for this problem as

L(δw , δp,λ,µ) =
1

2
‖δp− b‖2

D−1 +
1

2
‖δw − d‖2

R−1

+ λT (δp − Lδx) + µT (δw −Hδx)

The stationary point of L satisfies the following equations :

D−1(Lδx− b) + λ = 0

R−1(Hδx− d) + µ = 0

LTλ + HTµ = 0
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Saddle Point Approach

In matrix form : D 0 L
0 R H
LT HT 0


︸ ︷︷ ︸

A

λ
µ
δx

 =

b
d
0



where A is a (2n + m)-by-(2n + m) indefinite symmetric matrix.

The solution of this problem is a saddle point, with no inverse of
covariance matrix involved

→ Solution algorithm : iterative method (MINRES, GMRES, ...) with a
preconditioner.
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The original Saddle method : M. Fisher
Consider the solution of the subproblem

r(δλ, δµ, δx) =

D 0 L
0 R H
LT HT 0

δλδµ
δx

 = 0

Saddle-original (SAQ0)

While not converged :

1 Compute J(xk) and gk = ∇xJ(xk)

2 Apply the preconditioned GMRES algorithm to solve the system
r(δλ, δµ, δx) = 0. Terminate the iterations if
‖r(δλ, δµ, δx)‖ ≤ εr (‖b‖+ ‖d‖) or j = ninner to yield δxk

3 Set δxk+1 = xk + δxk

Possible preconditioners, S = L̃TD−1L̃, L̃ ∼ L (square, nonsingular),

PM =

D 0 L̃
0 R 0

L̃T 0 0

 , PB =

D 0 0
0 R 0
0 0 −S−1

 , PT =

D 0 L̃
0 R H
0 0 −S−1
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The original Saddle method

1 We choose M = I in the preconditionner L̃. We represent the original
nonlinear least-square function J, its GN approximation qst

2 None of the method reduces J significantly. The method with PM diverges
slightly

3 The curve for qst and J are noticeably the same. The problem nonlinearity
cannot be blamed

4 The non-monotonic behaviour of qst and J is obvious. Stopping cannot
solely rely on maximum number of iterations
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A better stopping criterion for GMRES

Saddle-globalized (SAQ1)

While not converged :

1 Compute J(xk) and gk = ∇xJ(xk)

2 Apply the preconditioned GMRES algorithm to solve the system
r(δλ, δµ, δx) = 0. Terminate at iteration j if
qst(0)− qst(δx) ≥ max

(
εq min

(
1, ‖gk‖2

)
, θj
)

to yield δxk

3 Perform a backtracking linesearch minimisation of J along δxk yielding a
step-length αk

4 Set δxk+1 = xk + αkδxk

The sequence θj goes to zero and forces GMRES not to stop prematurely

The stopping criterion involves the computation of the quadratic : one
needs to apply L, L−1, H, R−1

The GMRES algorithm may need more iterations than previsously, making
the GMRES calls potentially more expensive
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Saddle globalized

Remember qst(0)− qst(δx) ≥ max
(
εq min

(
1, ‖gk‖2

)
, θj
)

From the termination criterion one gets
εq‖gk‖2 ≤ −gT

k δxk − 1
2
δxT

k ∇2qst(xk)δxk

From the positive definiteness of ∇2qst, we deduce −gT
k δxk ≥ εq‖gk‖2

The strict convexity of qst and −gT
k δxk ≥ 1

2
δxT

k ∇2qst(xk)δxk ensures
that ‖δxk‖ ≤ 2

νmin
‖gk‖

We therefore get that −gT
k δxk ≥ κ1‖gk‖2 and ‖δxk‖ ≤ κ2‖gk‖, in other

words, δxk is gradient related

A cosine condition and the convergence of the linesearch naturally follows
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Saddle globalized

1 The performance of the preconditioners of type “B” and “T” is again poor

2 It is possible to check convergence periodically, and not at each iteration.
This may increase the number of GMRES iterations, but also save
evaluations of qst . We call SAQ` the corresponding algorithm

3 It would have been possible to check the gradient-relatedness property,
but this would require the knowledge of κ1 and κ2.

4 The non-monotonic behaviour of qst and J is obvious. Stopping cannot
solely rely on maximum number of iterations
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The three formulations and their
preconditioners

Saddle formulation (SA) involves

D 0 L
0 R H
LT HT 0

 preconditioned e.g. by

PM =

D 0 L̃
0 R 0

L̃T 0 0


State formulation (ST) minδx

1
2
‖Lδx− b‖2

D−1 + 1
2
‖Hδx− d‖2

R−1

preconditioned by the approximate Schur comp. L̃TD−1L̃.

Forcing (FO) is minδp
1
2
‖δp− b‖2

D−1 + 1
2
‖HL−1δp− d‖2

R−1

preconditioned by D.

At each iteration of ST, D−1 is used. It is used for convergence check in
SA.

FO requires the sequential L−1 and L−T at each iteration

The main operations that are expected to influence the performance are
anticipated to be operations involving the 3 above inverse operators.
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A comment on the state formulation

Even if L̃ is “close” to L,
(
L̃TD−1L̃

)−1

may not be a good preconditioner

of LTD−1L

Exemple L =

(
1 0

2 + α 1

)
, L̃ =

(
1 0
α 1

)
, D =

(
α 0
0 1

)
,

The condition of L̃−1L̃−TLTL have a finite limit when α goes to +∞.
Those of L̃−1DL̃−TLTD−1L are not bounded

27 / 41
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Numerical experiments

We developped 2 data assimilation systems based on the Burgers equation
and on a Quasi-Geostrophic model. Both are usual test cases in the DA
literature

To assess the parallel performance we consider 2 data layouts

A fully distributed layout. Corresponds to a MPI implementation, that
exhibits the maximal degree of data distribution. Parallelism in
computation is limited to avoid expensive exchanges of vector fields accross
the interconnecting network. Example Li and LTi are not done in parallel.
A hybrid memory framework where the distribution is made along the time
dimension and the 3D fields are gobally accessible. Corresponds to a mixed
MPI-OpenMP strategy

Winning method : for a given ρ, the method that achieves
J(x0)− J(xf ) ≤ ρ (J(x0)− J(x?)) in a minimal elapsed time

28 / 41
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The Burgers equations

We consider the one dimensional dynamical system

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= f (x)

(x , t) ∈]0, 1[×R∗+
u(0, t) = u(1, t) = 0, t > 0
u(x , 0) = k sin(πx) sin(π(1− x));

x ∈]0, 1[

The field u is partially observed in space and time

This system is a fundamental partial differential equation occurring in
various areas of applied mathematics as a prototype for conservation
equations that can develop shock waves
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The quasi-geostrophic model
Potential vorticity qi is given in the 2-layer model by (ψi is the stream
function)

q1 = ∇2ψ1−
f 2
0 L

2

g ′H1
(ψ1−ψ2)+βy , q2 = ∇2ψ2−

f 2
0 L

2

g ′H2
(ψ2−ψ1)+βy+Rs ,

Conservation of potential vorticity gives

Diqi
Dt

= 0, i = 1, 2

where Di/Dt, is the total derivative, defined by

Di

Dt
=

∂

∂t
+ ui

∂

∂x
+ vi

∂

∂y
and ui = −∂ψi

∂y
, vi =

∂ψi

∂x

are the horizontal velocity components in each layer. The model equation
consist in solving for ψi .
The observations are observations of the non-dimensional stream
functions, vector wind and wind speed. This simple system is used in
studies since adequately captures important aspects of large-scale
dynamics in the atmosphere.
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Burgers system fully distributed data layout

1 Forcing FOQ15-D dominates for sequential computations. It looses wrt to
other when parallelism increases

2 Saddle point approaches are clearly better when parallelism increases and
when cD−1 is high

3 State formulations may be affordable when cD−1 is moderate and
requested accuracy is not too high

4 When cD−1 is moderate the algorithms using the state formulation
dominate with a frequency ` diminishing for increasing accuracy, the
unpreconditioned version being suitable for maximum accuracy.

5 The overall speedup for 50 processors provides a decrease of the
elsapsed-time from 250 to 1100 cost units (p = 50). Rather modest
improvement, but useful on restitution-time constrained systems
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Burgers system temporal distribution

1 Further gain in elasped time is obtained with the hybrid model

2 The speed up is now from 250 to 70 cost units (p = 50)

3 The trends obtained with the previous model are amplified

4 The saddle formulation SAQ50-M-I outperfoms the other methods for
when number of processors grows
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QG system fully distributed data layout

1 When p is slow, tight competition between state and forcing

2 State formulations perform best for high and for low accuracy
requirements

3 Saddle formulation better for moderate values of the accuracy

4 Excellent speed ud of the methods, from 2000 to 60 cost units (p = 50)

5 Improving accuracy is costly
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QG system temporal distribution

1 Nearly same conclusions as before

2 Range of efficiency of the saddle formulation for intermediate values is
enlarged
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Preconditioning saddle Point Formulation of
4D-Var

A =

D 0 L
0 R H
LT HT 0

 =

(
A BT

B 0

)

B is the most computationally expensive block and calculations involving
A are relatively cheap.

The inexact constraint preconditioner

P =

(
A B̃T

B̃ 0

)
=

D 0 L̃
0 R 0

L̃T 0 0

 ,

where
L̃ is an approximation to the matrix L
B̃ = [L̃T 0] is a full row rank approximation of the matrix B ∈ Rn×(m+n)

Update B̃ using secant information (so-called ”pairs”) as in Quasi-Newton
methods. Gives raise to a minimum Frobenius norm formula for
rectangular matrices.
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Preconditioning Saddle Point Formulation of
4D-Var

For k = 1, we have the inexact constraint preconditioner :

P =

(
A B̃T

B̃ 0

)

For k > 1, we want to find a low-rank update ∆B = B− B̃ and use the
updated preconditioner :

P =

(
A B̃T

B̃ 0

)
+

(
0 ∆BT

∆B 0

)

→ In the previous iteration, we perform matrix-vector products with A
and we have pairs satisfying(

A BT

B 0

)(
u1

u2

)
=

(
b
c

)
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Preconditioning Saddle Point Formulation of
4D-Var

As a result, an inexact constraint preconditioner P can be updated from

Pj+1 = Pj +

(
0 ∆BT

∆B 0

)
= Pj +

(
0 αwvT

αvwT 0

)
,

where w = rb, v = rc and α = 1/vTu2.

We can rewrite this formula as

Pj+1 = Pj +

(
0 w
v 0

)
︸ ︷︷ ︸

F

(
αwT 0
0 αvT

)
︸ ︷︷ ︸

G

where F is an (2n + m)-by-2 matrix and G is an 2-by-(2n + m) matrix.

→ This update is not unique

Among all updates, the update that we have introduced is not the least
Frobenius norm update
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Minimum F-norm preconditioning saddle point

Starting from

∆BTu1= rb (1)

∆B u2= rc (2)

Any solution ∆B satisfying Equation (1) can be written as [Lemma
2.1](Sun 1999)

∆BT = rbu2
† + S(I − u2u

†
2),

where † denotes the pseudo-inverse and S is an (n + m)× n matrix.
Inserting this relation into (2) yields

u2
T†rb

Tu1 + (I − u2
T†u2

T)STu1 = rc .

If this equation admits one solution, its least Frobenius norm solution,

min
ST∈Rm×n

‖(rc − u2
T†rTb u1)− (I − u2

T†u2
T)STu1‖F ,

can be written as [Lemma 2.3](Sun 1999)

(ST)∗ = (I − u2
T†u2

T)†(rc − u2
T†rTb u1)u1

†.
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Numerical Results with OOPS QG-model
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Figure – Nonlinear cost function values along iterations

→ Last 8 pairs were used to construct the preconditioner
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Conclusions
We considered parallel performance of nonlinear least-squares solvers for
Data Assimilation. Three stategies are considered : state, forcing, saddle.

Original saddle-point formulation is problematic for weakly constrained
4D-Var. This is due to the poor correlation between residual reduction and
function or quadratic model decrease. The problem can be cured by a
suitable globalization strategy focusing on quadratic reduction.

We explored the parallel performance of the globalized algorithms using
two simple data layouts and parallel programming situations : MPI and
OpenMP+MPI, where communication of full fields accross the
interconnecting network is minimized.

Cost of evaluating D−1 and accuracy level of the quadratic minimization
appear as important factors for analysing the respective merits of the 3
methods.

For both Burgers and QG there is no clear winner for all values of the
parameters. Application dependent issue.

To be done :
use approximate D−1 in the linear solver. Many questions : symmetry,
convergence, positive definiteness,
experiments in a real system.
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