How much patience do you have? Issues in complexity for nonlinear optimization (in the weeds of irrelevant asymptotics?)

Philippe Toint (with Coralia Cartis and Nick Gould)

Namur Center for Complex Systems (naXys), University of Namur, Belgium

(philippe.toint@fundp.ac.be)

Toronto, June 2016

《曰》 《聞》 《理》 《理》 三世

The problem

We consider the unconstrained nonlinear programming problem:

```
minimize f(x)
```

```
for x \in \mathbb{R}^n and f : \mathbb{R}^n \to \mathbb{R} smooth.
```

Important special case: the nonlinear least-squares problem

```
minimize f(x) = \frac{1}{2} ||F(x)||^2
```

for $x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

▲□ > ▲圖 > ▲目 > ▲目 > □ 目 - のへで

A useful observation

Note the following: if

• f has gradient g and globally Lipschitz continuous Hessian H with constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

$$f(x+s) = f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \int_0^1 (1-\alpha) \langle s, [H(x+\alpha s) - H(x)]s \rangle d\alpha \leq \underbrace{f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}L ||s||_2^3}_{m(s)}$$

 \implies reducing *m* from s = 0 improves *f* since m(0) = f(x).

- * 伊 * * モ * * モ *

Approximate model minimization

Lipschitz constant L unknown \Rightarrow replace by adaptive parameter σ_k in the model :

$$m(s) \stackrel{\text{def}}{=} f(x) + s^T g(x) + \frac{1}{2} s^T H(x) s + \frac{1}{3} \sigma_k \|s\|_2^3 = T_{f,2}(x,s) + \frac{1}{3} \sigma_k \|s\|_2^3$$

Computation of the step:

• minimize m(s) until an approximate first-order minimizer is obtained:

$$\|
abla_{s} \textit{m}(s)\| \leq \kappa_{ ext{stop}} \|s\|^{2}$$

(s-rule) Note: no global optimization involved.

くほと くほと くほと

Adaptive Regularization with Cubics (ARC2 or AR2)

Algorithm 1.1: The ARC2 Algorithm

- Step 0: Initialization: x_0 and $\sigma_0 > 0$ given. Set k = 0
- Step 1: Termination: If $||g_k|| \le \epsilon$, terminate.

Step 2: Step computation:

Compute s_k such that $m_k(s_k) \le m_k(0)$ and $\|\nabla_s m(s_k)\| \le \kappa_{\text{stop}} \|s_k\|^2$.

Step 3: Step acceptance:
Compute
$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - T_{f,2}(x_k, s_k)}$$

and set $x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > 0 \\ x_k & \text{otherwise} \end{cases}$

Step 4: Update the regularization parameter:

$$\sigma_{k+1} \in \begin{cases} [\sigma_{\min}, \sigma_k] &= \frac{1}{2}\sigma_k \text{ if } \rho_k > 0.9 & \text{very successful} \\ [\sigma_k, \gamma_1 \sigma_k] &= \sigma_k \text{ if } 0.1 \le \rho_k \le 0.9 & \text{successful} \\ [\gamma_1 \sigma_k, \gamma_2 \sigma_k] &= 2\sigma_k \text{ otherwise} & \text{unsuccessful} \end{cases}$$

Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that $||g_k|| \le \epsilon$ (or $f(x_k) \le f_{\text{target}}$)?

If *H* is globally Lipschitz and *f* bounded below, the ARC2 algorithm requires at most $\left\lceil \frac{\kappa_{\rm S}}{\epsilon^{3/2}} \right\rceil \text{ evaluations}$

for some κ_S independent of ϵ .

c.f. Nesterov & Polyak Note: an $O(\epsilon^{-3})$ bound holds for convergence to second-order critical points.

イロト イポト イヨト 一日

Evaluation complexity: proof (1)

$$f(x_k + s_k) \le T_{f,2}(x_k, s_k) + \frac{L_f}{p} \|s_k\|^3$$
$$\|g(x_k + s_k) - \nabla_s T_{f,2}(x_k, s_k)\| \le L_f \|s_k\|^2$$

Lipschitz continuity of
$$H(x) = \nabla_x^2 f(x)$$

$$\forall k \geq 0 \qquad f(x_k) - T_{f,2}(x_k, s_k) \geq \frac{1}{6}\sigma_{\min} \|s_k\|^3$$

$$f(x_k) = m_k(0) \ge m_k(s_k) = T_{f,2}(x_k, s_k) + \frac{1}{6}\sigma_k \|s_k\|^3$$

르

・ロト ・聞 ト ・ヨト ・ヨトー

Regularization for unconstrained problems

Evaluation complexity: proof (2)

$$\exists \sigma_{\mathsf{max}} \quad orall k \geq 0 \qquad \sigma_k \leq \sigma_{\mathsf{max}}$$

Assume that
$$\sigma_k \geq \frac{L_f(p+1)}{p(1-\eta_2)}$$
. Then

$$|\rho_k - 1| \le \frac{|f(x_k + s_k) - T_{f,2}(x_k, s_k)|}{|T_{f,2}(x_k, 0) - T_{f,2}(x_k, s_k)|} \le \frac{L_f(p+1)}{p \sigma_k} \le 1 - \eta_2$$

and thus $\rho_k \geq \eta_2$ and $\sigma_{k+1} \leq \sigma_k$.

큰

▲口> ▲御> ▲注> ▲注> -

Regularization for unconstrained problems

Evaluation complexity: proof (3)

$$orall k$$
 successful $\|s_k\| \ge \left(rac{\|g(x_{k+1})\|}{L_f + \kappa_{ ext{stop}} + \sigma_{ ext{max}}}
ight)^{rac{1}{2}}$

$$\begin{aligned} \|g(x_{k} + s_{k})\| &\leq \|g(x_{k} + s_{k}) - \nabla_{s} T_{f,2}(x_{k}, s_{k})\| \\ &+ \left\| \nabla_{s} T_{f,2}(x_{k}, s_{k}) + \sigma_{k} \|s_{k}\|s_{k}\right\| + \sigma_{k} \|s_{k}\|^{2} \\ &\leq L_{f} \|s_{k}\|^{2} + \|\nabla_{s} m(s_{k})\| + \sigma_{k} \|s_{k}\|^{2} \\ &\leq [L_{f} + \kappa_{\text{stop}} + \sigma_{k}] \|s_{k}\|^{2} \end{aligned}$$

큰

・ロト ・聞 ト ・ヨト ・ヨトー

Evaluation complexity: proof (4)

$$\|g(x_{k+1})\| \le \epsilon$$
 after at most $\frac{f(x_0) - f_{low}}{\kappa} \epsilon^{-3/2}$ successful iterations

Let $S_k = \{j \le k \ge 0 \mid \text{iteration } j \text{ is successful}\}.$

$$\begin{aligned} f(x_{0}) - f_{\text{low}} &\geq f(x_{0}) - f(x_{k+1}) \geq \sum_{i \in \mathcal{S}_{k}} \left[f(x_{i}) - f(x_{i} + s_{i}) \right] \\ &\geq \frac{1}{10} \sum_{i \in \mathcal{S}_{k}} \left[f(x_{i}) - T_{f,2}(x_{i}, s_{i}) \right] \geq |\mathcal{S}_{k}| \frac{\sigma_{\min}}{60} \min_{i} ||s_{i}||^{3} \\ &\geq |\mathcal{S}_{k}| \frac{\sigma_{\min}}{60 \left(L_{f} + \kappa_{\text{stop}} + \sigma_{\max} \right)^{3/2}} \min_{i} ||g(x_{i+1})||^{3/2} \\ &\geq |\mathcal{S}_{k}| \frac{\sigma_{\min}}{60 \left(L_{f} + \kappa_{\text{stop}} + \sigma_{\max} \right)^{3/2}} \epsilon^{3/2} \end{aligned}$$

Evaluation complexity: proof (5)

$$k \leq \kappa_u |\mathcal{S}_k|, ext{ where } \kappa_u \stackrel{ ext{def}}{=} \left(1 + rac{|\log \gamma_1|}{\log \gamma_2}
ight) + rac{1}{\log \gamma_2} \log\left(rac{\sigma_{\max}}{\sigma_0}
ight),$$

 $\sigma_k \in [\sigma_{\min}, \sigma_{\max}] + \text{mechanism of the } \sigma_k \text{ update.}$

$$\|g(x_{k+1})\| \leq \epsilon$$
 after at most $\frac{f(x_0) - f_{\text{low}}}{\kappa} \epsilon^{-3/2}$ successful iterations

One evaluation per iteration (successful or unsuccessuful).

Evaluation complexity: sharpness

Is the bound in $O(\epsilon^{-3/2})$ sharp? YES!!!

Construct a unidimensional example with

$$x_0 = 0, \quad x_{k+1} = x_k + \left(\frac{1}{k+1}\right)^{\frac{1}{3}+\eta},$$

$$f_0 = rac{2}{3}\zeta(1+3\eta), \quad f_{k+1} = f_k - rac{2}{3}\left(rac{1}{k+1}
ight)^{1+3\eta},$$

$$g_k = -\left(rac{1}{k+1}
ight)^{rac{2}{3}+2\eta}, \quad H_k = 0 \ ext{and} \ \sigma_k = 1,$$

Use Hermite interpolation on $[x_{\mathcal{K}}, x_{k+1}]$.

Regularization for unconstrained problems

An example of slow ARC2 (1)

The objective function

Unregularized methods

Slow steepest descent (1)

The steepest descent method with requires at most $\left\lceil \frac{\kappa_{\rm C}}{\epsilon^2} \right\rceil \text{ evaluations}$ for obtaining $\|g_k\| \le \epsilon$.

Nesterov Sharp??? YES

Newton's method (when convergent) requires at most $O(\epsilon^{-2})$ evaluations for obtaining $\|g_k\| \le \epsilon$!!!!

Slow Newton (1)

Choose $au \in (0,1)$

$$g_{k} = -\left(\begin{array}{c} \left(\frac{1}{k+1}\right)^{\frac{1}{2}+\eta} \\ \left(\frac{1}{k+1}\right)^{2} \end{array}\right) \qquad H_{k} = \left(\begin{array}{c} 1 & 0 \\ 0 & \left(\frac{1}{k+1}\right)^{2} \end{array}\right),$$

for $k \ge 0$ and

$$f_0 = \zeta(1+2\eta) + \frac{\pi^2}{6}, \quad f_k = f_{k-1} - \frac{1}{2} \left[\left(\frac{1}{k+1} \right)^{1+2\eta} + \left(\frac{1}{k+1} \right)^2 \right] \text{ for } k \ge 1,$$
$$\eta = \eta(\tau) \stackrel{\text{def}}{=} \frac{\tau}{4-2\tau} = \frac{1}{2-\tau} - \frac{1}{2}.$$

御天 米島天 米島天 二島

Slow Newton (2)

$$H_k s_k = -g_k,$$

and thus

$$s_{k} = \begin{pmatrix} \left(\frac{1}{k+1}\right)^{\frac{1}{2}+\eta} \\ 1 \end{pmatrix},$$
$$x_{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad x_{k} = \begin{pmatrix} \sum_{j=0}^{k-1} \left(\frac{1}{j+1}\right)^{\frac{1}{2}+\eta} \\ k \end{pmatrix}$$

.

• • = • • = •

Slow Newton (4)

Some steps on a sandy dune...

More general second-order methods

Assume that, for $eta\in(0,1]$, the step is computed by

$$(H_k + \lambda_k I)s_k = -g_k$$
 and $0 \le \lambda_k \le \kappa_s \|s_k\|^{eta}$

(ex: Newton, ARC2, Levenberg-Morrison-Marquardt, (trust-region), ...)

The corresponding method terminates in at most

$$\left| rac{\kappa_{
m C}}{\epsilon^{(eta+2)/(eta+1)}}
ight|$$
 evaluations

to obtain $||g_k|| \le \epsilon$ on functions with bounded and (segment-wise) β -Hölder continuous Hessians.

Note: ranges form ϵ^{-2} to $\epsilon^{-3/2}$

ARC2 is optimal within this class

Philippe Toint (naXys)

High-order models (1)

Consider the model

$$m_k(s) = T_{f,p}(x_k, s) + \frac{\sigma_k}{p!} ||s||_2^{p+1}$$

where

$$T_{f,p}(x,s) = f(x) + \sum_{j=1}^{p} \frac{1}{j!} \nabla_x^j f(x)[s]^j$$

terminating the step computation when

$$\|\nabla_s m(s_k)\| \leq \kappa_{\text{stop}} \|s_k\|^p \dots$$

now the ARp method!

ϵ -approx 1rst-order critical point after at most $\frac{f(x_0) - f_{low}}{\kappa} \epsilon^{-\frac{p+1}{p}}$ successful iterations

副下 《日下 《日下 三日

The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

$$egin{array}{cc} {
m minimize} & f(x) \ x \in \mathcal{F} \end{array}$$

for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth, and where

 \mathcal{F} is convex.

Ideas:

- exploit (cheap) projections on convex sets
- use appropriate termination criterion

$$\chi_f(x_k) \stackrel{\text{def}}{=} \left| \min_{x+d\in\mathcal{F}, \|d\|\leq 1} \langle \nabla_x f(x_k), d \rangle \right| = \left| \min_{x+d\in\mathcal{F}, \|d\|\leq 1} T_{f,1}(x,d) \right|,$$

Regularization techniques for constrained problems

Constrained step computation

subject to
$$T_{f,2}(x,s) + rac{1}{3}\sigma\|s\|^3$$

• minimization of the cubic model until an approximate first-order critical point is met, as defined by

$$\chi_{m}(s) \leq \kappa_{\text{stop}} \|s\|^{2}$$

c.f. the rule for unconstrained

Note: OK at local constrained model minimizers

A constrained regularized algorithm

Algorithm 4.1: ARC for Convex Constraints (ARC2CC)

Step 0: Initialization. $x_0 \in \mathcal{F}$, σ_0 given. Compute $f(x_0)$, set k = 0.

- Step 1: Termination. If $\chi_f(s_k) \leq \epsilon$, terminate.
- Step 2: Step calculation. Compute s_k and $x_k^+ \stackrel{\text{def}}{=} x_k + s_k \in \mathcal{F}$ such that $\chi_m(s_k) \leq \kappa_{\text{stop}} \|s_k\|^2$.
- Step 3: Acceptance of the trial point. Compute $f(x_k^+)$ and ρ_k . If $\rho_k \ge \eta_1$, then $x_{k+1} = x_k + s_k$; otherwise $x_{k+1} = x_k$.

Step 4: Regularisation parameter update. Set

$$\sigma_{k+1} \in \begin{cases} [\sigma_{\min}, \sigma_k] & \text{if } \rho_k \ge \eta_2, \\ [\sigma_k, \gamma_1 \sigma_k] & \text{if } \rho_k \in [\eta_1, \eta_2), \\ [\gamma_1 \sigma_k, \gamma_2 \sigma_k] & \text{if } \rho_k < \eta_1. \end{cases}$$

Walking through the pass...

A "beyond the pass" constrained problem with

$$m(x,y) = -x - \frac{42}{100}y - \frac{3}{10}x^2 - \frac{1}{10}y^3 + \frac{1}{3}[x^2 + y^2]^{\frac{3}{2}}$$

Regularization techniques for constrained problems

Evaluation Complexity for ARC2CC

Caveat: cost of solving the subproblem!

Higher-order models
$$\left[\frac{\kappa_{\rm C}}{\epsilon^{(p+1)/(p)}}\right]$$
 evaluations

Identical to the unconstrained case!!!

The general constrained case

Consider now the general NLO (slack variables formulation):

 $\begin{array}{ll} {\rm minimize\,}_x & f(x)\\ {\rm such \ that} & c(x)=0 \quad {\rm and} \quad x\in \mathcal{F} \end{array}$

Ideas for a second-order algorithm:

- get ||c(x)|| ≤ ε (if possible) by minimizing ||c(x)||² such that x ∈ F (getting ||J(x)^Tc(x)|| small unsuitable!)
- 2 track the "trajectory"

$$\mathcal{T}(t) \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R}^n \mid c(x) = 0 \quad ext{and} \quad f(x) = t\}$$

for values of t decreasing from f(first feasible iterate) while preserving $x \in \mathcal{F}$

Regularization techniques for constrained problems

First-order complexity for general NLO (1)

Sketch of a two-phases algorithm:

feasibility: apply ARC2CC to

$$\min_x
u(x) \stackrel{\mathrm{def}}{=} \| c(x) \|^2 \;\; ext{ such that } \;\; x \in \mathcal{F}$$

at most $O(\epsilon_P^{-1/2} \epsilon_D^{-3/2})$ evaluations

tracking:

successively

• apply ARC2CC (with specific termination test) to

 $\min_x \mu(x) \stackrel{ ext{def}}{=} \|c(x)\|^2 + (f(x)-t)^2 ext{ such that } x \in \mathcal{F}$

• decrease t (proportionally to the decrease in $\phi(x)$)

at most $O(\epsilon_P^{-1/2} \epsilon_D^{-3/2})$ evaluations

First-order complexity for general NLO (2)

Under the "conditions stated above", the ARC2CC algorithm takes at most

$$''O''(\epsilon_P^{-1/2}\epsilon_D^{-3/2})$$
 evaluations

to find an iterate x_k with either

$$\|c(x_k)\| \leq \delta \epsilon_P$$
 and $\chi_{\mathcal{L}} \leq \|(y,1)\|\epsilon_D$

for some Lagrange multiplier y and where

$$\mathcal{L}(x,y) = f(x) + \langle y, c(x) \rangle,$$

or

$$\|c(x_k)\| > \delta \epsilon$$
 and $\chi_{\|c\|} \le \epsilon$.

Conclusions

Conclusions

• Complexity analysis for first-order points using second-order methods

 $O(\epsilon^{-3/2})$ (unconstrained, convex constraints) $O(\epsilon_p^{-1/2}\epsilon_d^{-3/2})$ (equality and general constraints)

• Available also for *p*-th order methods :

 $O(\epsilon^{-(p+1)/p})$ (unconstrained, convex constraints) $\left[O(\epsilon_p^{-1/p}\epsilon_d^{-(p+1)/p})$ (equality and general constraints)

- Jarre's example \Rightarrow global optimization much harder
- ARC2 is optimal amongst second-order method
- More also known (DFO, non-smooth, etc)

Many thanks for your attention...

Conclusions

Conclusions (2)

... and to Andy for a long collaboration!

