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Convexly-constrained problems

The problem

We consider the convexly-constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for F convex, non-empty, and f : IRn → IR smooth.

Important special case: the (constrained) nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Convexly-constrained problems High-order optimality

High-order optimality?

Observation: Standard nonlinear optimization techniques stuck for more
nonlinear problems

⇒ quadratic models too simple to capture strong nonlinear behaviour

⇒ use of higher-order polynomials (Taylor) models?

⇒ given high-order models, what about high-order optimality???

What do we mean?

Is it acheivable? At what cost?
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: feasible arcs

Take into account:

geometry of the feasible set

potential decrease of the objective function

1) Geometry of the feasible set

Locally feasible arcs at x :

x(α) = x + αs1 + α2s2 + · · ·+ αqsq + o(αq)
def
= x + s(α)

must be feasible for small enough α > 0
(contraint qualification)
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: objective decrease (1)

2) Decrease of the objective function (along feasible arcs)

• Some cases hopeless when using derivatives/Taylor series (Hancock)

min
x∈IR2

f (x) =

{
x2

(
x2 − e−1/x2

1

)
if x1 6= 0,

x2
2 if x1 = 0,
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: objective decrease (2)

• Conditions along lines/subspaces not adequate!
Peano’s example:

min
x∈IR2

f (x) = x2
2 − 3x2

1x2 + 2x4
1 ,
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Local saddle point is minimum along every straight line!
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Convexly-constrained problems High-order optimality

Necessary optimality conditions (1)

Define the q-th order taylor series

Tf ,q(x , s) =

q∑
j=0

1

j!
∇j

c f (x)[s]j

A technical theorem stating necessary conditions (in words)

Suppose x is a local minimum of the convexly-constrained prob-
lem. Then, for every q > 0,

Tf ,q(x , s(α)) ≥ 0

for all locally feasible s(α) such that

Tf ,j(x , s(α)) = 0 j ∈ {1, . . . , q − 1}.

Define x to be q-th order critical
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Convexly-constrained problems High-order optimality

Necessary optimality conditions (2)

Note: Tf ,j(x , s(α)) is a polynomial in α with

coefficients depending on s1, . . . , sq

(geometry of the feasible set)

k-th coeff for Tf ,j(x , s(α)):

ck,j(x) =
1

k!

 ∑
(`1,...,`k )∈P(j ,k)

∇k
x f (x∗)[s`1 , . . . , s`k ]


(P(j , k) is a suitable set of multi-indices of size growing with j)

Verification essentially hopeless because of

dependence of ck,j(x) on s`1 , . . . , s`k
growing number of coefficients

involves more than ∇q
x f for q ≥ 4!
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: an alternative

Consider using the Taylor’s models themselves!

φ∆
f ,j(x)

def
= f (x)− globmin

x+d∈F
‖d‖≤∆

Tf ,j(x , d),

Serious drawback: global minimization in small neighbourhood of x
But in the unconstrained case, for any ∆ > 0,

φ∆
f ,1(x) = ‖∇1

x f (x)‖

and, if φ∆
f ,1(x) = 0,

φ∆
f ,2(x) =

∣∣min
[
0, λmin(∇2

x f (x))
]∣∣
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Convexly-constrained problems High-order optimality

Ensuring (approximate) necessary conditions

Suppose that

lim
∆→0

φ∆
f ,j(x)

∆j
= 0 for j ∈ {1, . . . , q}

then x is a q-th order critical point

Approximated by

x is a q-th order ε-approximate critical point iff, for ε > 0 and
∆ > 0 small,

φ∆
f ,j(x) ≤ ε∆j for j ∈ {1, . . . , q}.
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Convexly-constrained problems High-order optimality

Minimizing property of q-th order ε-approximate critical
points

Suppose that x is a q-th order ε-approximate critical point and
that ∇q

x f is Lipschitz continous (in tensor norm) with constant
Lf ,q. Then

f (x + d) ≥ f (x)− 2ε∆q

for all x + d ∈ F such that

‖d‖ ≤ min

(
p! ε∆q

Lf ,p

) 1
q+1

.

(f cannot decrease much in a neighbourhood whose size increase with the
order q ⇒ stronger than simple effect of Lipschitz continuity)
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Convexly-constrained problems Evaluation complexity

An algorithmic approach to complexity

Makes sense to search for x such that

φ∆
f ,j(x) ≤ ε∆j for j ∈ {1, . . . , q}.

Once φ∆
f ,j(x) is computed, exploit dφ the argument of the global min!

Imbed in a standard trust-region algorithm
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Convexly-constrained problems Evaluation complexity

A simple trust-region algorithm

A trust-region algorithm.

Step 0: Initialization. Given: q > 1, ε ∈ (0, 1], x0, ∆1 ∈ [ε, 1] as well as ∆max ∈ [∆1, 1],
γ1 ≤ γ2 < 1 ≤ γ3 and 0 < η1 ≤ η2 < 1. Compute x1 = PF [x0], evaluate
f (x1) and set k = 1.

Step 1: Step computation. For j = 1, . . . , q, (i) evaluate ∇j f (xk) and φ∆k
f ,j (xk) (ii) if

φ
∆k
f ,j (xk) > ε∆j

k , go to Step 3 with sk = dφ,

Step 2: Termination. Terminate with xε = xk and ∆ε = ∆k .

Step 3: Accept the new iterate. Compute f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

Tf ,j(xk , 0)− Tf ,j(xk , sk)
.

If ρk ≥ η1, set xk+1 = xk + sk . Otherwise set xk+1 = xk .

Step 4: Update the trust-region radius. Set

∆k+1 ∈


[γ1∆k , γ2∆k ] if ρk < η1,
[γ2∆k ,∆k ] if ρk ∈ [η1, η2),
[∆k ,min(∆max, γ3∆k)] if ρk ≥ η2,

increment k by one and go to Step 1.
Philippe Toint (naXys)
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Convexly-constrained problems Evaluation complexity

Evaluation complexity (1)

No evaluation of f or derivative in the computation of φ∆k
f ,j (xk)!

Evaluation complexity can be evaluated:

Suppose that ∇j
x f is Lipschitz continous (in tensor norm) for

j ∈ {1, . . . , q}. Then the TR algorithm above needs at most

O(ε−(q+1))

evaluations of f and its first q derivative tensors to find a q-th
order ε-approximate critical point

But also

This bound is essentially sharp

(∀δ > 0 ∃f (x) ∀ε TR algo needs O(ε
− q+1

1+(q+1)δ ) evals)

First theoretical result for arbitrary optimality order!
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Convexly-constrained problems Evaluation complexity

Evaluation complexity (2)

In general: a conceptual algorithm!

globmin effort limited by choosing ∆max not too large

Maybe semi-realistic if derivative tensors are small an structured

At all iterations, ∆k ≥ κε. Allows ∆k ↘ 0 when ε↘ 0
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Convexly-constrained problems Evaluation complexity

Complexity of convexly-constrained problems

Where do we stand?

... − − − − ?
q − − − O(ε−(q+1)) ? ?
... − − ? ? ?
2 O(ε−3) ? ? ? ?
1 O(ε−2) O(ε−3/2) · · · · · · O(ε−(p+1)/p) · · ·

↑ q/p → 1 2 · · · · · · p · · ·

Complexity of optimality order q as a function of model degree p

Trust-region algo Regularization algo (BGMST)
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Convexly-constrained problems Evaluation complexity

A special case: fist-order optimality for nonlinear
least-squares

Consider the problem

minimize f (x) = 1
2
‖r(x)‖2

x ∈ F

• Apply an O(ε−π) method for convex constraints
(π = 2 or π = (p + 1)/p)

• New termination test;

‖r(x)‖ ≤ εP OR φ∆
‖r‖,1(x) ≤ εD∆j

(zero residual vs. nonzero residual)

Evaluation complexity = O
(
ε1−π

P ε−πD

)
TR algo ⇒ O(ε−1

P ε−2
D ) Reg algo ⇒ O(ε

−1/p
P ε

−(p+1)/p
D )

Philippe Toint (naXys)
ICNAAO 2016, Beijing, August 2016 18

/ 25



Equality constrained problems

The equality-constrained case

Consider now the EC-NLO (general with slack variables formulation):

minimize x f (x)
such that c(x) = 0 and x ∈ F

Suppose x is a local minimum of the EC-NLO problem. Then,
for every q > 0 and Λ(x , y) = f (x) + yT c(x),

TΛ,q(x , s(α)) ≥ 0

for all locally feasible s(α) such that

TΛ,j(x , s(α)) = 0 j ∈ {1, . . . , q − 1}

and
Tc,j(x , s(α)) = 0 j ∈ {1, . . . , q}

⇒ even more complicated to handle!Philippe Toint (naXys)
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Equality constrained problems

Necessary conditions for EC-NLO

Verification essentially (even more) hopeless because of

dependence of ck,j(x) on s`1 , . . . , s`k
growing number of coefficients

involves more than ∇q
x f for q ≥ 3!

Ideas for a first-order algorithm:

1 get ‖c(x)‖ ≤ ε (if possible) by minimizing ‖c(x)‖2 such that x ∈ F
(getting ‖J(x)T c(x)‖ small unsuitable!)

2 track the “trajectory”

T (t)
def
= {x ∈ IRn | c(x) = 0 and f (x) = t}

for values of t decreasing from f (first feasible iterate) while preserving
x ∈ F
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Equality constrained problems

First-order complexity for EC-NLO

Sketch of a two-phases algorithm:

feasibility: apply a O(ε−π) method for convex constraints (with specific
termination test) to

min
x
ν(x)

def
= ‖c(x)‖2 such that x ∈ F

at most O(max[ε−1
P , ε1−π

P ε−πD ]) evaluations

tracking: successively

apply a O(ε−π) method for convex constraints (with
specific termination test) to

min
x
µ(x , t)

def
= ‖c(x)‖2 + (f (x)− t)2 such that x ∈ F

decrease t (proportionally to the decrease in φ(x))

at most O(max[ε−1
P , ε1−π

P ε−πD ]) evaluations
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Equality constrained problems

First-order complexity for EC-NLO

Under the “conditions stated above”, the above algorithm takes
at most

′′O ′′(ε1−π
P ε−πD ) evaluations

to find an iterate xk with either

‖c(xk)‖ ≤ δεP and φ∆
Λ,1 ≤ ‖(y , 1)‖εD∆

for some Lagrange multiplier y , or

‖c(xk)‖ > δε and φ∆
||c||,1 ≤ ε∆.
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Equality constrained problems

Higher order complexity for EC-NLO? (1)

The above approach for q = 1 hinges on

∇1
xΛ(x , y) =

1

f (x)− t
∇1

xµ(x , t)

Hopeful for q = 2 since

∇2
xΛ(x , y)[d ]2 =

1

f (x)− t
∇2

xµ(x , t)[d ]2

for all
d ∈ span

{
∇1

x f (x)
}⊥ ∩ span

{
∇1

xc(x)
}⊥ def

= M(x)

More difficult but maybe not imposible for q = 3 as

∇3
xΛ(x , y)[d ]3 =

1

f (x)− t
∇3

xµ(x , t)[d ]3

for all

d ∈M(x)∩ [a complicated set depending {∇1
x f }, {∇2

x f }, {∇1
xc},{∇2

xci}]
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Equality constrained problems

Higher order complexity for EC-NLO? (2)

But impossible for q = 4 (and above) because

∇4
xΛ(x , y) = 1

f (x)− t
∇4

xµ(x , t)

−4
[
∇3

x f (x)⊗∇1
x f (x) +

∑m
i=1∇3

xci (x)⊗∇1
xci (x)

]
−3
[
∇2

x f (x)⊗∇2
x f (x) +

∑m
i=1∇2

xci (x)⊗∇2
xci (x)

]
A possibly important consequence:

Every approach based on quadratic (or more general strictly
increasing) penalization is probably doomed for q ≥ 4!

⇒ Need for a completely fresh point of view!
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Conclusions

Conclusions

Complexity analysis for general q-th order critical points

O(ε−(q+1)) (unconstrained, convex constraints)

Complexity analysis for fisrt-order critical points

O(ε1−π
P ε−πD ) (equality and general constraints)

Jarre’s example ⇒ global optimization much harder

Many questions remaining:

high-order optimality with high-degree model?
beyond first-order for EC-NLO?

Many thanks for your attention. . .
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