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Convexly-constrained problems
The problem

We consider the convexly-constrained nonlinear programming problem:

minimize f(x)
x e F

for F convex, non-empty, and f : R" — R smooth.
Important special case: the (constrained) nonlinear least-squares problem
minimize f(x) = 1||F(x)|?

for x e R" and F : R" = R™ smooth.
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Convexly-constrained problems High-order optimality

High-order optimality?

Standard nonlinear optimization techniques stuck for more

nonlinear problems
quadratic models too simple to capture strong nonlinear behaviour

use of higher-order polynomials (Taylor) models?

given high-order models, what about | high-order optimality???

@ What do we mean?

@ Is it acheivable? At what cost?
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: feasible arcs

Take into account:
@ geometry of the feasible set

@ potential decrease of the objective function

ll) Geometry of the feasible set

Locally feasible arcs at x:

def

X(a) =X+ as; +042$2 + .- +0€q5q +0(aq) = XJFS(O‘)

must be feasible for small enough o > 0
(contraint qualification)
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: objective decrease (1)

‘2) Decrease of the objective function‘ (along feasible arcs)

e Some cases hopeless when using derivatives/Taylor series (Hancock)
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: objective decrease (2)

e Conditions along lines/subspaces not adequate!
Peano's example:

min f(x) = x3 — 3x¥x2 + 2x7,
xeR?

Bl 05 o 05 1

Local saddle point is minimum along every straight line!
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Convexly-constrained problems High-order optimality

Necessary optimality conditions (1)

Define the g-th order taylor series

91 . .
ﬁVéf (x)[s¥

j=0

Tf,q(X7 S) =

A technical theorem stating necessary conditions (in words)

Suppose x is a local minimum of the convexly-constrained prob-
lem. Then, for every g > 0,

Trq(x,s(a)) >0
for all locally feasible s(«) such that

Tf’j(X,S(Oé)):O jE{l,...,q—l}.

‘ Define x to be g-th order critical‘
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Convexly-constrained problems High-order optimality

Necessary optimality conditions (2)

Note: T¢j(x,s(c)) is a polynomial in o with

‘coefﬁcients depending on s, . .. ,sql

(geometry of the feasible set)

k-th coeff for T ;(x,s(a)):

1
ckj(x) = 7 Z Vif(x*)[s&, A

(Z]_,...,ék)elp(j,k)

(P(j, k) is a suitable set of multi-indices of size growing with j)

Verification essentially hopeless because of
o dependence of ¢ j(x) on sy, ..., S,
@ growing number of coefficients

@ involves more than VIf for q > 4!
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Convexly-constrained problems High-order optimality

Necessary optimality conditions: an alternative

Consider using the Taylor's models themselves!

(Z),;Ad-(x) & f(x) — globmin T j(x, d),
x+deF
lldll<A

Serious drawback: global minimization in small neighbourhood of x
But in the unconstrained case, for any A > 0,

of1(x) = [Vif(X)|
and, if ¢2(x) =0,

dFa(x) = |min [0, Amin(VZF(x))] |
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Convexly-constrained problems High-order optimality

Ensuring (approximate) necessary conditions

Suppose that

A
: Fj (%) _ .
AITO—AJ' =0 for je€{1,...,q}

then x is a g-th order critical point

Approximated by

x is a g-th order e-approximate critical point iff, for ¢ > 0 and
A > 0 small,

PFi(x) < eA for je{l,....q}.
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Convexly-constrained problems High-order optimality

Minimizing property of g-th order e-approximate critical

points

Suppose that x is a g-th order e-approximate critical point and
that V3f is Lipschitz continous (in tensor norm) with constant
L 4. Then

f(x+d) > f(x) — 2eA?

for all x + d € F such that

pl A9\ 7+
=

f.p

Il < min (

(f cannot decrease much in a neighbourhood whose size increase with the
order g — stronger than simple effect of Lipschitz continuity)
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Convexly-constrained problems Evaluation complexity

An algorithmic approach to complexity

@ Makes sense to search for x such that

fA’j(X) <eN for je{l,...,q}.

@ Once <Z>fA7j(x) is computed, exploit d, the argument of the global min!

@ Imbed in a standard trust-region algorithm
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Convexly-constrained problems Evaluation complexity

A simple trust-region algorithm

A trust-region algorithm.

Step 0: Initialization. Given: g > 1, € € (0,1], xo, A1 € [, 1] as well as Anax € [A1,1],
7 <7 <1<~q3and 0 <m < < 1. Compute x1 = Pr[x], evaluate
f(x1) and set k = 1.

Step 1: Step computation. For j =1,...,q, (i) evaluate V/f(xx) and ¢fAj.(xk) (i) if
gbﬁj(xk) > ¢Al, go to Step 3 with s, = d,
Step 2: Termination. Terminate with x. = xx and A. = Ax.
Step 3: Accept the new iterate. Compute f(xx + sk) and
_ f(xk) — f(xk + sk)
T j(xk,0) — T j(xu, s6)

If Pk > 1, set Xkr1 = Xk + Sk. Otherwise set Xk4+1 = Xk.
Step 4: Update the trust-region radius. Set

2

[k, 72404] if pk <m,
A1 € ¢ [12Ak, Ad] if pk € [m,m2),
[Ak, min(Amax, 13Ak)]  if px > 12,

increment k by one and go to Step 1. -
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Convexly-constrained problems Evaluation complexity

Evaluation complexity (1)

@ No evaluation of f or derivative in the computation of (bfAjk(xk)!
@ Evaluation complexity can be evaluated:

Suppose that VL F s Lipschitz continous (in tensor norm) for
j€{1,...,q}. Then the TR algorithm above needs at most

O(e~(at+1)

evaluations of f and its first g derivative tensors to find a g-th
order e-approximate critical point

@ But also

‘ This bound is essentially sharp ‘

1
(V6 > 0 3f(x) Ve TR algo needs O(e_”g;“)é) evals)

‘ First theoretical result for arbitrary optimality order! ‘
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Convexly-constrained problems Evaluation complexity

Evaluation complexity (2)

In general: a conceptual algorithm!

globmin effort limited by choosing Apax not too large

Maybe semi-realistic if derivative tensors are small an structured
At all iterations, Ay > re. Allows Ay \, 0 when € \, 0
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Convexly-constrained problems Evaluation complexity

Complexity of convexly-constrained problems

| Where do we stand?]

C', _ — —  O(e(atD) ?
: — — ? ? ?
2 O(e3) 7 ? ? ?
1 O(e7?) 0(6—3/2) e . O(e(Pt1)/p)

T q/p _) 1 2 ... ... p

Complexity of optimality order g as a function of model degree p

Trust-region algo Regularization algo (BGMST)
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Convexly-constrained problems Evaluation complexity

A special case: fist-order optimality for nonlinear

least-squares

Consider the problem

minimize f(x) = %||r(x)||2

x e F

e Apply an O(e~ ™) method for convex constraints

(mr=2orm=(p+1)/p)
e New termination test;

[r(x)[[ <e OR ¢fru,1(x) < el

(zero residual vs.  nonzero residual)

Evaluation complexity = O(e%f”eg”)

TR algo = O(e te5?) Reg algo = O(e,:l/pe,;(pﬂ)/p)
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Equality constrained problems
The equality-constrained case

Consider now the EC-NLO (general with slack variables formulation):

minimize ,  f(x)
such that ¢(x)=0 and xe€F

Suppose x is a local minimum of the EC-NLO problem. Then,
for every ¢ > 0 and A(x,y) = f(x) +y ' c(x),

Thq(x,s(a)) >0
for all locally feasible s(«) such that
Taj(x,s(a))=0 je{l,...,q—1}

and
TCJ(X7S(a)) =0 J € {17 .. -,CI}
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Equality constrained problems

Necessary conditions for EC-NLO

Verification essentially (even more) hopeless because of
o dependence of ¢ j(x) on s, ..., 5,
@ growing number of coefficients

@ involves more than Vif for g > 3!

| Ideas | for a |first-order | algorithm:

@ get | c(x)|| < e (if possible) by minimizing ||c(x)||? such that x € F
(getting ||J(x) "c(x)| small unsuitable!)

@ track the “trajectory”

T Y {(xeR | c(x)=0 and f(x)=t}

for values of t decreasing from f(first feasible iterate) while preserving
xeF
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Equality constrained problems

First-order complexity for EC-NLO

Sketch of a two-phases algorithm:

feasibility: apply a O(e~ ™) method for convex constraints (with specific
termination test) to

minv(x) < [|c(x)|? such that x e F

at most O(max[e; 1, e "e;™]) evaluations

tracking: successively
@ apply a O(e™ ™) method for convex constraints (with
specific termination test) to

min p(x, t) dof le(x)||2 4 (f(x) — t)? such that x € F

o decrease t (proportionally to the decrease in ¢(x))

at most O(max[e; 1, e "e;™]) evaluations
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Equality constrained problems

First-order complexity for EC-NLO

Under the “conditions stated above”, the above algorithm takes
at most

"O"(et"™ey™) evaluations
to find an iterate xx with either
leGad)ll < dep and ¢ty < [I(y, 1)lleps
for some Lagrange multiplier y, or

|lc(xk)|| > de and ¢ﬁc‘|71 < eA.
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Equality constrained problems

Higher order complexity for EC-NLO? (1)

The above approach for g = 1 hinges on

ViA(x,y) = Vinu(x, t)

1
f(x)—t

Hopeful for g = 2 since

VEAx NI = e V(. Ol
for all
d € span {V}j(x)}L M span {V)l(c(x)}L & M(x)
More difficult but for g =3 as
VA NI = e Vel Ol
for all

d € M(x) N [a complicated set depending {VLif}, {V2f}, {Vic}.{V3c}]
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Equality constrained problems

Higher order complexity for EC-NLO? (2)

But impossible for ¢ = 4 (and above) because

VIN<Y) = g Vim0 )
—4 [V3f(x) @ VLF(x)+ 3", Via(x)® Vic;(x)]
—3[VEf(x) @ VEf(x) + X1 Viei(x) ® Vie(x)]

A possibly important consequence:

Every approach based on quadratic (or more general strictly
increasing) penalization is probably doomed for g > 4!

‘:> Need for a completely fresh point of view!
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Conclusions
Conclusions

Complexity analysis for general g-th order critical points

(]

O(e~(9*1)) (unconstrained, convex constraints)

o Complexity analysis for fisrt-order critical points

O(el™™e;™) (equality and general constraints)

Jarre's example = global optimization much harder

Many questions remaining:

e high-order optimality with high-degree model?
e beyond first-order for EC-NLO?

Many thanks for your attention. . .
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