High-order optimality in nonlinear optimization: necessary conditions and a conceptual approach of evaluation complexity

Philippe Toint (with Coralia Cartis and Nick Gould)

Namur Center for Complex Systems (naXys), University of Namur, Belgium

(philippe.toint@fundp.ac.be)

Beijing, August 2016

K ロ K K 御 K K W B K W B K W B B

 299

- Leverhulme Trust, UK
- Balliol College, Oxford
- Belgian Fund for Scientific Research (FNRS)
- University of Namur, Belgium
- **ICNAAO 2016**

 \leftarrow

→ イヨ → イヨ

The problem

We consider the convexly-constrained nonlinear programming problem:

minimize $f(x)$ $x \in \mathcal{F}$

for F convex, non-empty, and $f : \mathbb{R}^n \to \mathbb{R}$ smooth.

Important special case: the (constrained) nonlinear least-squares problem

minimize $f(x) = \frac{1}{2} ||F(x)||^2$

for $x \in \mathbb{R}^n$ and $F: \mathbb{R}^n \to \mathbb{R}^m$ smooth.

ICH[A](#page-1-0)[AO](#page-2-0) [20](#page-3-0)[16](#page-1-0)[,](#page-2-0) BEI [2016](#page-24-0), BEI 2016, BEI

High-order optimality?

Observation: Standard nonlinear optimization techniques stuck for more nonlinear problems

 \Rightarrow quadratic models too simple to capture strong nonlinear behaviour

 \Rightarrow use of higher-order polynomials (Taylor) models?

⇒ given high-order models, what about high-order optimality???

What do we mean?

Is it acheivable? At what cost?

Necessary optimality conditions: feasible arcs

Take into account:

- geometry of the feasible set
- **•** potential decrease of the objective function

1) Geometry of the feasible set

Locally feasible arcs at x:

$$
x(\alpha) = x + \alpha s_1 + \alpha^2 s_2 + \dots + \alpha^q s_q + o(\alpha^q) \stackrel{\text{def}}{=} x + s(\alpha)
$$

must be feasible for small enough $\alpha > 0$ (contraint qualification)

Necessary optimality conditions: objective decrease (1)

2) Decrease of the objective function (along feasible arcs)

• Some cases hopeless when using derivatives/Taylor series (Hancock)

$$
\min_{x \in \mathbb{R}^2} f(x) = \begin{cases} x_2 \left(x_2 - e^{-1/x_1^2} \right) & \text{if } x_1 \neq 0, \\ x_2^2 & \text{if } x_1 = 0, \end{cases}
$$

[Convexly-constrained problems](#page-6-0) [High-order optimality](#page-6-0)

Necessary optimality conditions: objective decrease (2)

• Conditions along lines/subspaces not adequate! Peano's example:

Local saddle point is minimum along every straight line!

Necessary optimality conditions (1)

Define the q -th order taylor series

$$
T_{f,q}(x,s) = \sum_{j=0}^{q} \frac{1}{j!} \nabla_c^j f(x) [s]^j
$$

A technical theorem stating necessary conditions (in words)

Suppose x is a local minimum of the convexly-constrained problem. Then, for every $q > 0$,

 $T_{f, \alpha}(x, s(\alpha)) > 0$

for all locally feasible $s(\alpha)$ such that

$$
T_{f,j}(x,s(\alpha))=0 \quad j\in\{1,\ldots,q-1\}.
$$

Define x to be q -th order critical

4 D F

[Convexly-constrained problems](#page-8-0) [High-order optimality](#page-8-0)

Necessary optimality conditions (2)

Note: $T_{f,j}(x,s(\alpha))$ is a polynomial in α with

coefficients depending on s_1, \ldots, s_q

(geometry of the feasible set)

k-th coeff for $T_{f,j}(x,s(\alpha))$:

$$
c_{k,j}(x) = \frac{1}{k!} \left(\sum_{(\ell_1,\ldots,\ell_k) \in \mathcal{P}(j,k)} \nabla_x^k f(x_*) [s_{\ell_1},\ldots,s_{\ell_k}] \right)
$$

 $(\mathcal{P}(i, k)$ is a suitable set of multi-indices of size growing with j)

Verification essentially hopeless because of

- dependence of $c_{k,j}(x)$ on $s_{\ell_1}, \ldots, s_{\ell_k}$
- growing number of coefficients
- involves more than $\nabla_x^q f$ for $q \ge 4!$

Necessary optimality conditions: an alternative

Consider using the Taylor's models themselves!

$$
\phi_{f,j}^{\Delta}(x) \stackrel{\text{def}}{=} f(x) - \text{globmin} \ T_{f,j}(x,d),
$$

$$
\lim_{\|d\| \leq \Delta} T_{f,j}(x,d)
$$

Serious drawback: global minimization in small neighbourhood of x But in the unconstrained case, for any $\Delta > 0$,

$$
\phi_{f,1}^{\Delta}(x) = \|\nabla_x^1 f(x)\|
$$

and, if $\phi_{f,1}^{\Delta}(x)=0$,

$$
\phi_{f,2}^{\Delta}(x) = \left|\min\left[0, \lambda_{\min}(\nabla_x^2 f(x))\right]\right|
$$

Ensuring (approximate) necessary conditions

Suppose that
\n
$$
\lim_{\Delta \to 0} \frac{\phi_{f,j}^{\Delta}(x)}{\Delta^{j}} = 0 \text{ for } j \in \{1, ..., q\}
$$
\nthen x is a q-th order critical point

Approximated by

x is a q-th order ϵ -approximate critical point iff, for $\epsilon > 0$ and $\Delta > 0$ small, $\phi_{f,j}^\Delta(\mathsf{x}) \leq \epsilon \Delta^j \quad \text{for} \quad j \in \{1,\ldots,q\}.$

Minimizing property of q-th order ϵ -approximate critical points

Suppose that x is a q-th order ϵ -approximate critical point and that $\nabla_{\mathsf{x}}^{\boldsymbol{q}}\boldsymbol{f}$ is Lipschitz continous (in tensor norm) with constant $L_{f,g}$. Then $f(x+d) > f(x) - 2\epsilon \Delta^q$ for all $x + d \in \mathcal{F}$ such that $\Vert d \Vert \leq \min \left(\frac{p! \epsilon \Delta^q}{L} \right)$ $\mathcal{L}_{f,p}$ $\bigg\{\frac{1}{q+1}\bigg\}$.

(f cannot decrease much in a neighbourhood whose size increase with the order $q \Rightarrow$ stronger than simple effect of Lipschitz continuity)

An algorithmic approach to complexity

• Makes sense to search for x such that

$$
\phi_{f,j}^{\Delta}(x) \leq \epsilon \Delta^j \quad \text{for} \quad j \in \{1, \ldots, q\}.
$$

- Once $\phi_{f,j}^{\Delta}(x)$ is computed, exploit d_{ϕ} the argument of the global min!
- Imbed in a standard trust-region algorithm

A simple trust-region algorithm

A trust-region algorithm.

Step 0: Initialization. Given: $q > 1$, $\epsilon \in (0,1]$, x_0 , $\Delta_1 \in [\epsilon,1]$ as well as $\Delta_{\max} \in [\Delta_1,1]$, $\gamma_1 < \gamma_2 < 1 < \gamma_3$ and $0 < \eta_1 < \eta_2 < 1$. Compute $x_1 = P_{\mathcal{F}}[x_0]$, evaluate $f(x_1)$ and set $k = 1$.

Step 1: Step computation. For $j=1,\ldots,q$, (i) evaluate $\nabla^jf(\pmb{x}_k)$ and $\phi_{f,j}^{\Delta_k}(\pmb{x}_k)$ (ii) if $\phi^{\Delta_k}_{f,j}(\mathsf{x}_k) > \epsilon \Delta^j_k$, go to Step 3 with $\mathsf{s}_k = \mathsf{d}_\phi$,

Step 2: Termination. Terminate with $x_{\epsilon} = x_k$ and $\Delta_{\epsilon} = \Delta_k$.

Step 3: Accept the new iterate. Compute $f(x_k + s_k)$ and

$$
\rho_k = \frac{f(x_k) - f(x_k + s_k)}{T_{f,j}(x_k, 0) - T_{f,j}(x_k, s_k)}.
$$

If $\rho_k \geq \eta_1$, set $x_{k+1} = x_k + s_k$. Otherwise set $x_{k+1} = x_k$. Step 4: Update the trust-region radius. Set

$$
\Delta_{k+1} \in \left\{ \begin{array}{lll} [\gamma_1 \Delta_k, \gamma_2 \Delta_k] & \text{if } \rho_k < \eta_1, \\ [\gamma_2 \Delta_k, \Delta_k] & \text{if } \rho_k \in [\eta_1, \eta_2), \\ [\Delta_k, \min(\Delta_{\text{max}}, \gamma_3 \Delta_k)] & \text{if } \rho_k \geq \eta_2, \end{array} \right.
$$

increment k by one and go to Step 1.

ICH [2](#page-14-0)[01](#page-11-0)6 - 스토키 [2016](#page-24-0) - 프레이어 2016

Philippe Toint (naXys)

Evaluation complexity (1)

- No evaluation of f or derivative in the computation of $\phi_{f,j}^{\Delta_k}(\mathsf{x}_k)!$
- Evaluation complexity can be evaluated:

Suppose that $\nabla_x^j f$ is Lipschitz continous (in tensor norm) for $j \in \{1, \dots, q\}$. Then the TR algorithm above needs at most

 $O(\epsilon^{-(q+1)})$

evaluations of f and its first q derivative tensors to find a q -th order ϵ -approximate critical point

a But also

This bound is essentially sharp

$$
(\forall \delta > 0 \; \exists f(x) \; \forall \epsilon \; \textsf{TR \; algo needs} \; O(\epsilon^{-\frac{q+1}{1+(q+1)\delta}}) \; \textsf{evals})
$$

First theoretical result for arbitrary optimality order!

Evaluation complexity (2)

- In general: a conceptual algorithm!
- globmin effort limited by choosing Δ_{max} not too large
- Maybe semi-realistic if derivative tensors are small an structured
- At all iterations, $\Delta_k \geq \kappa \epsilon$. Allows $\Delta_k \searrow 0$ when $\epsilon \searrow 0$

Complexity of convexly-constrained problems

Where do we stand?

Complexity of optimality order q as a function of model degree p

Trust-region algo Regularization algo (BGMST)

IN[A](#page-15-0)AD X [2](#page-17-0)[01](#page-11-0)[6,](#page-12-0) [B](#page-17-0)[eij](#page-18-0)[in](#page-1-0)[g,](#page-2-0) [A](#page-17-0)[ug](#page-18-0)[ust](#page-0-0) [2016](#page-24-0), August 2016, August 2016

[Convexly-constrained problems](#page-17-0) [Evaluation complexity](#page-17-0)

A special case: fist-order optimality for nonlinear least-squares

Consider the problem

$$
\begin{array}{ll}\text{minimize} & f(x) = \frac{1}{2} \Vert r(x) \Vert^2\\ & x \in \mathcal{F}\end{array}
$$

- Apply an $O(\epsilon^{-\pi})$ method for convex constraints $(\pi = 2 \text{ or } \pi = (p+1)/p)$
- New termination test:

$$
\|r(x)\| \leq \epsilon_{\mathrm{P}} \quad \text{ OR } \quad \phi^{\Delta}_{\|r\|,1}(x) \leq \epsilon_{\mathrm{D}}\Delta^{j}
$$

(zero residual vs. nonzero residual)

Evaluation complexity $= O(\epsilon_{\rm P}^{1-\pi} \epsilon_{\rm D}^{-\pi})$

$$
\text{TR algo} \Rightarrow O(\epsilon_P^{-1} \epsilon_D^{-2}) \qquad \qquad \text{Reg algo} \Rightarrow Q(\epsilon_{R, \sigma}^{-1/p}, \epsilon_{D_{\sigma}^{-1} \rightarrow \pm}^{- (p+1)/p})
$$

Philippe Toint (naXys)

The equality-constrained case

Consider now the EC-NLO (general with slack variables formulation):

$$
\begin{array}{ll}\text{minimize}_{x} & f(x) \\ \text{such that} & c(x) = 0 \quad \text{and} \quad x \in \mathcal{F} \end{array}
$$

Suppose x is a local minimum of the EC-NLO problem. Then, for every $q > 0$ and $\Lambda(x, y) = f(x) + y^T c(x)$,

 $\mathcal{T}_{\Lambda,\mathfrak{a}}(x,s(\alpha))\geq 0$

for all locally feasible $s(\alpha)$ such that

$$
T_{\Lambda,j}(x,s(\alpha))=0 \quad j\in\{1,\ldots,q-1\}
$$

and

$$
T_{c,j}(x,s(\alpha))=0 \quad j\in\{1,\ldots,q\}
$$

Necessary conditions for EC-NLO

Verification essentially (even more) hopeless because of

- dependence of $c_{k,j}(x)$ on $s_{\ell_1}, \ldots, s_{\ell_k}$
- growing number of coefficients
- involves more than $\nabla_{\mathsf{x}}^{\mathsf{q}} f$ for $\mathsf{q}\geq 3!$

 $|$ Ideas for a first-order algorithm:

 $\textbf{1}$ get $\|c(x)\| \leq \epsilon$ (if possible) by minimizing $\|c(x)\|^2$ such that $x \in \mathcal{F}$ (getting $\|J(x)^T c(x)\|$ small unsuitable!)

2 track the "trajectory"

$$
\mathcal{T}(t) \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n \mid c(x) = 0 \text{ and } f(x) = t\}
$$

for values of t decreasing from f (first feasible iterate) while preserving $x \in \mathcal{F}$ [ICN](#page-20-0)[A](#page-18-0)[AO](#page-19-0) [2](#page-20-0)[01](#page-17-0)[6,](#page-18-0) [B](#page-23-0)[eij](#page-24-0)[in](#page-17-0)[g,](#page-18-0) [A](#page-23-0)[ug](#page-24-0)[ust](#page-0-0) [2016](#page-24-0) 20

Philippe Toint (naXys)

[Equality constrained problems](#page-20-0)

First-order complexity for EC-NLO

Sketch of a two-phases algorithm:

feasibility: \quad apply a $O(\epsilon^{-\pi})$ method for convex constraints (with specific termination test) to

$$
\min_{x} \nu(x) \stackrel{\text{def}}{=} ||c(x)||^2 \quad \text{such that} \quad x \in \mathcal{F}
$$

at most $O(\textsf{max}[\epsilon_\textsf{P}^{-1},\epsilon_\textsf{P}^{1-\pi}\epsilon_\textsf{D}^{-\pi}])$ evaluations

tracking: successively

apply a $O(\epsilon^{-\pi})$ method for convex constraints (with specific termination test) to

 $\min_{x} \mu(x, t) \stackrel{\text{def}}{=} ||c(x)||^2 + (f(x) - t)^2$ such that $x \in \mathcal{F}$

• decrease t (proportionally to the decrease in $\phi(x)$)

at most $O(\textsf{max}[\epsilon_{\textsf{P}}^{-1},\epsilon_{\textsf{P}}^{1-\pi}\epsilon_{\textsf{D}}^{-\pi}])$ evaluations

First-order complexity for EC-NLO

Under the "conditions stated above", the above algorithm takes at most $^{\prime\prime}O^{\prime\prime}(\epsilon_{\rm P}^{1-\pi}\epsilon_{\rm D}^{-\pi})$ evaluations to find an iterate x_k with either $\Vert c(x_k) \Vert \leq \delta \epsilon_P$ and $\phi_{\Lambda,1}^{\Delta} \leq \Vert (y,1) \Vert \epsilon_D \Delta$ for some Lagrange multiplier y, or $||c(x_k)|| > \delta \epsilon$ and $\phi_{||c||,1}^{\Delta} \leq \epsilon \Delta$.

[Equality constrained problems](#page-22-0)

Higher order complexity for EC-NLO? (1)

The above approach for $q = 1$ hinges on

$$
\nabla^1_x \Lambda(x,y) = \frac{1}{f(x) - t} \nabla^1_x \mu(x,t)
$$

Hopeful for $q = 2$ since

$$
\nabla_x^2 \Lambda(x,y)[d]^2 = \frac{1}{f(x)-t} \nabla_x^2 \mu(x,t)[d]^2
$$

for all

$$
d\in\text{span}\left\{\nabla^1_{x}f(x)\right\}^{\perp}\cap\text{span}\left\{\nabla^1_{x}c(x)\right\}^{\perp}\stackrel{\text{def}}{=}\mathcal{M}(x)
$$

More difficult but maybe not imposible for $q = 3$ as

$$
\nabla_x^3 \Lambda(x,y)[d]^3 = \frac{1}{f(x)-t} \nabla_x^3 \mu(x,t)[d]^3
$$

for all

 $d\in \mathcal{M}(x)\cap [$ a complicated set depending $\{\nabla^1_x f\},\ \{\nabla^2_x f\},\ \{\nabla^1_x c\},\{\nabla^2_x c_i\}]$ [ICN](#page-23-0)[A](#page-21-0)[AO](#page-22-0) [2](#page-23-0)[01](#page-17-0)[6,](#page-18-0) [B](#page-23-0)[eij](#page-24-0)[in](#page-17-0)[g,](#page-18-0) [A](#page-23-0)[ug](#page-24-0)[ust](#page-0-0) [2016](#page-24-0) 23

[Equality constrained problems](#page-23-0)

Higher order complexity for EC-NLO? (2)

But impossible for $q = 4$ (and above) because

$$
\nabla_{x}^{4}\Lambda(x,y) = \frac{1}{f(x)-t}\nabla_{x}^{4}\mu(x,t) \n-4\left[\nabla_{x}^{3}f(x)\otimes\nabla_{x}^{1}f(x)+\sum_{i=1}^{m}\nabla_{x}^{3}c_{i}(x)\otimes\nabla_{x}^{1}c_{i}(x)\right] \n-3\left[\nabla_{x}^{2}f(x)\otimes\nabla_{x}^{2}f(x)+\sum_{i=1}^{m}\nabla_{x}^{2}c_{i}(x)\otimes\nabla_{x}^{2}c_{i}(x)\right]
$$

A possibly important consequence:

Every approach based on quadratic (or more general strictly increasing) penalization is probably doomed for $q > 4!$

 \Rightarrow Need for a completely fresh point of view!

[Conclusions](#page-24-0)

Conclusions

 \bullet Complexity analysis for general q -th order critical points

 $O(\epsilon^{-(q+1)})$ (unconstrained, convex constraints)

Complexity analysis for fisrt-order critical points

 $O(\epsilon_{\rm P}^{1-\pi} \epsilon_{\rm D}^{-\pi})$ (equality and general constraints)

- Jarre's example \Rightarrow global optimization much harder
- Many questions remaining:
	- high-order optimality with high-degree model?
	- beyond first-order for EC-NLO?

Many thanks for your attention. . .