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The context

Two common preoccupations in algorithm design/usage:

o For algorithms designers:

How to tune the parameters of an algorithm in order to ensure
the best possible performance on the /argest possible class of
applications?

@ For algorithm/code users:

How to tune the parameters of a code in order to ensure the
best possible performance on a specialized class of applications?

Does achieving the first does help the second?
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Some flexibility is needed !

@ Provide a tuning methodology which is applicable to many algorithms
@ Provide code which allows user-tuning for his/her pet problem class
— optimization?
@ Need to define an objective function
(how to measure algorithm performance in this context?)
@ Need to define the constraints (on algorithmic parameters)

e simple bounds (algorithm dependent)
e continuous/integer/categorical variables 4+ mix
(ex: blocking size, model type, ...)
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Which objective function?

Assume that the (negative) performance perf(params, prob) can be
measured by running the considered algorithm with parameters params on

problem prob.
e First model: optimize the total/average performance (AO, OPAL):

min Z perf(params, prob)

problems

@ Second model: optimize the robust performance (RO):

min max Z perf(perturbed params, prob)

params perturbed params
problems

where

0.95 x params < perturbed params < 1.05 % params
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A new tool: BFO (the Brute Force Optimizer)

BFO: a new local optimization package with

@ randomized pattern search methodology
(does not require continuity of the objective function)

allows bounds on the variables

allows continuous/discrete or mixed integer variables

handles multilevel /equilibrium problems
(needed for the robust tuning strategy)

@ includes self-tuning facilities

Philippe Toint (naXys) Pittsburgh, 2015



BFO self tuning

BFO has been self-tuned

@ on a large set of test problems (CUTEst) with continuous and
mixed-integer variables

@ using both the average and robust tuning strategies
o for all 7 algorithmic parameters
Outcome :

@ robust strategy slightly better
@ gains in performance of

e 30% for continuous problems
o 19% for mixed-integer problems

compared with "intuitively reasonable values”

e very competitive with NOMAD (state-of-the-art pattern search algo)
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... the algorithm designer is (hopefully) happy !
But what about the user (with his/her own specific problems)?

BFO allows training by the user for specific problem classes |

Does this work? Experiment on 2 specific classes of (minimization)
problems
@ nonlinear nonconvex trajectory tracking least-squares

@ nonconvex regularized cubic models

Pittsburgh, 2015
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Trajectory tracking:

AO training, medium-low error deviation, low accuracy
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Trajectory tracking:

AO training, high error deviation, low accuracy
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Trajectory tracking:

AO training, high error deviation, high accuracy
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Trajectory tracking:

RO training, medium-low error deviation, low accuracy
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Trajectory tracking:

RO training, high error deviation, low accuracy
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Trajectory tracking:

RO training, high error deviation, high accuracy

2200 T T T T T T 3200
1
+ 2000} 3000
5
3 _
2 2
= 4
g g
g g
= 8
E
3 2
2 8
2 1800 2800 >
= )
z
[
2 g
g 8
k3 5
é o
1600 2600
1400 L L L L L L 2400
0 0.5 1 15 2 25 3 .

Total number of test problem evaluations x10°

Philippe Toint (naXys) Pittsburgh, 2015 13/

/




Regularized cubics:

AO training, medium-low error deviation, low accuracy
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Regularized cubics:

AO training, high error deviation, low accuracy
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Regularized cubics:

AO training, high error deviation, high accuracy
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Regularized cubics:

RO training, medium-low error deviation, low accuracy
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Regularized cubics:

RO training, high error deviation, low accuracy
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Regularized cubics:

RO training, high error deviation, high accuracy
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Additional BFO features

MATLAB code (single file)

very flexible interface

optional user-defined variable's scaling

incomplete function evaluations (crucial for training)
checkpointing and restart

flexible termination rules (including objective-function target)
BFGS finish (for smooth problems)

direct CUTEst interface
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Examples of calls

@ [ x, fx ] = bfo( @banana, [ -1.2, 1] )
@ [ x, fx ] = bfo( @banana, [ -1.2, 1 ], ’xtype’, ’ic’ )
@ [ x, fx ] = bfo( @banana, [ -1.2, 1 ], ’xlower’, O, ’epsilon’,0.01)
@ [ x, fx ] = bfo( @banana, [ -1.2, 1] ,
’save-freq’,10, ’restart-file’, ’bfo.rst’)
@ [ x, fx ] = bfo( @banana, [ -1.2, 1] ,
’training-mode’, ’train’,
’training-parameters’, ’fruity’,

’training-problems’, {@banana,@apple},...
’training-problems-data’, {@fruit_data} )

@ [ x, fx ] = bfo( @robust_training, [ 0, -1, 0, 1] ,
’xlevel’, [ 11 22],
’max-or-min’, [ ’min’, ’max’] )
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Some conclusions

° ‘*** Use BFO to tune your algorithm! ***‘

(you can even tune BFO to tune your own algorithms)

@ The future: more complicated constraints, ...

° | More user-tunable codes? |

Many thanks for your attention!
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