
Algorithm Tuning Using Optimization

Philippe Toint (with Margherita Porcelli)

Namur Center for Complex Systems (naXys), University of Namur, Belgium

(philippe.toint@fundp.ac.be)

ISMP, Pittsburgh, July 2015

The context

Two common preoccupations in algorithm design/usage:

For algorithms designers:

How to tune the parameters of an algorithm in order to ensure
the best possible performance on the largest possible class of
applications?

For algorithm/code users:

How to tune the parameters of a code in order to ensure the
best possible performance on a specialized class of applications?

Does achieving the first does help the second?

Philippe Toint (naXys) Pittsburgh, 2015 2 / 22

A way out ?

Some flexibility is needed !

Provide a tuning methodology which is applicable to many algorithms

Provide code which allows user-tuning for his/her pet problem class

=⇒ optimization?

Need to define an objective function
(how to measure algorithm performance in this context?)

Need to define the constraints (on algorithmic parameters)

simple bounds (algorithm dependent)
continuous/integer/categorical variables + mix
(ex: blocking size, model type, . . .)

Philippe Toint (naXys) Pittsburgh, 2015 3 / 22

Which objective function?

Assume that the (negative) performance perf(params, prob) can be
measured by running the considered algorithm with parameters params on
problem prob.

First model: optimize the total/average performance (AO, OPAL):

min
params

∑
problems

perf(params, prob)

Second model: optimize the robust performance (RO):

min
params

max
perturbed params

∑
problems

perf(perturbed params, prob)

where

0.95 ∗ params ≤ perturbed params ≤ 1.05 ∗ params

Philippe Toint (naXys) Pittsburgh, 2015 4 / 22

A new tool: BFO (the Brute Force Optimizer)

BFO: a new local optimization package with

randomized pattern search methodology
(does not require continuity of the objective function)

allows bounds on the variables

allows continuous/discrete or mixed integer variables

handles multilevel/equilibrium problems
(needed for the robust tuning strategy)

includes self-tuning facilities

Philippe Toint (naXys) Pittsburgh, 2015 5 / 22

BFO self tuning

BFO has been self-tuned

on a large set of test problems (CUTEst) with continuous and
mixed-integer variables

using both the average and robust tuning strategies

for all 7 algorithmic parameters

Outcome :

robust strategy slightly better

gains in performance of

30% for continuous problems
19% for mixed-integer problems

compared with ”intuitively reasonable values”

very competitive with NOMAD (state-of-the-art pattern search algo)

Philippe Toint (naXys) Pittsburgh, 2015 6 / 22

And then...

... the algorithm designer is (hopefully) happy !
But what about the user (with his/her own specific problems)?

BFO allows training by the user for specific problem classes

Does this work? Experiment on 2 specific classes of (minimization)
problems

nonlinear nonconvex trajectory tracking least-squares

nonconvex regularized cubic models

Philippe Toint (naXys) Pittsburgh, 2015 7 / 22

Trajectory tracking:
AO training, medium-low error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 8 / 22

Trajectory tracking:
AO training, high error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 9 / 22

Trajectory tracking:
AO training, high error deviation, high accuracy

Philippe Toint (naXys) Pittsburgh, 2015 10 / 22

Trajectory tracking:
RO training, medium-low error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 11 / 22

Trajectory tracking:
RO training, high error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 12 / 22

Trajectory tracking:
RO training, high error deviation, high accuracy

Philippe Toint (naXys) Pittsburgh, 2015 13 / 22

Regularized cubics:
AO training, medium-low error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 14 / 22

Regularized cubics:
AO training, high error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 15 / 22

Regularized cubics:
AO training, high error deviation, high accuracy

Philippe Toint (naXys) Pittsburgh, 2015 16 / 22

Regularized cubics:
RO training, medium-low error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 17 / 22

Regularized cubics:
RO training, high error deviation, low accuracy

Philippe Toint (naXys) Pittsburgh, 2015 18 / 22

Regularized cubics:
RO training, high error deviation, high accuracy

Philippe Toint (naXys) Pittsburgh, 2015 19 / 22

Additional BFO features

MATLAB code (single file)

very flexible interface

optional user-defined variable’s scaling

incomplete function evaluations (crucial for training)

checkpointing and restart

flexible termination rules (including objective-function target)

BFGS finish (for smooth problems)

direct CUTEst interface

Philippe Toint (naXys) Pittsburgh, 2015 20 / 22

Examples of calls

[x, fx] = bfo(@banana, [-1.2, 1])

[x, fx] = bfo(@banana, [-1.2, 1], ’xtype’, ’ic’)

[x, fx] = bfo(@banana, [-1.2, 1], ’xlower’, 0, ’epsilon’,0.01)

[x, fx] = bfo(@banana, [-1.2, 1] , ...

’save-freq’,10,’restart-file’,’bfo.rst’)

[x, fx] = bfo(@banana, [-1.2, 1] , ...

’training-mode’, ’train’, ...

’training-parameters’, ’fruity’, ...

’training-problems’, {@banana,@apple},...
’training-problems-data’, {@fruit data})

[x, fx] = bfo(@robust training, [0, -1, 0, 1] , ...

’xlevel’, [1 1 2 2], ...

’max-or-min’, [’min’, ’max’])

Philippe Toint (naXys) Pittsburgh, 2015 21 / 22

Some conclusions

*** Use BFO to tune your algorithm! ***

(you can even tune BFO to tune your own algorithms)

The future: more complicated constraints, . . .

More user-tunable codes?

Many thanks for your attention!

Philippe Toint (naXys) Pittsburgh, 2015 22 / 22

