Multilevel optimization using trust-region and lineasearch approaches

S. $\mathsf{Gratton^1}$ M. $\mathsf{Mouffe^1}$ Ph. $\mathsf{Toint^2}$ D. $\mathsf{Tomanos^2}$ M. $\mathsf{Weber\text{-}Mendonça^2}$

¹ENSEEIHT, Toulouse, France

²Department of Mathematics, University of Namur, Belgium (philippe.toint@fundp.ac.be)

Leverhume Lecture III, November 2015

Multilevel optimization using trust-region and lineasearch approaches

S. $\mathsf{Gratton^1}$ M. $\mathsf{Mouffe^1}$ Ph. $\mathsf{Toint^2}$ D. $\mathsf{Tomanos^2}$ M. $\mathsf{Weber\text{-}Mendonça^2}$

¹ENSEEIHT, Toulouse, France

²Department of Mathematics, University of Namur, Belgium (philippe.toint@fundp.ac.be)

Leverhume Lecture III, November 2015

Thanks

- Leverhulme Trust, UK
- Balliol College, Oxford
- Belgian Fund for Scientific Research (FNRS)
- University of Namur, Belgium

Introduction

2 Recursive trust-region methods

Multigrid limited memory BFGS

Outline

Introduction

2 Recursive trust-region methods

Multigrid limited memory BFGS

Motivation

- optimization of continuous problems occurs in a many applications: shape optimization, data assimilation, control problems, ...
- Recent optimization methods have been designed to cope with these problems, including multilevel/multigrid algorithms.
- These algorithms involve the computation of a hierarchy of problem descriptions, linked by known operators.

Our purpose: review some trust-region and linesearch recent proposals for unconstrained/ bound-constrained optimization:

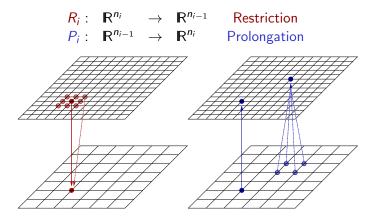
$$\min_{(x\geq 0)} f(x)$$

Hierarchy of problem descriptions

Can we use a structure of the form:

```
Finest problem description
 Restriction \downarrow R
                                       P \uparrow Prolongation
Fine problem description
 Restriction \downarrow R
                                       P \uparrow Prolongation
                              . . .
                                       P \uparrow Prolongation
 Restriction \downarrow R
Coarse problem description
 Restriction \downarrow R
                                       P \uparrow Prolongation
Coarsest problem description
```

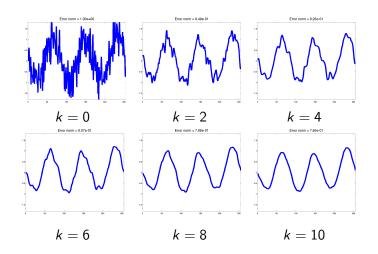
Grid transfer operators



Three keys to multigrid algorithms

- oscillatory components of the error are representable on fine grids, but not on coarse grids
- iterative methods reduce oscillatory components much faster than smooth ones
- smooth on fine grids → oscillatory on coarse ones

Error at step k of CG



Fast convergence of the oscillatory modes

How to exploit these keys

Annihilate oscillatory error level by level:

Note: P and R are not othogonal projectors!

A very efficient method for some linear systems (when $A(smooth modes) \in smooth modes$)

Outline

Introduction

2 Recursive trust-region methods

Multigrid limited memory BFGS

Recursive multilevel trust region

At each iteration at the fine level:

consider a coarser description model with a trust region

```
compute fine g (and H) step and trial point Restriction \downarrow R P \uparrow Prolongation minimize the coarse model within the fine TR
```

- evaluate f at the trial point
- if achieved decrease ≈ predicted decrease:
 - accept the trial point
 - (possibly) enlarge the trust region
- else:
 - keep current point
 - shrink the trust region

RMTR

Until convergence:

- Choose either a Taylor or recursive model
 - Taylor model: compute a Taylor step
 - Recursive: apply the Algo recursively
- Evaluate change in the objective function
- If achieved reduction \approx predicted reduction,
 - accept trial point as new iterate
 - (possibly) enlarge the trust region

else

- reject the trial point
- shrink the trust region
- Impose: current TR ⊆ upper level TR

RMTR - Criticality Measure

• We only use recursion if:

$$\|g_{\mathsf{low}}\| \stackrel{\mathrm{def}}{=} \|Rg_{\mathsf{up}}\| \ge \kappa_{\mathsf{g}} \|g_{\mathsf{up}}\| \quad \mathsf{and} \quad \|g_{\mathsf{low}}\| > \epsilon^{\mathsf{g}}$$

• We have found a solution to the current level i if

$$\|g_i\| < \epsilon_i^g$$

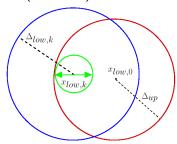
 BUT: we must stop before we reach the border, or the inner trust region becomes too small

$$\|x_{\mathsf{low}}^+ - x_{\mathsf{low}}^0\|_{\mathsf{low}} = \|P(x_{\mathsf{low}}^+ - x_{\mathsf{low}}^0)\|_{\mathsf{up}} > (1 - \epsilon_\Delta)\Delta_{\mathsf{up}}$$

Why Change?

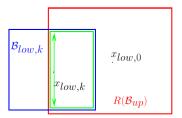
RMTR

- 2-norm TR and criticality measure
- good results, but trust region scaling problem (recursion)



RMTR-∞

- ∞-norm (bound constraints)
- new criticality measure
- new possibilities for step length



∞ -norm in trust regions

- Possibility for asymmetric trust regions (more freedom)
- In lower levels: a bound constrained subproblem
- We will impose that the lower level steps must remain inside the restriction of the upper level trust region: If

$$\mathcal{B}_{\mathsf{up}} = \{ x \mid I_{\mathsf{up}} \le x \le u_{\mathsf{up}} \}$$

then

$$\mathcal{B}_{low} = R\mathcal{B}_{up} = \{x \mid RI_{up} \le x \le Ru_{up}\}$$

• The resulting upper level step $s_{up} = Ps_{low}$ will not necessarily be inside the upper level trust region! But: If $\Delta_{up} = radius(\mathcal{B}_{up})$, then

$$||s_{\mathsf{up}}||_{\infty} \leq ||P||_{\infty} ||R||_{\infty} \Delta_{\mathsf{up}}.$$

New Criticality Measure

- Each lower level subproblem is constrained by the restriction of the upper level trust region; we can consider the lower level subproblem as a bound constrained optimization problem.
- Instead of evaluating g_{low} to check criticality, we will look at

$$\chi(x_{\text{low}}) = |\min_{\substack{d \in R\mathcal{B}_{\text{up}} \\ \|d\| \le 1}} \langle g_{\text{low}}, d \rangle|.$$

• We only use recursion if:

$$\chi_{\text{low}} \geq \kappa_{\chi} \chi_{\text{up}}$$

• We have found a solution to the current level i if

$$\chi < \epsilon_i^{\chi}$$
.

Model Reduction

 Taylor iterations in the 2-norm version satisfy the sufficient decrease condition

$$m_i(x) - m_i(x+s) \ge \kappa_{red}g(x) \min \left[\frac{g(x)}{\beta}, \Delta\right].$$

Taylor iterations in the ∞-norm are constrained; they satisfy

$$h_i(x) - h_i(x+s) \ge \kappa_{red} \chi_i(x) \min \left[1, \frac{\chi_i(x)}{\beta}, \Delta\right].$$

RMTR-∞

Until convergence:

- Choose either a Taylor or recursive model
 - Taylor model: compute a Taylor step (∞ -norm)
 - Recursive: apply the Algo recursively
- Evaluate change in the objective function
- If achieved reduction \approx predicted reduction,
 - accept trial point as new iterate
 - (possibly) enlarge the trust region

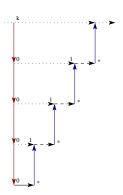
else

- reject the trial point
- shrink the trust region
- Impose: current TR ⊆Restricted upper level TR

Mesh refinement, as different from...

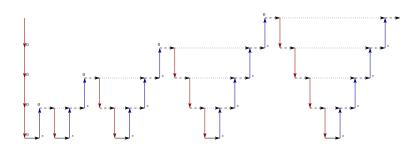
Computing good starting points:

- Solve the problem on the coarsest level
 ⇒ Good starting point for the next fine level
- Do the same on each level
 ⇒ Good starting point for the finest level
- Finally solve the problem on the finest level



...V-cycles and Full Multigrid (FMG)

• FMG : Combination of mesh refinement and V-cycles



A first test case: the minimum surface problem (MS)

Consider the minimum surface problem

$$\min_{v \in K} \int_0^1 \int_0^1 \left(1 + (\partial_x v)^2 + (\partial_y v)^2 \right)^{\frac{1}{2}} dx dy,$$

where $K = \left\{ v \in H^1(S_2) \mid v(x,y) = v_0(x,y) \text{ on } \partial S_2 \right\}$ with

$$v_0(x,y) = \begin{cases} f(x), & y = 0, & 0 \le x \le 1, \\ 0, & x = 0, & 0 \le y \le 1, \\ f(x), & y = 1, & 0 \le x \le 1, \\ 0, & x = 1, & 0 \le y \le 1, \end{cases}$$

where f(x) = x(1 - x).

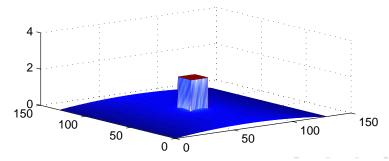
Finite element basis (P1 on triangles) \rightarrow convex problem.

Some typical results on MS ($n = 127^2$, 6 levels)

unconstrained

bound-constrained

	Mesh ref.	RMTR ₂	$RMTR_\infty$	Mesh ref.	$RMTR_\infty$
nit	1057	23	10	2768	214
nf	23	38	15	649	240
ng	16	28	14	640	236
nΗ	17	20	6	32	101



RMTR- ∞ in practice

- Excellent numerical experience !
- Adaptable to bound-constrained problems
- Fully supported by (simpler?) theory
- Fortan code

Outline

Introduction

2 Recursive trust-region methods

Multigrid limited memory BFGS

Linesearch quasi-Newton method

Until convergence:

- Compute a search direction d = -Hg
- Perform a linesearch along d, yieding

$$f(x^+) \le f(x) + \alpha \langle g, d \rangle$$
 and $\langle g^+, d \rangle \ge \beta \langle g, d \rangle$

Update the Hessian approximation to satisfy

$$H^+(g^+ - g) = x^+ - x$$
 (secant equation)

BFGS update:

$$H^{+} = \left(I - \frac{ys^{T}}{y^{T}s}\right) H \left(I - \frac{ys^{T}}{y^{T}s}\right) + \frac{ss^{T}}{y^{T}s}$$

with

$$y = g^+ - g$$
 and $s = x^+ - x$

Generating new secant equations

The fundamental secant equation: $H^+y = s$ Motivation:

$$G^{-1}y = s$$
 where $G = \int_0^1 \nabla_{xx} f(x + ts) dt$

Assume:

- known invariants subspaces $\{S_i\}_{i=1}^p$ of G.
- known orthogonal projectors onto S_i

$$G^{-1}S_iy = S_iG^{-1}y = S_is$$

 \Rightarrow new secant equation: $H^+y_i=s_i$ with $s_i=S_is$ and $y_i=S_iy$

(Limited-memory) multi-secant variant

Until convergence:

- Compute a search direction d = -Hg
- Perform a linesearch along d, yieding

$$f(x^+) \le f(x) + \alpha \langle g, d \rangle$$
 and $\langle g^+, d \rangle \ge \beta \langle g, d \rangle$

Update the Hessian approximation to satisfy

$$H^+y = s$$
 and $H^+y_i = s_i$ $(i = 1, ..., p)$

Natural setting: limited-memory (BFGS) algorithm

 \Rightarrow apply L-BFGS with secant pairs $(s_1, y_1), \ldots, (s_p, y_p), (s, y)$

Multigrid and invariant subspaces

Are they reasonable settings where the S_i are known?

Idea: Grid levels may provide invariant subspace information!

```
Less fine grid: all but the most oscillatory modes

Coarser grid: relatively smooth modes

Coarsest grid: smoothest modes
```

 P^iR^i provides a (cheap) approximate S_i operator!

Multigrid multi-secant LBFGS...questions

How to *order* the secant pairs?

Update for lower grid levels (smooth modes) first or last?

How exact are the secant equations derived from the grid levels?

Measure by a the norm of the perturbation to true Hessian G for the secant equation to hold exactly:

$$\frac{\|E\|}{\|G\|} \le \frac{\|Gs_i - y_i\|}{\|s_i\| \|G\|}$$

Should we control collinearity?

remember nested structure of the S_i subspaces. . . test cosines of angles between s and s_i ?

What information should we remember?

a memory-less BFGS method is possible!

Many possible choices!

A second test case: Dirichlet-to-Neumann transfer (DN)

• It consists [Lewis,Nash,04] in finding the function a(x) defined on $[0,\pi]$, that minimizes

$$\int_0^{\pi} (\partial_y u(x,0) - \phi(x))^2 dx,$$

where $\partial_y u$ is the partial derivative of u with respect to y,

and where u is the solution of the boundary value problem

$$\begin{array}{rcl} \Delta u & = & 0 & \text{in } S, \\ u(x,y) & = & a(x) & \text{on } \Gamma, \\ u(x,y) & = & 0 & \text{on } \partial S \backslash \Gamma. \end{array}$$

A third test case: the multigrid model problem (MG)

• Consider here the two-dimensional model problem for multigrid solvers in the unit square domain S_2

$$-\Delta u(x,y) = f \text{ in } S_2$$

$$u(x,y) = 0 \text{ on } \partial S_2,$$

- f such that the analytical solution is u(x, y) = 2y(1 y) + 2x(1 x).
- 5-point finite-difference discretization
- Consider the variational formulation

$$\min_{x \in R^{n_r}} \frac{1}{2} x^T A_r x - x^T b_r,$$

Data assimilation: the 4D-Var functional

- Consider a dynamical system $\dot{x} = f(t, x)$ with solution operator $x(t) = \mathcal{M}(t, x_0)$.
- Observations b_i at time t_i modeled by $b_i = \mathcal{H}x(t_i) + \epsilon$, where ϵ is a Gaussian noise with covariance matrix R_i .
- The a priori error error covariance matrix on x_0 is B.
- We wish to find x_0 which minimizes

$$\frac{1}{2}\|x_0-x_b\|_{B^{-1}}^2+\frac{1}{2}\sum_{i=0}^N\|\mathcal{HM}(t_i,x_0)-b_i\|_{R_i^{-1}}^2,$$

• The first term in the cost function is the background term, the second term is the observation term.

A fourth test case: the shallow water system (SW)

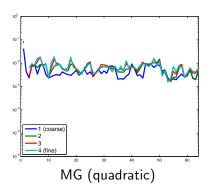
- The shallow system is often considered as a good approximation of the dynamical systems used in ocean modeling.
- It is based on the Shallow Water equations

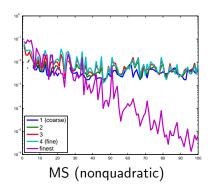
$$\left\{ \begin{array}{l} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} - fv + g \frac{\partial z}{\partial x} = \lambda \Delta u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu + g \frac{\partial z}{\partial y} = \lambda \Delta v \\ \frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} + z \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \lambda \Delta z \end{array} \right.$$

- Observations: every 5 points in the physical domain at every 5 time steps
- The a priori term is modeled using a diffusion operator [Weaver, Courtier, 2001]
- The system is time integrated using a leapfrog scheme.
- ullet The damping in $\lambda\Delta$ improves spatial solution smoothness

Relative accuracy of the multigrid secant equations

Plot ||E||/||G|| against k





 \Rightarrow size of perturbation marginal

Testing a few variants

In our tests:

- old approximate secant pairs are discarded
- the LM updates are started with $\frac{\langle y,s\rangle}{\|y\|^2}$ times the identity
- L-BFGS + 8 algorithmic variants:

	collinearity control (0.999)			
	no		yes	
Update order	mem	nomem	mem	nomem
Coarse first	CNM	CNN	CYM	CYN
Fine first	FNM	FNN	FYM	FYN

Memory management:

- *M: past "exact" secant pairs are used (mem)
- *N: past "exact" secant pairs are not used (nomem)

The results

Algo	DN $(n = 255)$	MG $(n = 127^2)$	SW $(n = 63^2)$	MS $(n = 127^2)$
levels/mem	7/10	6/9	3/5	4/5
L-BFGS	330/319	308/299	64/61	387/378
CNM	94/84	137/122	83/81	224/192
CNN	125/100	174/134	57/55	408/338
CYM	110/92	123/104	83/81	196/170
CYN	113/89	138/107	57/55	338/267
FNM	120/100	172/144	63/57	241/208
FNN	137/89	151/120	65/62	280/221
FYM	90/76	149/128	63/57	211/176
FYN	140/107	153/120	65/62	283/216

(NF/NIT)

Further developments (not covered in this talk)

Observations:

- L-BFGS acts as a smoother
- the step is asymptotically very smooth
- the eigenvalues associated with the smooth subspace are (relatively)
 close to each other
- the step is asymptotically an approximate eigenvector
- an equation of the form

$$Hs_i = \frac{\langle y_i, s_i \rangle}{\|y_i\|^2} s_i$$

can also be included...

⇒ more (efficient) algorithmic variants!

Conclusions

Multilevel/multigrid optimization useful and interesting

Much remains to be explored

Recursive trust-region methods often very effective

Invariant subspace information useful for some problems

Multilevel quasi-Newton information exploitable

Perspectives

- More complicated constraints (probably not)
- Better understanding of approximate secant/eigen information
- Invariant subspaces without grids?
- Multilevel L-BFGS in RMTR?
- Combination with ARp methods?
- More test problems?

Thank you for your attention!