
How much patience do you have?
Issues in complexity for nonlinear optimization

Philippe Toint (with Coralia Cartis and Nick Gould)

Namur Center for Complex Systems (naXys), University of Namur, Belgium

( philippe.toint@fundp.ac.be )

Cambridge, November 2015



Thanks

Leverhulme Trust, UK

Balliol College, Oxford

Belgian Fund for Scientific Research (FNRS)

University of Namur, Belgium

Philippe Toint (naXys)
Cambridge University, Cambridge, November 2015 2

/ 40



Regularization for unconstrained problems

The problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Regularization for unconstrained problems

A useful observation

Note the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1
0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖32︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Regularization for unconstrained problems

Approximate model minimization

Lipschitz constant L unknown ⇒ replace by adaptive parameter σk in the
model :

m(s)
def
= f (x) + sTg(x) + 1

2
sTH(x)s + 1

3
σk‖s‖32 = Tf ,2(x , s) + 1

3
σk‖s‖32

Computation of the step:

1 minimize m(s) until an approximate first-order minimizer is obtained:

‖∇sm(s)‖ ≤ κstop‖s‖2

(s-rule)
Note: no global optimization involved.
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Regularization for unconstrained problems

Adaptive Regularization with Cubics (ARC2 or AR2)

Algorithm 1.1: The ARC2 Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Termination: If ‖gk‖ ≤ ε, terminate.

Step 2: Step computation:
Compute sk such that mk(sk) ≤ mk(0) and ‖∇sm(sk)‖ ≤ κstop‖sk‖2.

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,2(xk , sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 4: Update the regularization parameter:

σk+1 ∈


[σmin, σk ] = 1

2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk ] = 2σk otherwise unsuccessful

Philippe Toint (naXys)
Cambridge University, Cambridge, November 2015 6

/ 40



Regularization for unconstrained problems

Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sTH(x)s + 1

3
L‖s‖32

Nesterov and Polyak minimize m globally and exactly

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case function-evaluation complexity than previously
known

Obvious questions:

can we avoid the global Lipschitz requirement? YES!

can we approximately minimize m and retain good worst-case
function-evaluation complexity? YES !

does this work well in practice? yes
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Regularization for unconstrained problems

Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

If H is globally Lipschitz and the s-rule is applied, the ARC2
algorithm requires at most⌈

κS
ε3/2

⌉
evaluations

for some κS independent of ε.

c.f. Nesterov & Polyak
Note: an O(ε−3) bound holds for convergence to second-order critical
points.
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Regularization for unconstrained problems

Evaluation complexity: proof (1)

f (xk + sk) ≤ Tf ,2(xk , sk) +
Lf
p
‖sk‖3

‖g(xk + sk)−∇sTf ,2(xk , sk)‖ ≤ Lf ‖sk‖2

Lipschitz continuity of H(x) = ∇2
x f (x)

∀k ≥ 0 f (xk)− Tf ,2(xk , sk) ≥ 1
6
σmin‖sk‖3

f (xk) = mk(0) ≥ mk(sk) = Tf ,2(xk , sk) + 1
6
σk‖sk‖3
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Regularization for unconstrained problems

Evaluation complexity: proof (2)

∃σmax ∀k ≥ 0 σk ≤ σmax

Assume that σk ≥
Lf (p + 1)
p (1− η2)

. Then

|ρk − 1| ≤
|f (xk + sk)− Tf ,2(xk , sk)|
|Tf ,2(xk , 0)− Tf ,2(xk , sk)|

≤ Lf (p + 1)

p σk
≤ 1− η2

and thus ρk ≥ η2 and σk+1 ≤ σk .
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Regularization for unconstrained problems

Evaluation complexity: proof (3)

∀k successful ‖sk‖ ≥
(

‖g(xk+1)‖
Lf + κstop + σmax

) 1
2

‖g(xk + sk)‖ ≤ ‖g(xk + sk)−∇sTf ,2(xk , sk)‖

+
∥∥∥∇sTf ,2(xk , sk) + σk‖sk‖sk

∥∥∥+ σk‖sk‖2

≤ Lf ‖sk‖2 + ‖∇sm(sk)‖+ σk‖sk‖2

≤ [Lf + κstop + σk ] ‖sk‖2
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Regularization for unconstrained problems

Evaluation complexity: proof (4)

‖g(xk+1)‖ ≤ ε after at most
f (x0)− flow

κ ε−3/2 successful iterations

Let Sk = {j ≤ k ≥ 0 | iteration j is successful}.

f (x0)− flow ≥ f (x0)− f (xk+1) ≥
∑

j∈Sk

[
f (xi )− f (xi + si )

]
≥ 1

10

∑
j∈Sk

[
f (xi )− Tf ,2(xi , si )

]
≥ |Sk |

σmin

60
min
i
‖si‖3

≥ |Sk | σmin

60
(
Lf + κstop + σmax

)3/2 min
i
‖g(xi+1)‖3/2

≥ |Sk | σmin

60
(
Lf + κstop + σmax

)3/2 ε3/2
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Regularization for unconstrained problems

Evaluation complexity: proof (5)

k ≤ κu|Sk |, where κu
def
=

(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
,

σk ∈ [σmin, σmax] + mechanism of the σk update.

‖g(xk+1)‖ ≤ ε after at most
f (x0)− flow

κ ε−3/2 successful iterations

One evaluation per iteration (successful or unsuccessuful).
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Regularization for unconstrained problems

Evaluation complexity: sharpness

Is the bound in O(ε−3/2) sharp? YES!!!

Construct a unidimensional example with

x0 = 0, xk+1 = xk +

(
1

k + 1

) 1
3
+η

,

f0 =
2

3
ζ(1 + 3η), fk+1 = fk −

2

3

(
1

k + 1

)1+3η

,

gk = −
(

1

k + 1

) 2
3
+2η

, Hk = 0 and σk = 1,

Use Hermite interpolation on [xK , xk+1].
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Regularization for unconstrained problems

An example of slow ARC2 (1)
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The objective function
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Regularization for unconstrained problems

An example of slow ARC2 (2)
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Regularization for unconstrained problems

An example of slow ARC2 (3)
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Regularization for unconstrained problems

An example of slow ARC2 (4)
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Unregularized methods

Slow steepest descent (1)

The steepest descent method with requires at most⌈
κC
ε2

⌉
evaluations

for obtaining ‖gk‖ ≤ ε.

Nesterov
Sharp??? YES

Newton’s method (when convergent) requires at most

O(ε−2) evaluations

for obtaining ‖gk‖ ≤ ε !!!!
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Unregularized methods

Slow Newton (1)

Choose τ ∈ (0, 1)

gk = −


(

1
k + 1

) 1
2
+η(

1
k + 1

)2
 Hk =

(
1 0

0
(

1
k + 1

)2 ) ,
for k ≥ 0 and

f0 = ζ(1+2η)+
π2

6
, fk = fk−1−

1

2

[(
1

k + 1

)1+2η

+

(
1

k + 1

)2
]

for k ≥ 1,

η = η(τ)
def
=

τ

4− 2τ
=

1

2− τ
− 1

2
.
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Unregularized methods

Slow Newton (2)

Hksk = −gk ,

and thus

sk =


(

1
k + 1

) 1
2
+η

1

 ,

x0 =

(
0
0

)
, xk =


k−1∑
j=0

(
1

j + 1

) 1
2
+η

k

 .
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Unregularized methods

Slow Newton (3)

qk(xk+1, yk+1) = fk + 〈gk , sk〉+ 1
2
〈sk ,Hksk〉 = fk+1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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10

The shape of the successive quadratic models
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Unregularized methods

Slow Newton (4)

Define a support function sk(x , y) around (xk , yk)

Philippe Toint (naXys)
Cambridge University, Cambridge, November 2015 23

/ 40



Unregularized methods

Slow Newton (5)

A background function fBCK (y) interpolating fk values. . .
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Unregularized methods

Slow Newton (6)

. . . with bounded third derivative
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Unregularized methods

Slow Newton (7)

fSN1(x , y) =
∞∑
k=0

sk(x , y)qk(x , y) +

[
1−

∞∑
k=0

sk(x , y)

]
fBCK (x , y)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Philippe Toint (naXys)
Cambridge University, Cambridge, November 2015 26

/ 40



Unregularized methods

Slow Newton (8)

Some steps on a sandy dune. . .
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Regularized methods (2)

More general second-order methods

Assume that, for β ∈ (0, 1], the step is computed by

(Hk + λk I )sk = −gk and 0 ≤ λk ≤ κs‖sk‖β

(ex: Newton, ARC2, Levenberg-Morrison-Marquardt, (trust-region), . . . )

The corresponding method terminates in at most⌈
κC

ε(β+2)/(β+1)

⌉
evaluations

to obtain ‖gk‖ ≤ ε on functions with bounded and (segment-
wise) β-Hölder continuous Hessians.

Note: ranges form ε−2 to ε−3/2

ARC2 is optimal within this class
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Regularized methods (2)

High-order models (1)

What happens if one considers the model

mk(s) = Tf ,p(xk , s) +
σk
p!
‖s‖p+1

2

where

Tf ,p(x , s) = f (x) +

p∑
j=1

1

j!
∇j

x f (x)[s]j

terminating the step computation when

‖∇sm(sk)‖ ≤ κstop‖sk‖p

???

now the ARp method!
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Regularized methods (2)

High-order models (2)

ε-approx 1rst-order critical point after at most

f (x0)− flow
κ

ε
− p+1

p

successful iterations

Moreover

ε-approx “q-th order critical point” after at most

f (x0)− flow
κ

ε
− p+1

p+1−q

successful iterations
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Regularization techniques for constrained problems

The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Ideas:

exploit (cheap) projections on convex sets

use appropriate termination criterion

χf (xk)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (xk), d〉
∣∣∣∣ ,
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Regularization techniques for constrained problems

Constrained step computation

min
s

Tf ,2(x , s) + 1
3
σ‖s‖3

subject to
x + s ∈ F

minimization of the cubic model until an approximate first-order
critical point is met, as defined by

χm(s) ≤ κstop‖s‖2

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers
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Regularization techniques for constrained problems

A constrained regularized algorithm

Algorithm 4.1: ARC for Convex Constraints (ARC2CC)

Step 0: Initialization. x0 ∈ F , σ0 given. Compute f (x0), set k = 0.

Step 1: Termination. If χf (sk) ≤ ε, terminate.

Step 2: Step calculation. Compute sk and x+k
def
= xk + sk∈ F such

that χm(sk) ≤ κstop‖sk‖2.

Step 3: Acceptance of the trial point. Compute f (x+k ) and ρk .
If ρk ≥ η1, then xk+1 = xk + sk ; otherwise xk+1 = xk .

Step 4: Regularisation parameter update. Set

σk+1 ∈


[σmin, σk ] if ρk ≥ η2,
[σk , γ1σk ] if ρk ∈ [η1, η2),
[γ1σk , γ2σk ] if ρk < η1.
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Regularization techniques for constrained problems

Walking through the pass...

x
k

feasible

x
k
−α g

k

x
min
+

−7 −6 −5 −4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

A “beyond the pass” constrained problem with

m(x , y) = −x − 42
100
y − 3

10
x2 − 1

10
y3 + 1

3
[x2 + y2]

3
2
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Regularization techniques for constrained problems

Evaluation Complexity for ARC2CC

The ARC2CC algorithm requires at most⌈
κC
ε3/2

⌉
evaluations

(for some κC independent of ε) to achieve χf (xk) ≤ ε

Caveat: cost of solving the subproblem!

Higher-order models/critical points:

⌈
κC

ε(p+1)/(p+1−q)

⌉
evaluations

Identical to the unconstrained case!!!
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Regularization techniques for constrained problems

The general constrained case

Consider now the general NLO (slack variables formulation):

minimize x f (x)
such that c(x) = 0 and x ∈ F

Ideas for a second-order algorithm:

1 get ‖c(x)‖ ≤ ε (if possible) by minimizing ‖c(x)‖2 such that x ∈ F
(getting ‖J(x)T c(x)‖ small unsuitable!)

2 track the “trajectory”

T (t)
def
= {x ∈ IRn | c(x) = 0 and f (x) = t}

for values of t decreasing from f (first feasible iterate) while preserving
x ∈ F
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Regularization techniques for constrained problems

First-order complexity for general NLO (1)

Sketch of a two-phases algorithm:

feasibility: apply ARC2CC to

min
x
ν(x)

def
= ‖c(x)‖2 such that x ∈ F

at most O(ε
−1/2
P ε

−3/2
D ) evaluations

tracking: successively

apply ARC2CC (with specific termination test) to

min
x
µ(x)

def
= ‖c(x)‖2 + (f (x)− t)2 such that x ∈ F

decrease t (proportionally to the decrease in φ(x))

at most O(ε
−1/2
P ε

−3/2
D ) evaluations

Philippe Toint (naXys)
Cambridge University, Cambridge, November 2015 37

/ 40



Regularization techniques for constrained problems

A view of Algorithm ARC2CC

Phase 2

Phase 1

Φ(x
+
,t)

Φ(x,t)

t
+

t

ε3/2

−ε ε
||c||

f
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Regularization techniques for constrained problems

First-order complexity for general NLO (2)

Under the “conditions stated above”, the ARC2CC algorithm
takes at most

O(ε
−1/2
P ε

−3/2
D ) evaluations

to find an iterate xk with either

‖c(xk)‖ ≤ δεP and χL ≤ ‖(y , 1)‖εD

for some Lagrange multiplier y and where

L(x , y) = f (x) + 〈y , c(x)〉,

or
‖c(xk)‖ > δε and χ||c|| ≤ ε.
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Conclusions

Conclusions

Complexity analysis for first-order points using second-order methods

O(ε−3/2) (unconstrained, convex constraints)

O(ε−1/2p ε
−3/2
d ) (equality and general constraints)

Available also for p-th order methods :

O(ε−(p+1)/p) (unconstrained, convex constraints)

O(ε−1/pp ε
−(p+1)/p
d ) (equality and general constraints)

Jarre’s example ⇒ global optimization much harder

ARC2 is optimal amongst second-order method

More also known (DFO, non-smooth, etc)

Many thanks for your attention!
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