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Regularization for unconstrained problems
The problem

We consider the unconstrained nonlinear programming problem:
minimize f(x)
for x € R" and f : R” — R smooth.
Important special case: the nonlinear least-squares problem
minimize f(x) = 1||F(x)|]?

for x € R" and F : R" = R™ smooth.
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Regularization for unconstrained problems

A useful observation

Note the following: if

@ f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

fix+s) = f(x)+ (s,g(x)) + L(s, H(x)s)
+ 31— a)(s, [H(x + as) — H(x)]s) da
< f(x) + (s, 8(x)) + 3(s, H(x)s) + iL]|s]3

m(s)

— reducing m from s = 0 improves f since m(0) = f(x). ‘
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Regularization for unconstrained problems
Approximate model minimization

Lipschitz constant L unknown =- replace by adaptive parameter o in the

model :

def
m(s) = f(x) +sTg(x) + isTH(x)s + Loullsll3 = Tra(x,s) + Joxls|3

Computation of the step:

© minimize m(s) until an approximate first-order minimizer is obtained:

IVsm(s)|l < Faopls|?

(s-rule)

Note: no global optimization involved.
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Regularization for unconstrained problems

Adaptive Regularization with Cubics (ARC2 or AR2)

Algorithm 1.1: The ARC2 Algorithm

Step 0: Initialization: xg and og > 0 given. Set k =0
Step 1: Termination: If ||gk|| < €, terminate.

Step 2: Step computation:

Compute si such that my(sk) < mg(0) and [|[Vsm(sk)l| < KewpllSkl|?-

Step 3: Step acceptance:
f (k) — F(xi + sk)
f(xk) — Tr2(xk, Sk)

Compute py =

X + Sk if Pk >

and set x = )
k1 { Xk otherwise

Step 4: Update the regularization parameter:

[Gmin, 0] if pe > very successful
Ok+1 € [0k, Y10k] if < pk < successful
[viok, Y20«] otherwise unsuccessful
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Regularization for unconstrained problems
Cubic regularization highlights

‘ f(x+s) < m(s) = f(x) + sTg(x) —+ %STH(X)S —+ %LHS”% ‘

o Nesterov and Polyak minimize m globally and

e N.B. m may be non-convex!
o efficient scheme to do so if H has sparse factors

@ global (ultimately rapid) convergence to a 2nd-order critical point of f

@ better worst-case function-evaluation complexity than previously
known

Obvious questions: ‘

@ can we avoid the global Lipschitz requirement? YES!

@ can we approximately minimize m and retain good worst-case
function-evaluation complexity? YES !

@ does this work well in practice? yes
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Regularization for unconstrained problems
Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that

gl < €?

If H is globally Lipschitz and the s-rule is applied, the ARC2
algorithm requires at most

[6'3%-‘ evaluations

for some kg independent of e.

Note: an O(e~3) bound holds for convergence to second-order critical
points.

Philippe Toint (naXys) - - / 40



Regularization for unconstrained problems

Evaluation complexity: proof (1)

L¢
f(xk+sk) < Troalxk,sk) + F”5k||3

g (xk + Sk) — Vs Tr2(xi, s)ll < Lel|sel®

Lipschitz continuity of H(x) = V2f(x)

Vk >0 f(xk) — Tr2(xk,sx) > %Umin“f;k”3

f(x) = me(0) > mic(sk) = Tr (ks sk) + 2okllsill®
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Regularization for unconstrained problems

Evaluation complexity: proof (2)

Li(p+1)
—BET 2L Th
p(l—m) O

[f(xk + k) — Tralxksk)l _ Le(p+1)
< <1l-mn
| T 2(xk,0) — Tr2(xk, sk)| POk

Assume that o) >

lpk — 1] <

and thus px > m2 and oy11 < ok.
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Regularization for unconstrained problems

Evaluation complexity: proof (3)

1
2
Vk successful llskll > ( g (xk+1) )
Lf + Kop + Omax

gk + skl < llgxk + sk) — Vs Tr2(xk, )l

+HV5 T o(xks i) + kaHSkHSkH + orllsill?

IN

Lellsell? + 1Vsm(s)ll + ollsill?

N

[Lf + Katop + Uk] HSkH2
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Regularization for unconstrained problems

Evaluation complexity: proof (4)

f(x0) = fiow —3/2
K

llg(xk+1)]| < € after at most successful iterations

Let Sk = {j < k > 0| iteration j is successful}.

F0) = fiow = F(0) = F(x11) = Syes, |F06) = i+ 51)|
= Z [f(xi) - Tf,z(x,-,s,-)] > ySkyag)'” min IIsill®
JESK
= ISk Zmin 72 min (i)l
60(Lf + K/stop + Umax) I
> Skl Omin e3/2

3/2
60(Lf + Ksop + Umax)
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Regularization for unconstrained problems

Evaluation complexity: proof (5)

lo 1
k < ﬁu’8k|7 where x, déf (1 —+ | g’)/1|> o log (Umax) :
log 72 log 72 0

Ok € [Omins Omax] + mechanism of the o update.

llg(xk+1)]| < € after at most f(XO)T_ﬁOW €3/ successful iterations

One evaluation per iteration (successful or unsuccessuful).
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Regularization for unconstrained problems
Evaluation complexity: sharpness
Is the bound in O(e3/2) sharp?

Construct a unidimensional example with

1\t
p— O p— —
X0 y Xkl Xk+<k+1> }

2 2/ 1 \!'F3
0 3C( +3n), fig1="f 3 <k+1> ,

1 %+277
gk:_<k—|—]_> s Hk:0 and O'k:].,

‘Use Hermite interpolation on [xK,xk+1].‘
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Regularization for unconstrained problems

An example of slow ARC2 (1)

x 10°
2.2223

2.2022

222221

222221

222211

2222

2222 L L L L L L L L
0

The objective function
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Regularization for unconstrained problems

An example of slow ARC2 (2)

The first derivative
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Regularization for unconstrained problems

An example of slow ARC2 (3)

The second derivative
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Regularization for unconstrained problems

An example of slow ARC2 (4)

The third derivative
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Unregularized methods
Slow steepest descent (1)

The steepest descent method with requires at most

{ig-‘ evaluations
€

for obtaining ||gk|| < e.

Sharp??? YES

Newton's method (when convergent) requires at most

O(e~?) evaluations

for obtaining ||gk| < € !!!!
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Unregularized methods

Slow Newton (1)

Choose 7 € (0,1)

for k > 0 and

2 1
fo = C(1+277)+€7 f = fk71—§

1 1+2n 1 2
<k+1) * (k+1)

def T 1 1

n=mn(r) = 4—2r 2-7 2
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Unregularized methods

Slow Newton (2)

and thus
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Unregularized methods

Slow Newton (3)

Ak (Xk+1, Ye+1) = fic + (8K, Sk) + 3(Sk, Hisk) = frt1

10




Unregularized methods

Slow Newton (4)

Define a support function sg(x,y) around (xx, yk)
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Unregularized methods

Slow Newton (5)

A background function fgck(y) interpolating f values. ..

1 4
2.5002 %22

2.5001

25

25

25

2.4999

2.4998 | | | | | | | | |
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Unregularized methods

Slow Newton (

... with bounded third derivative
5 T T T T

o
T

-5 4

-15 4

1 2 3 4 5 6 7 8 9 10
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Unregularized methods

Slow Newton (7)

oo

1- Zsk(x,y)] feck (%, y)

k=0

o
fSNl(X,}/) = Zsk(X7Y)qk(X,}/) =+
k=0

10

L L L L L L L L L L
0 0.5 1 15 2 25 3 35 4 45 5
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Unregularized methods

Slow Newton (8)

Some steps on a sandy dune. ..

25002
250014
2547

25
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Regularized methods (2)
More general second-order methods

Assume that, for 8 € (0, 1], the step is computed by
(Hk + Mcl)sk = —gk and 0 < )\ < /{s||sk||5

(ex: Newton, ARC2, Levenberg-Morrison-Marquardt, (trust-region), ...)

The corresponding method terminates in at most

——C | evaluations
L(mz)/(ml)w vatation

to obtain ||gk|| < € on functions with bounded and (segment-
wise) B-Holder continuous Hessians.

Note: ranges form €2 to ¢ 3/2

| ARC2 is optimal within this class
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Regularized methods (2)

High-order models (1)

What happens if one considers the model

1
mi(s) = Trp(xk, s) + IISII"+

where

Trp(x,s) = f(x +Z (VAF(OlsP

terminating the step computation When

IVsm(si)l| < Faopl sicll”

77

‘ now the ARp method!
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Regularized methods (2)

High-order models (2)

e-approx lrst-order critical point after at most

f(XO) - ﬁow E—P—:l
K

successful iterations

Moreover

e-approx “g-th order critical point” after at most

f(Xo) — Now E—pzriq
K

successful iterations
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Regularization techniques for constrained problems
The constrained case

‘Can we apply regularization to the constrained case?‘

Consider the constrained nonlinear programming problem:

minimize f(x)

x e F
for x ¢ R" and f : R” = R smooth, and where

JF is convex.

@ exploit (cheap) projections on convex sets
@ use appropriate termination criterion

def .
- vxf 7d7
o) |, min, (V7).
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Regularization techniques for constrained problems
Constrained step computation

min  Tra(x.s) + dolls|?

subject to
x+seF

@ minimization of the cubic model until an approximate first-order
critical point is met, as defined by

Xm(S) < Faeplls®

Note: OK at local constrained model minimizers
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Regularization techniques for constrained problems
A constrained regularized algorithm

Algorithm 4.1: ARC for Convex Constraints (ARC2CC)

Step 0: Initialization. xp € F, o¢ given. Compute f(xp), set k = 0.

Step 1: Termination. If < ¢, terminate.
. def
Step 2: Step calculation. Compute s, and x,j = X + sk such
that < Faop|Sk]|2-

Step 3: Acceptance of the trial point. Compute f(x;r) and py.
If px > m1, then xkyr1 = Xk + Sk; otherwise xx11 = Xk.

Step 4: Regularisation parameter update. Set
[omin, 0k] if pk >,
Ok+1 € [O-ka’)/lo-k] if Pk € [7717772)7
[Viok, v20k]  if pr <.
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Regularization techniques for constrained problems

Walking through the pass...

feasible

3k

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

A “beyond the pass” constrained problem with

3
m(x,y) = —x = &y — 5x° = %y’ + 34y
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Regularization techniques for constrained problems
Evaluation Complexity for ARC2CC

The ARC2CC algorithm requires at most

KC .
L3/2—‘ evaluations

(for some k¢ independent of €) to achieve xf(xx) < €

Caveat: cost of solving the subproblem!

KC

m—‘ evaluations

Higher-order models/critical points: [

\ Identical to the unconstrained case!!! \
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Regularization techniques for constrained problems
The general constrained case

Consider now the general NLO (slack variables formulation):

minimize ,  f(x)
such that ¢(x)=0 and xe€F

for a second-order algorithm:

Q get | c(x)|| < e (if possible) by minimizing ||c(x)||? such that x € F
(getting ||J(x) "c(x)| small unsuitable!)
@ track the “trajectory”

T Y {xeR" | c(x)=0 and f(x) =t}

for values of t decreasing from f(first feasible iterate) while preserving
xeF
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Regularization techniques for constrained problems

First-order complexity for general NLO (1)

Sketch of a two-phases algorithm:
feasibility: apply ARC2CC to

min v(x) ey |c(x)||? such that x e F

at most 0(6;1/2653/2) evaluations

tracking: successively
@ apply ARC2CC (with specific termination test) to

min p(x) def lc(x)]|? 4 (f(x) — t)* such that x € F

@ decrease t (proportionally to the decrease in ¢(x))

at most 0(6;1/2653/2) evaluations
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Regularization techniques for constrained problems

A view of Algorithm ARC2CC

Phase 1

Phase 2
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Regularization techniques for constrained problems

First-order complexity for general NLO (2)

Under the “conditions stated above”, the ARC2CC algorithm

takes at most
0(651/2653/2) evaluations

to find an iterate xx with either
le(xi)ll < dep and  xz < |l(y,1)llep
for some Lagrange multiplier y and where
L(x,y) = f(x) + (¥, c(x)),

or
le(x)ll > de and X <.
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Conclusions
Conclusions

@ Complexity analysis for first-order points using second-order methods

O(¢7%?) (unconstrained, convex constraints)

0(6;1/26‘;3/2) (equality and general constraints)

@ Available also for p-th order methods :

O(e~(P*V/P) (unconstrained, convex constraints)

O(e;l/ped_(p+1)/p) (equality and general constraints)

Jarre's example = global optimization much harder
ARC2 is optimal amongst second-order method
More also known (DFO, non-smooth, etc)

Many thanks for your attention!
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