How much patience do you have? Issues in complexity for nonlinear optimization Philippe Toint (with Coralia Cartis and Nick Gould) Namur Center for Complex Systems (naXys), University of Namur, Belgium (philippe.toint@fundp.ac.be) Cambridge, November 2015 #### Thanks - Leverhulme Trust, UK - Balliol College, Oxford - Belgian Fund for Scientific Research (FNRS) - University of Namur, Belgium #### The problem We consider the unconstrained nonlinear programming problem: minimize $$f(x)$$ for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth. Important special case: the nonlinear least-squares problem minimize $$f(x) = \frac{1}{2} ||F(x)||^2$$ for $x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}^m$ smooth. #### A useful observation Note the following: if f has gradient g and globally Lipschitz continuous Hessian H with constant 2L Taylor, Cauchy-Schwarz and Lipschitz imply $$f(x+s) = f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \int_0^1 (1-\alpha) \langle s, [H(x+\alpha s) - H(x)]s \rangle d\alpha$$ $$\leq \underbrace{f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3} L \|s\|_2^3}_{m(s)}$$ \implies reducing m from s = 0 improves f since m(0) = f(x). #### Approximate model minimization Lipschitz constant L unknown \Rightarrow replace by adaptive parameter σ_k in the model : $$m(s) \stackrel{\text{def}}{=} f(x) + s^T g(x) + \frac{1}{2} s^T H(x) s + \frac{1}{3} \sigma_k ||s||_2^3 = T_{f,2}(x,s) + \frac{1}{3} \sigma_k ||s||_2^3$$ Computation of the step: • minimize m(s) until an approximate first-order minimizer is obtained: $$\|\nabla_s m(s)\| \leq \kappa_{\text{stop}} \|s\|^2$$ (s-rule) Note: no global optimization involved. ### Adaptive Regularization with Cubics (ARC2 or AR2) #### Algorithm 1.1: The ARC2 Algorithm Step 0: Initialization: x_0 and $\sigma_0 > 0$ given. Set k = 0 Step 1: Termination: If $||g_k|| \le \epsilon$, terminate. Step 2: Step computation: Compute s_k such that $m_k(s_k) \leq m_k(0)$ and $\|\nabla_s m(s_k)\| \leq \kappa_{\text{stop}} \|s_k\|^2$. Step 3: Step acceptance: Compute $$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - T_{f,2}(x_k, s_k)}$$ and set $$x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > 0.1 \\ x_k & \text{otherwise} \end{cases}$$ Step 4: Update the regularization parameter: $$\sigma_{k+1} \in \begin{cases} \left[\sigma_{\min}, \sigma_k\right] &= \frac{1}{2}\sigma_k \text{ if } \rho_k > 0.9 & \textit{very successful} \\ \left[\sigma_k, \gamma_1 \sigma_k\right] &= \sigma_k \text{ if } 0.1 \leq \rho_k \leq 0.9 & \textit{successful} \\ \left[\gamma_1 \sigma_k, \gamma_2 \sigma_k\right] &= 2\sigma_k \text{ otherwise} & \textit{unsuccessful} \end{cases}$$ # Cubic regularization highlights $$f(x+s) \le m(s) \equiv f(x) + s^T g(x) + \frac{1}{2} s^T H(x) s + \frac{1}{3} L ||s||_2^3$$ - Nesterov and Polyak minimize m globally and exactly - N.B. m may be non-convex! - efficient scheme to do so if H has sparse factors - global (ultimately rapid) convergence to a 2nd-order critical point of f - better worst-case function-evaluation complexity than previously known #### Obvious questions: - can we avoid the global Lipschitz requirement? YES! - can we approximately minimize m and retain good worst-case function-evaluation complexity? YES! - does this work well in practice? yes #### Evaluation complexity: an important result How many function evaluations (iterations) are needed to ensure that $$\|g_k\| \leq \epsilon$$? If H is globally Lipschitz and the s-rule is applied, the ARC2 algorithm requires at most $$\left\lceil \frac{\kappa_{\mathrm{S}}}{\epsilon^{3/2}} \right ceil$$ evaluations for some $\kappa_{\rm S}$ independent of ϵ . #### c.f. Nesterov & Polyak Note: an $O(\epsilon^{-3})$ bound holds for convergence to second-order critical points. ### Evaluation complexity: proof (1) $$f(x_k + s_k) \le T_{f,2}(x_k, s_k) + \frac{L_f}{p} ||s_k||^3$$ $$||g(x_k + s_k) - \nabla_s T_{f,2}(x_k, s_k)|| \le L_f ||s_k||^2$$ Lipschitz continuity of $H(x) = \nabla_x^2 f(x)$ $$\forall k \geq 0$$ $f(x_k) - T_{f,2}(x_k, s_k) \geq \frac{1}{6} \sigma_{\min} ||s_k||^3$ $$f(x_k) = m_k(0) \ge m_k(s_k) = T_{f,2}(x_k, s_k) + \frac{1}{6}\sigma_k ||s_k||^3$$ #### Evaluation complexity: proof (2) $$\exists \sigma_{\mathsf{max}} \quad \forall k \geq 0 \qquad \sigma_k \leq \sigma_{\mathsf{max}}$$ Assume that $\sigma_k \geq \frac{L_f(p+1)}{p(1-\eta_2)}$. Then $$| ho_k - 1| \le \frac{|f(x_k + s_k) - T_{f,2}(x_k, s_k)|}{|T_{f,2}(x_k, 0) - T_{f,2}(x_k, s_k)|} \le \frac{L_f(p+1)}{p \, \sigma_k} \le 1 - \eta_2$$ and thus $\rho_k \geq \eta_2$ and $\sigma_{k+1} \leq \sigma_k$. #### Evaluation complexity: proof (3) $$orall k$$ successful $\|s_k\| \geq \left(\frac{\|g(x_{k+1})\|}{L_f + \kappa_{\mathsf{stop}} + \sigma_{\mathsf{max}}} ight)^{ rac{1}{2}}$ $$||g(x_{k} + s_{k})|| \leq ||g(x_{k} + s_{k}) - \nabla_{s} T_{f,2}(x_{k}, s_{k})|| + ||\nabla_{s} T_{f,2}(x_{k}, s_{k}) + \sigma_{k}||s_{k}||s_{k}|| + \sigma_{k}||s_{k}||^{2} \leq L_{f}||s_{k}||^{2} + ||\nabla_{s} m(s_{k})|| + \sigma_{k}||s_{k}||^{2} \leq [L_{f} + \kappa_{ston} + \sigma_{k}] ||s_{k}||^{2}$$ #### Evaluation complexity: proof (4) $$\|g(x_{k+1})\| \le \epsilon$$ after at most $\frac{f(x_0) - f_{low}}{\kappa} \epsilon^{-3/2}$ successful iterations Let $S_k = \{j \le k \ge 0 \mid \text{iteration } j \text{ is successful} \}.$ $$f(x_{0}) - f_{low} \geq f(x_{0}) - f(x_{k+1}) \geq \sum_{j \in \mathcal{S}_{k}} \left[f(x_{i}) - f(x_{i} + s_{i}) \right]$$ $$\geq \frac{1}{10} \sum_{j \in \mathcal{S}_{k}} \left[f(x_{i}) - T_{f,2}(x_{i}, s_{i}) \right] \geq |\mathcal{S}_{k}| \frac{\sigma_{\min}}{60} \min_{i} ||s_{i}||^{3}$$ $$\geq |\mathcal{S}_{k}| \frac{\sigma_{\min}}{60 \left(L_{f} + \kappa_{\text{stop}} + \sigma_{\max} \right)^{3/2}} \min_{i} ||g(x_{i+1})||^{3/2}$$ $$\geq |\mathcal{S}_{k}| \frac{\sigma_{\min}}{60 \left(L_{f} + \kappa_{\text{stop}} + \sigma_{\max} \right)^{3/2}} \epsilon^{3/2}$$ #### Evaluation complexity: proof (5) $$k \leq \kappa_u |\mathcal{S}_k|, \ \ \text{where} \ \ \kappa_u \stackrel{\text{def}}{=} \left(1 + \frac{|\log \gamma_1|}{\log \gamma_2}\right) + \frac{1}{\log \gamma_2} \log \left(\frac{\sigma_{\max}}{\sigma_0}\right),$$ $\sigma_k \in [\sigma_{\min}, \sigma_{\max}] + \text{mechanism of the } \sigma_k \text{ update.}$ $$\|g(x_{k+1})\| \le \epsilon$$ after at most $\frac{f(x_0) - f_{low}}{\kappa} \epsilon^{-3/2}$ successful iterations One evaluation per iteration (successful or unsuccessuful). #### Evaluation complexity: sharpness Is the bound in $O(\epsilon^{-3/2})$ sharp? YES!!! Construct a unidimensional example with $$x_0 = 0, \quad x_{k+1} = x_k + \left(\frac{1}{k+1}\right)^{\frac{1}{3}+\eta},$$ $$f_0 = \frac{2}{3}\zeta(1+3\eta), \quad f_{k+1} = f_k - \frac{2}{3}\left(\frac{1}{k+1}\right)^{1+3\eta},$$ $$g_k = -\left(\frac{1}{k+1}\right)^{\frac{2}{3}+2\eta}, \quad H_k = 0 \text{ and } \sigma_k = 1,$$ Use Hermite interpolation on $[x_K, x_{k+1}]$. # An example of slow ARC2 (1) The objective function # An example of slow ARC2 (2) The first derivative # An example of slow ARC2 (3) The second derivative # An example of slow ARC2 (4) The third derivative # Slow steepest descent (1) The steepest descent method with requires at most $$\left\lceil \frac{\kappa_{\mathrm{C}}}{\epsilon^2} \right\rceil$$ evaluations for obtaining $||g_k|| \le \epsilon$. #### Nesterov Sharp??? YES Newton's method (when convergent) requires at most $$O(\epsilon^{-2})$$ evaluations for obtaining $||g_k|| \le \epsilon$!!!!! ### Slow Newton (1) Choose $\tau \in (0,1)$ $$g_k = -\left(\begin{array}{c} \left(\frac{1}{k+1}\right)^{\frac{1}{2}+\eta} \\ \left(\frac{1}{k+1}\right)^2 \end{array}\right) \qquad H_k = \left(\begin{array}{cc} 1 & 0 \\ 0 & \left(\frac{1}{k+1}\right)^2 \end{array}\right),$$ for k > 0 and $$f_0 = \zeta(1+2\eta) + \frac{\pi^2}{6}, \quad f_k = f_{k-1} - \frac{1}{2} \left[\left(\frac{1}{k+1} \right)^{1+2\eta} + \left(\frac{1}{k+1} \right)^2 \right] \text{ for } k \ge 1,$$ $$\eta = \eta(\tau) \stackrel{\text{def}}{=} \frac{\tau}{4-2\tau} = \frac{1}{2-\tau} - \frac{1}{2}.$$ # Slow Newton (2) $$H_k s_k = -g_k$$ and thus $$s_k = \begin{pmatrix} \left(\frac{1}{k+1}\right)^{\frac{1}{2}+\eta} \\ 1 \end{pmatrix},$$ $$x_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad x_k = \begin{pmatrix} \sum_{j=0}^{k-1} \left(\frac{1}{j+1}\right)^{\frac{1}{2}+\eta} \\ k \end{pmatrix}.$$ ### Slow Newton (3) $$q_k(x_{k+1}, y_{k+1}) = f_k + \langle g_k, s_k \rangle + \frac{1}{2} \langle s_k, H_k s_k \rangle = f_{k+1}$$ The shape of the successive quadratic models ### Slow Newton (4) Define a support function $s_k(x, y)$ around (x_k, y_k) ### Slow Newton (5) A background function $f_{BCK}(y)$ interpolating f_k values... #### Slow Newton (6) #### ... with bounded third derivative ### Slow Newton (7) $$f_{SN1}(x,y) = \sum_{k=0}^{\infty} s_k(x,y)q_k(x,y) + \left[1 - \sum_{k=0}^{\infty} s_k(x,y)\right] f_{BCK}(x,y)$$ ### Slow Newton (8) #### Some steps on a sandy dune... #### More general second-order methods Assume that, for $\beta \in (0,1]$, the step is computed by $$(H_k + \lambda_k I)s_k = -g_k$$ and $0 \le \lambda_k \le \kappa_s ||s_k||^{\beta}$ (ex: Newton, ARC2, Levenberg-Morrison-Marquardt, (trust-region), ...) The corresponding method terminates in at most $$\left\lceil rac{\kappa_{ m C}}{\epsilon^{(eta+2)/(eta+1)}} ight ceil$$ evaluations to obtain $||g_k|| \le \epsilon$ on functions with bounded and (segmentwise) β -Hölder continuous Hessians. Note: ranges form ϵ^{-2} to $\epsilon^{-3/2}$ ARC2 is optimal within this class ### High-order models (1) What happens if one considers the model $$m_k(s) = T_{f,p}(x_k, s) + \frac{\sigma_k}{p!} ||s||_2^{p+1}$$ where $$T_{f,p}(x,s) = f(x) + \sum_{j=1}^{p} \frac{1}{j!} \nabla_x^j f(x)[s]^j$$ terminating the step computation when $$\|\nabla_s m(s_k)\| \leq \kappa_{\text{stop}} \|s_k\|^p$$??? now the ARp method! # High-order models (2) ϵ -approx 1rst-order critical point after at most $$\frac{f(x_0)-f_{\text{low}}}{\kappa} \, \epsilon^{-\frac{p+1}{p}}$$ successful iterations #### Moreover ϵ -approx "q-th order critical point" after at most $$\frac{f(x_0) - f_{\text{low}}}{\kappa} e^{-\frac{p+1}{p+1-q}}$$ successful iterations #### The constrained case #### Can we apply regularization to the constrained case? Consider the constrained nonlinear programming problem: minimize $$f(x)$$ $x \in \mathcal{F}$ for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth, and where \mathcal{F} is convex. #### Ideas: - exploit (cheap) projections on convex sets - use appropriate termination criterion $$\chi_f(x_k) \stackrel{\mathrm{def}}{=} \left| \min_{x+d \in \mathcal{F}, \|d\| \leq 1} \langle \nabla_x f(x_k), d \rangle \right|,$$ #### Constrained step computation $$\min_{s} \quad T_{f,2}(x,s) + \frac{1}{3}\sigma \|s\|^3$$ subject to $$x + s \in \mathcal{F}$$ minimization of the cubic model until an approximate first-order critical point is met, as defined by $$\chi_{m}(s) \leq \kappa_{\mathsf{stop}} \|s\|^{2}$$ c.f. the "s-rule" for unconstrained Note: OK at local constrained model minimizers #### A constrained regularized algorithm #### Algorithm 4.1: ARC for Convex Constraints (ARC2CC) - Step 0: Initialization. $x_0 \in \mathcal{F}$, σ_0 given. Compute $f(x_0)$, set k = 0. - Step 1: Termination. If $\chi_f(s_k) \leq \epsilon$, terminate. - Step 2: Step calculation. Compute s_k and $x_k^+ \stackrel{\text{def}}{=} x_k + s_k \in \mathcal{F}$ such that $\chi_m(s_k) \leq \kappa_{\text{stop}} ||s_k||^2$. - Step 3: Acceptance of the trial point. Compute $f(x_k^+)$ and ρ_k . If $\rho_k \geq \eta_1$, then $x_{k+1} = x_k + s_k$; otherwise $x_{k+1} = x_k$. - Step 4: Regularisation parameter update. Set $$\sigma_{k+1} \in \begin{cases} [\sigma_{\min}, \sigma_k] & \text{if } \rho_k \ge \eta_2, \\ [\sigma_k, \gamma_1 \sigma_k] & \text{if } \rho_k \in [\eta_1, \eta_2), \\ [\gamma_1 \sigma_k, \gamma_2 \sigma_k] & \text{if } \rho_k < \eta_1. \end{cases}$$ #### Walking through the pass... A "beyond the pass" constrained problem with $$m(x,y) = -x - \frac{42}{100}y - \frac{3}{10}x^2 - \frac{1}{10}y^3 + \frac{1}{3}[x^2 + y^2]^{\frac{3}{2}}$$ Philippe Toint (naXys) ### Evaluation Complexity for ARC2CC The ARC2CC algorithm requires at most $$\left[\frac{\kappa_{\rm C}}{\epsilon^{3/2}}\right]$$ evaluations (for some $\kappa_{\rm C}$ independent of ϵ) to achieve $\chi_f(x_k) \leq \epsilon$ Caveat: cost of solving the subproblem! Higher-order models/critical points: $$\left| \frac{\kappa_{\rm C}}{\epsilon^{(p+1)/(p+1-q)}} \right|$$ evaluations $$\left[rac{\kappa_{ ext{C}}}{\epsilon^{(extbf{p}+1)/(extbf{p}+1-q)}} ight]$$ eva Identical to the unconstrained case!!! #### The general constrained case Consider now the general NLO (slack variables formulation): $$\begin{array}{ll} \text{minimize}_{\,x} & f(x) \\ \text{such that} & c(x) = 0 \quad \text{and} \quad x \in \mathcal{F} \end{array}$$ Ideas for a second-order algorithm: - get $||c(x)|| \le \epsilon$ (if possible) by minimizing $||c(x)||^2$ such that $x \in \mathcal{F}$ (getting $||J(x)^T c(x)||$ small unsuitable!) - track the "trajectory" $$\mathcal{T}(t) \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^n \mid c(x) = 0 \text{ and } f(x) = t \}$$ for values of t decreasing from f (first feasible iterate) while preserving $x \in \mathcal{F}$ ### First-order complexity for general NLO (1) Sketch of a two-phases algorithm: feasibility: apply ARC2CC to $$\min_{x} \nu(x) \stackrel{\text{def}}{=} \|c(x)\|^2$$ such that $x \in \mathcal{F}$ at most $$O(\epsilon_P^{-1/2}\epsilon_D^{-3/2})$$ evaluations tracking: successively apply ARC2CC (with specific termination test) to $$\min_{x} \mu(x) \stackrel{\text{def}}{=} \|c(x)\|^2 + (f(x) - t)^2$$ such that $x \in \mathcal{F}$ • decrease t (proportionally to the decrease in $\phi(x)$) at most $$O(\epsilon_P^{-1/2}\epsilon_D^{-3/2})$$ evaluations ◆ロト ◆部ト ◆差ト ◆差ト を #### A view of Algorithm ARC2CC ### First-order complexity for general NLO (2) Under the "conditions stated above", the ARC2CC algorithm takes at most $$O(\epsilon_P^{-1/2}\epsilon_D^{-3/2})$$ evaluations to find an iterate x_k with either $$||c(x_k)|| \le \delta \epsilon_P$$ and $\chi_{\mathcal{L}} \le ||(y,1)|| \epsilon_D$ for some Lagrange multiplier y and where $$\mathcal{L}(x,y) = f(x) + \langle y, c(x) \rangle,$$ or $$||c(x_k)|| > \delta \epsilon$$ and $\chi_{||c||} \le \epsilon$. #### **Conclusions** Complexity analysis for first-order points using second-order methods $$O(\epsilon^{-3/2})$$ (unconstrained, convex constraints) $O(\epsilon_p^{-1/2}\epsilon_d^{-3/2})$ (equality and general constraints) Available also for p-th order methods : $$O(\epsilon^{-(p+1)/p})$$ (unconstrained, convex constraints) $O(\epsilon_p^{-1/p}\epsilon_d^{-(p+1)/p})$ (equality and general constraints) - Jarre's example ⇒ global optimization much harder - ARC2 is optimal amongst second-order method - More also known (DFO, non-smooth, etc) Many thanks for your attention!