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Cubic regularization for unconstrained problems

The problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Cubic regularization for unconstrained problems

A useful observation

Note the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1
0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖32︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Cubic regularization for unconstrained problems

Approximate model minimization

Lipschitz constant L unknown ⇒ replace by adaptive parameter σk in the
model :

m(s)
def
= f (x) + sTg(x) + 1

2
sTH(x)s + 1

3
σk‖s‖32

Computation of the step:

1 minimize m(s) until an approximate first-order minimizer is obtained:

‖∇sm(s)‖ ≤ min[κstop, ‖s‖] ‖gk‖ and ”(before) line minimizer”

(s-rule)
Note: no global optimization involved.
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Cubic regularization for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 1.1: The ARC2 Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Step computation: Compute sk for which

‖∇sm(sk)‖ ≤ min[κstop‖sk‖]‖gk‖ and ”(before) line minimizer”

Step 2: Step acceptance: Compute ρk =
f (xk)− f (xk + sk)

f (xk)−mk(sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 3: Update the regularization parameter:
σk+1 ∈

(0, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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Cubic regularization for unconstrained problems

Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sT H(x)s + 1

3
L‖s‖32

Nesterov and Polyak minimize m globally and exactly

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case function-evaluation complexity than previously
known

Obvious questions:

can we avoid the global Lipschitz requirement? YES!

can we approximately minimize m and retain good worst-case
function-evaluation complexity? YES !

does this work well in practice? yes
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Cubic regularization for unconstrained problems

Function-evaluation complexity (1)

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

If H is globally Lipschitz, the s-rule is applied and additionally
sk is the global (line) minimizer of mk(αsk) as a function of α,
the ARC2 algorithm requires at most⌈

κS

ε3/2

⌉
function evaluations

for some κS independent of ε.

c.f. Nesterov & Polyak
Note: an O(ε−3) bound holds for convergence to second-order critical
points.
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Cubic regularization for unconstrained problems

Function-evaluation complexity (2)

Is the bound in O(ε−3/2) sharp? YES!!!

Construct a unidimensional example with

x0 = 0, xk+1 = xk +

(
1

k + 1

) 1
3
+η

,

f0 =
2

3
ζ(1 + 3η), fk+1 = fk −

2

3

(
1

k + 1

)1+3η

,

gk = −
(

1

k + 1

) 2
3
+2η

, Hk = 0 and σk = 1,

Use Hermite interpolation on [xK , xk+1].
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Cubic regularization for unconstrained problems

An example of slow ARC2 (1)
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The objective function

Philippe Toint (naXys)
X BRAZOPT,Florianopolis, March 2014 9

/ 41



Cubic regularization for unconstrained problems

An example of slow ARC2 (2)
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Cubic regularization for unconstrained problems

An example of slow ARC2 (3)
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Cubic regularization for unconstrained problems

An example of slow ARC2 (4)
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The third derivative
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Unregularized methods

Slow steepest descent (1)

The steepest descent method with requires at most⌈
κC

ε2

⌉
function evaluations

for obtaining ‖gk‖ ≤ ε.

Nesterov
Sharp??? YES

Newton’s method (when convergent) requires at most

O(ε−2) function evaluations

for obtaining ‖gk‖ ≤ ε !!!!
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Unregularized methods

Slow Newton (1)

Choose τ ∈ (0, 1)

gk = −


(

1
k + 1

) 1
2
+η(

1
k + 1

)2

 Hk =

(
1 0

0
(

1
k + 1

)2

)
,

for k ≥ 0 and

f0 = ζ(1+2η)+
π2

6
, fk = fk−1−

1

2

[(
1

k + 1

)1+2η

+

(
1

k + 1

)2
]

for k ≥ 1,

η = η(τ)
def
=

τ

4− 2τ
=

1

2− τ
− 1

2
.
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Unregularized methods

Slow Newton (2)

Hksk = −gk ,

and thus

sk =


(

1
k + 1

) 1
2
+η

1

 ,

x0 =

(
0
0

)
, xk =


k−1∑
j=0

(
1

j + 1

) 1
2
+η

k

 .
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Unregularized methods

Slow Newton (3)

qk(xk+1, yk+1) = fk + 〈gk , sk〉+ 1
2
〈sk ,Hksk〉 = fk+1
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The shape of the successive quadratic models
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Unregularized methods

Slow Newton (4)

Define a support function sk(x , y) around (xk , yk)
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Unregularized methods

Slow Newton (5)

A background function fBCK (y) interpolating fk values. . .
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Unregularized methods

Slow Newton (6)

. . . with bounded third derivative
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Unregularized methods

Slow Newton (7)

fSN1(x , y) =
∞∑

k=0

sk(x , y)qk(x , y) +

[
1−

∞∑
k=0

sk(x , y)

]
fBCK (x , y)
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Unregularized methods

Slow Newton (8)

Some steps on a sandy dune. . .
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Unregularized methods

More general second-order methods

Assume that, for β ∈ (0, 1], the step is computed by

(Hk + λk I )sk = −gk and 0 ≤ λk ≤ κs‖sk‖β

(ex: Newton, ARC2, Levenberg-Morrison-Marquardt, (TR2), . . . )

The corresponding method may require as much as⌈
κC

ε−(β+2)/(β+1)

⌉
function evaluations

to obtain ‖gk‖ ≤ ε on functions with bounded and (segment-
wise) β-Hölder continuous Hessians.

Note: ranges form ε−2 to ε−3/2

ARC2 is optimal within this class
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Regularization techniques for constrained problems

The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Ideas:

exploit (cheap) projections on convex sets

use appropriate termination criterion

χf (xk)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (xk), d〉
∣∣∣∣ ,
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Regularization techniques for constrained problems

Constrained step computation

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

subject to
x + s ∈ F

minimization of the cubic model until an approximate first-order
critical point is met, as defined by

χm(s) ≤ min(κstop, ‖s‖)χf (xk)

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers
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Regularization techniques for constrained problems

A constrained regularized algorithm

Algorithm 3.1: ARC for Convex Constraints (ARC2CC)

Step 0: Initialization. x0 ∈ F , σ0 given. Compute f (x0), set k = 0.

Step 1: Step calculation. Compute sk and x+
k

def
= xk + sk∈ F such

that χm(sk) ≤ min(κstop, ‖sk‖)χf (xk).

Step 2: Acceptance of the trial point. Compute f (x+
k ) and ρk .

If ρk ≥ η1, then xk+1 = xk + sk ; otherwise xk+1 = xk .

Step 3: Regularisation parameter update. Set

σk+1 ∈


(0, σk ] if ρk ≥ η2,
[σk , γ1σk ] if ρk ∈ [η1, η2),
[γ1σk , γ2σk ] if ρk < η1.
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Regularization techniques for constrained problems

Walking through the pass...

x
k

feasible

x
k
−α g

k

x
min
+
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A “beyond the pass” constrained problem with

m(x , y) = −x − 42
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y − 3
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x2 − 1
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3
[x2 + y2]

3
2
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Regularization techniques for constrained problems

Walking through the pass...with a sherpa
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A piecewise descent path from xk to x+
k on

m(x , y) = −x − 42
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Regularization techniques for constrained problems

Function-Evaluation Complexity for ARC2CC

Assume also

xk ← x+
k in a bounded number of feasible descent substeps

‖Hk −∇xx f (xk)‖ ≤ κ‖sk‖2

∇xx f (·) is globally Lipschitz continuous

{xk} bounded

The ARC2CC algorithm requires at most⌈
κC

ε3/2

⌉
function evaluations

(for some κC independent of ε) to achieve χf (xk) ≤ ε

Caveat: cost of solving the subproblem! c.f. unconstrained case!!!
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Regularization techniques for constrained problems

The general constrained case

Consider now the general NLO (slack variables formulation):

minimize x f (x)
such that c(x) = 0 and x ∈ F

Ideas for a second-order algorithm:

1 get feasible (if possible) by minimizing ‖c(x)‖2 such that x ∈ F
2 track the trajectory

T (t)
def
= {x ∈ IRn | c(x) = 0 and f (x) = t}

for values of t decreasing from f (first feasible iterate) while preserving
x ∈ F
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Regularization techniques for constrained problems

A detour via unconstrained nonlinear least-squares (1)

Consider
minimize f (x) = 1

2
‖F (x)‖2

Apply ARC2 to obtain O(ε−3/2) complexity?

only yields ‖J(xk)F (xk)‖ ≤ ε !

requires unpalatably strong conditions on J(x) !

Turn to the “scaled residual”

∇x‖F (xk)‖
def
=

 ‖J(xk)
TF (xk)‖

‖F (xk)‖
if ‖F (xk)‖ > 0

0 otherwise

Copes with both zero and nonzero residuals !
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Regularization techniques for constrained problems

A detour via unconstrained nonlinear least-squares (2)

Assume f has Lipschitz Hessian. Then the ARC2 algorithm
takes at most

O(ε−3/2) function evaluations

to find an iterate xk with either

∇x‖F (xk)‖ ≤ ε or ‖F (xk)‖ ≤ ε.

No requirement on regularity for J(x) !
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Regularization techniques for constrained problems

... and via constrained nonlinear least-squares (1)

Consider now

minimize f (x) = 1
2
‖F (x)‖2 such that x ∈ F

Remember termination rules:

χf (xk) ≤ ε (convex inequality constraints)

∇x‖F (xk)‖ ≤ ε (NLSQ)

For inequality-constrained nonlinear least-squares, combine these into

χ‖F (x)‖(xk) =

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x‖F (xk)‖, d〉
∣∣∣∣ ≤ ε
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Regularization techniques for constrained problems

... and via constrained nonlinear least-squares (2)

Assume f has Lipschitz Hessian. Then the ARC2CC algorithm
takes at most

O(ε−3/2) function evaluations

to find an iterate xk with either

χ‖F (x)‖(xk) ≤ ε or ‖F (xk)‖ ≤ ε.
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Regularization techniques for constrained problems

Second-order complexity for general NLO (1)

Sketch of a short-step ARC2 (ARC2GC) algorithm

feasibility: apply ARC2CC (with ∇x‖F (xk)‖ stopping rule) to

min
x
‖c(x)‖2 such that x ∈ F

at most O(ε−3/2) function evaluations

tracking: successively

apply one (successful) step of ARC2CC (with
∇x‖F (xk)‖ stopping rule) to

min
x
φ(x)

def
= ‖c(x)‖2 + (f (x)− t)2 such that x ∈ F

decrease t (proportionally to the decrease in φ(x))

at most O(ε−3/2) function evaluations !
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Regularization techniques for constrained problems

A view of Algorithm ARC2CC

Phase 2

Phase 1

Φ(x
+
,t)

Φ(x,t)

t
+

t

ε3/2

−ε ε
||c||

f
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Regularization techniques for constrained problems

Second-order complexity for general NLO (2)

Under the “conditions stated above”, the ARC2CC algorithm
takes at most

O(ε−3/2) function evaluations

to find an iterate xk with either

‖c(xk)‖ ≤ δε and χL ≤ ‖(y , 1)‖ε2/3

for some Lagrange multiplier y and where

L(x , y) = f (x) + 〈y , c(x)〉,

or
‖c(xk)‖ > δε and χ||c|| ≤ ε.
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Conclusions

Conclusions

Complexity analysis for first-order critical points using second-order
methods complete !

O(ε−3/2) (unconstrained, general constraints !)

Available also for first order methods :

O(ε−2) (unconstrained, general constraints !)

Jarre’s example ⇒ global optimization much harder

smooth functions littered with approximate critical points !

ARC2 is optimal amongst second-order method

More also known (unconstrained 2nd order criticality, DFO, etc)

Many thanks for your attention!
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