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Cubic regularization for unconstrained problems

The problem

We consider the unconstrained nonlinear programming problem:
minimize f(x)
for x € R" and f : R” — R smooth.
Important special case: the nonlinear least-squares problem
minimize f(x) = 1||F(x)|?

for x € R" and F : R" — R™ smooth.
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Cubic regularization for unconstrained problems

A useful observation

Note the following: if

@ f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f(x+s) = f(x)+(s,g(x)) + (s, H(x)s)
+ 31— a)(s, [H(x + as) — H(x)]s) da
< f(x) + (s, 8(x)) + 4(s, H(x)s) + iL][|s]3

m(s)

— reducing m from s = 0 improves f since m(0) = f(x). ‘
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Cubic regularization for unconstrained problems

Approximate model minimization

Lipschitz constant L unknown =- replace by adaptive parameter o in the

model :

m(s) < £(x) + sTg(x) + 1sTH(x)s + Lo]s]3

Computation of the step:
@ minimize m(s) until an approximate first-order minimizer is obtained:

|Vsm(s)|| < min[Keop, ||S|l] ||gk]| and " (before) line minimizer”

(s-rule)
Note: no global optimization involved.
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Cubic regularization for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 1.1: The ARC Algorithm

Step 0: Initialization: xg and og > 0 given. Set kK =0
Step 1: Step computation: Compute s, for which

IVsm(sk)|| < min[Kaopl|sk||]llgk]] and " (before) line minimizer”

f(Xk) — f(Xk =+ Sk)
f(Xk) — mk(sk)

Step 2: Step acceptance: Compute py =

if px >
otherwise

Xk + Sk

and set xxq11 = {
Xk

Step 3: Update the regularization parameter:

Ok+1 €
(0, 0] if i > very successful
[0k, v10k] if < pk < successful
[0k, Y20k] otherwise unsuccessful
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Cubic regularization for unconstrained problems

Cubic regularization highlights

F(x+5) < m(s) = F(x) +5 g(x) + §sTH(x)s + LL|s|33

o Nesterov and Polyak minimize m globally and

e N.B. m may be non-convex!
o efficient scheme to do so if H has sparse factors

@ global (ultimately rapid) convergence to a 2nd-order critical point of f

@ better worst-case function-evaluation complexity than previously
known

Obvious questions: ‘

@ can we avoid the global Lipschitz requirement? YES!

@ can we approximately minimize m and retain good worst-case
function-evaluation complexity? YES !

@ does this work well in practice? yes

Philippe Toint (naXys) Krakow, September 2013 6 /37



Cubic regularization for unconstrained problems

Function-evaluation complexity (1)

How many function evaluations (iterations) are needed to ensure that

gkl < €?

If H is globally Lipschitz, the s-rule is applied and additionally
sk is the global (line) minimizer of my(ask) as a function of «,
the ARC algorithm requires at most

[—2/521 function evaluations
€

for some kg independent of e.

Note: an O(e~3) bound holds for convergence to second-order critical

points.
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Cubic regularization for unconstrained problems

Function-evaluation complexity (2)

Is the bound in O(e=3/2) sharp?

Construct a unidimensional example with

1\t
x0 =0, Xeq41=xkx+ <> ;

k+1
2 2/ 1\
0 34( +3n),  fip1="f 3<k+1> ,
1 %4‘277
8k <k+1> , x =0 and oy ,

‘Use Hermite interpolation on [xK,xk+1].‘
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Cubic regularization for unconstrained problems

An example of slow ARC (1)
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Cubic regularization for unconstrained problems

An example of slow ARC (2)

The first derivative
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Cubic regularization for unconstrained problems

An example of slow ARC (3)

The second derivative
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Cubic regularization for unconstrained problems

An example of slow ARC (4)

The third derivative
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Unregularized methods
Without regularization 7

What is known for unregularized (standard) methods?

The steepest descent method requires at most

{ig-‘ function evaluations
€

for obtaining ||gk|| < e.

Sharp??? YES

Newton's method (when convergent) requires at most

O(e~?) function evaluations

for obtaining ||gk|| < € !l
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Unregularized methods

Slow Newton (1)

Choose 7 € (0,1)

for k > 0 and

w2 1
fo= C(1+277)+€, fx = fue1—2

where
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Unregularized methods

Slow Newton (2)

and thus
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Unregularized methods

Slow Newton (3)

Gk (k415 Y1) = fic + (8K, Sk) + 2(Sk, Hiksk) = fry1

10

A

L
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The shape of the successive quadratic models
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Unregularized methods

Slow Newton (4)

Define a support function sk(x,y) around (xx, yk)
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Unregularized methods

Slow Newton (5)

A background function fgck(y) interpolating f values. ..
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Unregularized methods

Slow Newton (6)

... with bounded third derivative

5 T T T
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Unregularized methods

Slow Newton (7)

fsn1(xy) =D skl y)au(x, y) +

k=0

o0

k=0

1- Zsk(x,y)] feck (%, y)

10
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Unregularized methods

Slow Newton (8)

Some steps on a sandy dune. ..
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Unregularized methods
More general second-order methods

Assume that, for § € (0, 1], the step is computed by
(Hi + M) sc = —gie and 0 < A < ksl|sk]”

(ex: Newton, ARC, (TR), ...)

The corresponding method may require as much as

KC . .
[W—‘ function evaluations

to obtain |/gk|| < € on functions with bounded and (segment-
wise) (-Holder continuous Hessians.

Note: ranges form €2 to ¢ 3/2

| ARC is optimal within this class
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Regularization techniques for constrained problems
The constrained case

‘Can we apply regularization to the constrained case?‘

Consider the constrained nonlinear programming problem:

minimize f(x)

xeF
for x € R" and f : R” — R smooth, and where

F is convex.

@ exploit (cheap) projections on convex sets
@ use appropriate termination criterion

def .
= vxf 5 d )
xr(x) x+den}l,|r|]a’||§1< (), d)
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Regularization techniques for constrained problems
Constrained step computation

min  £(x) + (s,g(x)) + 3(s, H(x)s) + 1o]|s|®

subject to
xX+secF

@ minimization of the cubic model until an approximate first-order
critical point is met, as defined by

Xim($) < min(Kaop, [[5[1) x7(xk)

Note: OK at local constrained model minimizers
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Regularization techniques for constrained problems
A constrained regularized algorithm

Algorithm 3.1: ARC for Convex Constraints (COCARC)

Step 0: Initialization. xo € F, o¢ given. Compute f(xp), set k = 0.
Step 1: Step calculation. Compute s, and x,j def X + Sk such
that < Min(Kaops ||Skl|)
Step 2: Acceptance of the trial point. Compute f(x,j) and py.
If px > m1, then xkr1 = Xk + Sk; otherwise Xxx41 = Xk-
Step 3: Regularisation parameter update. Set
(0,0'k] if Pk Z 2,
k1 €3 ok, 110%] if pk € [m1,m2),
[Viok:v20k]  if ok <
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Regularization techniques for constrained problems

Walking through the pass...

feasible

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

A “beyond the pass” constrained problem with

3
m(x,y) = —x — fay — 35x* — Ly + 1 + 72
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Regularization techniques for constrained problems

Walking through the pass...with a sherpa

feasible

A piecewise descent path from xj to x,j on

3
m(x,y) = —x = {&y = 55 = oy’ + 1 + ¥
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Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC

Assume also
o Xy — x;r in a bounded number of feasible descent substeps
o [[Hi — Vot ()|l < sl
o V,«f(:) is globally Lipschitz continuous
o {xx} bounded

The COCARC algorithm requires at most

{"3”(/2—‘ function evaluations
€

(for some k¢ independent of €) to achieve xf(xx) < €

Caveat: cost of solving the subproblem!
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Regularization techniques for constrained problems
The general constrained case

Consider now the general NLO (slack variables formulation):

minimize ,  f(x)
such that ¢(x)=0 and xeF

for a second-order algorithm:

@ get feasible (if possible) by minimizing ||c(x)|? such that x € F
@ track the trajectory

T Y {(xeR" | c(x)=0 and f(x)=t}

for values of t decreasing from f(first feasible iterate) while preserving
xeF
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Regularization techniques for constrained problems

A detour via unconstrained nonlinear least-squares (1)

Consider
minimize f(x) = 1||F(x)|?

Apply ARC to obtain O(e=3/2) complexity?
o only yields ||J(xk)F(xx)|| <€
@ requires unpalatably strong conditions on J(x) !

Turn to the “scaled residual”

o) TFl
e F >0
VAFI T TE ORI

0 otherwise

Copes with both zero and nonzero residuals !
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Regularization techniques for constrained problems

A detour via unconstrained nonlinear least-squares (2)

Assume f has Lipschitz Hessian. Then the ARC algorithm takes
at most

O(e=3/2) function evaluations

to find an iterate xx with either

Vull[F(i)l < e or [[F(a)ll < e

@ No requirement on regularity for J(x) !
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Regularization techniques for constrained problems

. and via constrained nonlinear least-squares (1)

Consider now
minimize f(x) = 1||F(x)||> such that x € F

Remember termination rules:

Xr(xk) <€  (convex inequality constraints)

Vil F(xa)ll < e (NLSQ)

For inequality-constrained nonlinear least-squares, combine these into

XiFeI(xe) = | min (Vi FO)ll, d)| <
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Regularization techniques for constrained problems

. and via constrained nonlinear least-squares (2)

Assume f has Lipschitz Hessian. Then the COCARC algorithm
takes at most

O(e=3/2) function evaluations

to find an iterate xx with either

X|IFe (%) <€ or [[F(x)l < e
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Regularization techniques for constrained problems

Second-order complexity for general NLO (1)

Sketch of a short-step ARC (ShS-COCARC) algorithm
feasibility: apply COCARC (with V||F(xk)|| stopping rule) to

min ||c(x)||*> such that x € F

at most O(e >/?) function evaluations

tracking: successively

@ apply one (successful) step of COCARC (with
V«|[F(xx)|| stopping rule) to

min ¢(x) L) + (F(x) — t)? such that x € F

@ decrease t (proportionally to the decrease in ¢(x))

at most O(¢*/?) function evaluations !
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Regularization techniques for constrained problems

A view of Algorithm ShS-(COC)ARC

Phase 1

Phase 2

llell
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Regularization techniques for constrained problems

Second-order complexity for general NLO (2)

Under the “conditions stated above”, the ShS-COCARC algo-
rithm takes at most

O(¢73/2) function evaluations
to find an iterate xx with either
le(xe)ll < de and xz < [|(y, 1)/
for some Lagrange multiplier y and where
L(x,y) = f(x) + {y, c(x)),

or
HC(Xk)” > de and X||cl| <e.
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Conclusions
Conclusions

o Complexity analysis for first-order critical points using second-order
methods complete !

O(¢7%/?) (unconstrained, general constraints !)

Available also for first order methods :

O(¢™?) (unconstrained, general constraints !)

@ Jarre's example = global optimization much harder
@ smooth functions littered with approximate critical points !

@ ARC is optimal amongst second-order method

@ More also known (unconstrained 2nd order criticality, DFO, etc)

Many thanks for your attention!
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