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Cubic regularization for unconstrained problems

The problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Cubic regularization for unconstrained problems

A useful observation

Note the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1

0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖3

2︸ ︷︷ ︸
m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Cubic regularization for unconstrained problems

The cubic regularization

Change from trust-regions:

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to cubic regularization:

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Cubic regularization for unconstrained problems

Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sTH(x)s + 1

3
L‖s‖3

2

Nesterov and Polyak minimize m globally and exactly

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case function-evaluation complexity than previously
known

Obvious questions:

can we avoid the global Lipschitz requirement?

can we approximately minimize m and retain good worst-case
function-evaluation complexity?

does this work well in practice?
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Cubic regularization for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 1.1: The ARC Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Step computation: Compute sk for which mk(sk) ≤ mk(sC
k)

Cauchy point: sC
k = −αC

kgk & αC
k = arg min

α∈IR+

mk(−αgk)

Step 2: Step acceptance: Compute ρk =
f (xk)− f (xk + sk)
f (xk)−mk(sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 3: Update the regularization parameter:
σk+1 ∈

(0, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk ] = 2σk otherwise unsuccessful

Philippe Toint (naXys) September 2012 6 / 52



Cubic regularization for unconstrained problems

Function-evaluation complexity (1)

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

So long as for very successful iterations σk+1 ≤ γ3σk for γ3 < 1

The basic ARC algorithm requires at most⌈
κC
ε2

⌉
function evaluations

for some κC independent of ε

c.f. steepest descent
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Cubic regularization for unconstrained problems

Function-evaluation complexity (2)

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

If H is globally Lipschitz, the s-rule is applied and additionally
sk is the global (line) minimizer of mk(αsk) as a function of α,
the ARC algorithm requires at most⌈

κS
ε3/2

⌉
function evaluations

for some κS independent of ε.

c.f. Nesterov & Polyak
Note: an O(ε−3) bound holds for convergence to second-order critical
points.
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Cubic regularization for unconstrained problems

Function-evaluation complexity (3)

Is the bound in O(ε−3/2) sharp? YES!!!

Construct a unidimensional example with

x0 = 0, xk+1 = xk +

(
1

k + 1

) 1
3

+η

,

f0 =
2

3
ζ(1 + 3η), fk+1 = fk −

2

3

(
1

k + 1

)1+3η

,

gk = −
(

1

k + 1

) 2
3

+2η

, Hk = 0 and σk = 1,

Use Hermite interpolation on [xK , xk+1].
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Cubic regularization for unconstrained problems

An example of slow ARC (1)
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Cubic regularization for unconstrained problems

An example of slow ARC (2)
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Cubic regularization for unconstrained problems

An example of slow ARC (3)
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Cubic regularization for unconstrained problems

An example of slow ARC (4)
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Cubic regularization for unconstrained problems

Minimizing the model

m(s) ≡ f + sT g + 1
2
sTBs + 1

3
σ‖s‖3

2

Small problems:

use Moré-Sorensen-like method with modified secular equation
(also OK as long as factorization is feasible)

Large problems:

an iterative Krylov space method

approximate solution

Numerically sound procedures for computing exact/approximate steps
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Cubic regularization for unconstrained problems

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

(very satisfactory convergence analysis)

best function-evaluation complexity for nonconvex problems

good performance and reliability
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Cubic regularization for unconstrained problems

Numerical experience — small problems using Matlab
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ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
trust−region (8 failures)
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Unregularized methods

Without regularization ?

What is known for unregularized (standard) methods?

The steepest descent method requires at most⌈
κC
ε2

⌉
function evaluations

for obtaining ‖gk‖ ≤ ε.

Sharp???

Newton’s method (when convergent) requires at most

??? function evaluations

for obtaining ‖gk‖ ≤ ε.
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Unregularized methods

Slow steepest descent (1)

For steepest descent, the bound of⌈
κC
ε2

⌉
function evaluations

is sharp on functions with Lipschitz continuous gradients.

As before, construct a unidimensional example with

x0 = 0, xk+1 = xk + αk

(
1

k + 1

) 1
2

+η

,

for some steplength αk > 0 such that

0 < α ≤ αk ≤ α < 2,

giving the step

sk
def
= xk+1 − xk = αk

(
1

k + 1

) 1
2

+η

.
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Unregularized methods

Slow steepest descent (1)

Also set

f0 =
1

2
ζ(1 + 2η), fk+1 = fk − αk(1− 1

2
αk)

(
1

k + 1

)1+2η

,

gk = −
(

1

k + 1

) 1
2

+η

, and Hk = 1,

Use Hermite interpolation on [xK , xk+1].
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Unregularized methods

An example of slow steepest descent (1)
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Unregularized methods

An example of slow steepest-descent (2)
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Unregularized methods

An example of slow steepest-descent (3)
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Unregularized methods

An example of slow steepest descent (4)
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Unregularized methods

Slow steepest descent with exact linesearch
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True also if one considers exact linesearch
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Unregularized methods

Slow Newton (1)

A big surprise:

Newton’s method may require as much as⌈
κC
ε2

⌉
function evaluations

to obtain ‖gk‖ ≤ ε on functions with bounded and (segment-
wise) Lipschitz continuous Hessians.

Example now bi-dimensional
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Unregularized methods

Slow Newton (2)

The conditions are now:

x0 = (0, 0)T , xk+1 = xk +

 (
1

k+1

) 1
2

+η

1

 ,

f0 =
1

2
[ζ(1 + 2η) + ζ(2)] , fk+1 = fk−

1

2

[(
1

k + 1

)1+2η

+

(
1

k + 1

)2
]
,

gk = −


(

1
k+1

) 1
2

+η(
1

k+1

)2

 , and Hk =

(
1 0

0
(

1
k+1

)2

)

Use previous example for x1 and Hermite interpolation on [xK , xk+1] for x2.
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Unregularized methods

An example of slow Newton
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Unregularized methods

More general second-order methods

Assume that, for β ∈ (0, 1], the step is computed by

(Hk + λk I )sk = −gk and 0 ≤ λk ≤ κs‖sk‖β

(ex: Newton, ARC, (TR), . . . )

The corresponding method may require as much as⌈
κC

ε−(β+2)/(β+1)

⌉
function evaluations

to obtain ‖gk‖ ≤ ε on functions with bounded and (segment-
wise) β-Hölder continuous Hessians.

Note: ranges form ε−2 to ε−3/2

ARC is optimal within this class
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Regularization techniques for constrained problems

The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Main ideas:

exploit (cheap) projections on convex sets

define using the generalized Cauchy point idea

prove global convergence + function-evaluation complexity
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Regularization techniques for constrained problems

Constrained step computation (1)

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

subject to
x + s ∈ F

σ is the (adaptive) regularization parameter

Criticality measure: (as before)

χ(x)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (x), d〉
∣∣∣∣ ,
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Regularization techniques for constrained problems

The generalized Cauchy point for ARC

Cauchy step: Goldstein-like piecewise linear seach on mk along the
gradient path projected onto F

Find
xGC
k = PF [xk − tGC

k gk ]
def
= xk + sGC

k (tGC
k > 0)

such that

mk(xGC
k ) ≤ f (xk) + κubs〈gk , sGC

k 〉 (below linear approximation)

and either

mk(xGC
k ) ≥ f (xk) + κlbs〈gk , sGC

k 〉 (above linear approximation)

or
‖PT (xGC

k )[−gk ]‖ ≤ κepp|〈gk , sGC
k 〉| (close to path’s end)

no trust-region condition!
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Regularization techniques for constrained problems

Searching for the ARC-GCP
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3
‖s‖3 such that s ≤ 1.5
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Regularization techniques for constrained problems

A constrained regularized algorithm

Algorithm 3.1: ARC for Convex Constraints (COCARC)

Step 0: Initialization. x0 ∈ F , σ0 given. Compute f (x0), set k = 0.

Step 1: Generalized Cauchy point. If xk not critical, find the
generalized Cauchy point xGC

k by piecewise linear search on the
regularized cubic model.

Step 2: Step calculation. Compute sk and x+
k

def
= xk + sk∈ F such

that mk(x+
k ) ≤ mk(xGC

k ).

Step 3: Acceptance of the trial point. Compute f (x+
k ) and ρk .

If ρk ≥ η1, then xk+1 = xk + sk ; otherwise xk+1 = xk .

Step 4: Regularisation parameter update. Set

σk+1 ∈


(0, σk ] if ρk ≥ η2,
[σk , γ1σk ] if ρk ∈ [η1, η2),
[γ1σk , γ2σk ] if ρk < η1.

Philippe Toint (naXys) September 2012 33 / 52



Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (1)

But

What about function-evaluation complexity?

If, for very successful iterations, σk+1 ≤ γ3σk for γ3 < 1,
the COCARC algorithm requires at most⌈

κC
ε2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

c.f. steepest descent

Do the nicer bounds for unconstrained optimization extend to the
constrained case?
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Regularization techniques for constrained problems

Function-evaluation complexity for COCARC (2)

As for unconstrained, impose a termination rule on the subproblem
solution:

Do not terminate solving minxk+s∈F mk(xk + s) before

χm
k (x+

k ) ≤ min(κstop, ‖sk‖)χk

where

χm
k (x)

def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇xmk(x), d〉
∣∣∣∣

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers
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Regularization techniques for constrained problems

Walking through the pass...
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Regularization techniques for constrained problems

Walking through the pass...with a sherpa
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Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (2)

Assume also

xk ← x+
k in a bounded number of feasible descent substeps

‖Hk −∇xx f (xk)‖ ≤ κ‖sk‖2

∇xx f (·) is globally Lipschitz continuous

{xk} bounded

The COCARC algorithm requires at most⌈
κC
ε3/2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

Caveat: cost of solving the subproblem! c.f. unconstrained case!!!
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Regularization techniques for constrained problems

The general constrained case

Consider the general constrained nonlinear programming problem:

minimize x f (x)

such that c(x)

 ≥=
≤

 0

for x ∈ IRn and f : IRn → IR and c : IRn → IRm smooth.

Complexity of computing an (approximate) first-order critical point?

Question not restricted to cubic regularization algorithms!
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Regularization techniques for constrained problems

A detour: minimizing non-smooth composite functions

A useful tool (and an interesting question in itself): consider the
unconstrained problem:

minimize x f (x) + h(c(x))

for x ∈ IRn and f : IRn → IR and c : IRn → IRm smooth and nonconvex, and
h : IRm → IR non-smooth but convex (ex: h(·) = ‖ · ‖).
First-order method: compute a step by solving the (convex) problem

minimize ‖s‖≤∆ `(x , s)
def
= f (x) + 〈g(x), s〉+ h(c(x) + J(x)s)

for some trust-region radius ∆ (also possible using quadratic regularization)
(considered by Nesterov (2007, 2007), Cartis/Gould/T)
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Regularization techniques for constrained problems

Minimizing non-smooth composite functions (2)

Main result:

Assume f , c and h are globally Lipschitz continuous. Then the
“algorithm” takes at most

O(ε−2) function evaluations

to achieve
ψ(xk) ≤ ε

where ψ(x) is a first-order criticality measure defined by

ψ(x)
def
= `(x , 0)− min

‖s‖≤1
`(x , s).
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Regularization techniques for constrained problems

A first-order algorithm for EC-NLO

Consider now

minimize x f (x)
such that c(x) = 0

Idea for a first-order algorithm:

1 get feasible (if possible) by minimizing ‖c(x)‖
2 track the trajectory

T (t)
def
= {x ∈ IRn | c(x) = 0 and f (x) = t}

for values of t decreasing from f (first feasible iterate)
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Regularization techniques for constrained problems

A first-order algorithm for EC-NLO (2)

How to do that? A short-step steepest-descent (SSSD) algorithm:

feasibility: apply nonsmooth composite minimization to

min
x
‖c(x)‖

at most O(ε−2) function evaluations

tracking: successively

apply one (successful) step of nonsmooth composite
minimization to

min
x
φ(x)

def
= ‖c(x)‖+ |f (x)− t|

decrease t (proportionally to the decrease in φ(x))

at most O(ε−2) function evaluations !

Philippe Toint (naXys) September 2012 43 / 52



Regularization techniques for constrained problems

A view of Algorithm SSSD

Phase 2

Phase 1

Φ(x
+
,t)

Φ(x,t)

t

t
+

ε2 f

||c||

ε−ε
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Regularization techniques for constrained problems

A complexity result for EC-NLO

Assume f , and c are globally Lipschitz continuous and f
bounded below and above in an ε-neighbourhood of feasibil-
ity. Then the SSSD algorithm takes at most

O(ε−2) function evaluations

to find an iterate xk with either

‖c(xk)‖ ≤ ε and ‖J(xk)y + gk‖ ≤ ε

for some y , or

‖c(xk)‖ > κfε and ‖J(xk)z‖ ≤ ε

for some z .

(κf ∈ (0, 1), user defined).
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Regularization techniques for constrained problems

Extensions to the general case

Also applies to inequality constrained problems

by replacing
‖c(x)‖ by ‖min(c(x), 0)‖.
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Regularization techniques for constrained problems

A detour via nonlinear least-squares (1)

Consider
minimize f (x) = 1

2
‖F (x)‖2

Apply ARC to obtain O(ε−3/2) complexity?

only yields ‖J(xk)F (xk)‖ ≤ ε !

requires unpalatably strong conditions on J(x) !

Turn to the “scaled residual”

r(xk)
def
=


‖J(xk)F (xk)‖
‖F (xk)‖ if ‖F (xk)‖ > 0

0 otherwise

Copes with both zero and nonzero residuals !
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Regularization techniques for constrained problems

A detour via nonlinear least-squares (2)

Assume f has Lipschitz Hessian. Then the ARC algorithm takes
at most

O(ε−3/2) function evaluations

to find an iterate xk with either ‖r(xk)‖ ≤ ε or ‖F (xk)‖ ≤ ε.

No requierement on regularity for J(x) !

Applicable in phase 1 of an algorithm for EC-NLO ?

Philippe Toint (naXys) September 2012 48 / 52



Regularization techniques for constrained problems

Second-order compexity for EC-NLO (1)

A short-step ARC (ShS-ARC) algorithm

feasibility: apply ARC (with ‖r(xk)‖ stopping rule) to

min
x
‖c(x)‖2

at most O(ε−3/2) function evaluations

tracking: successively

apply one (successful) step of ARC (with ‖r(xk)‖
stopping rule) to

min
x
φ(x)

def
= ‖c(x)‖2 + (f (x)− t)2

decrease t (proportionally to the decrease in φ(x))

at most O(ε−3/2) function evaluations !
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Regularization techniques for constrained problems

A view of Algorithm ShS-ARC

Phase 2

Phase 1

Φ(x
+
,t)

Φ(x,t)

t
+

t

ε3/2

−ε ε
||c||

f
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Regularization techniques for constrained problems

Second-order complexity for EC-NLO (2)

Assume f , and c are globally Lipschitz continuous and f
bounded below and above in an ε-neighbourhood of feasibil-
ity. Then the ShS-ARC algorithm takes at most

O(ε−3/2) function evaluations

to find an iterate xk with either

‖c(xk)‖ ≤ ε and ‖J(xk)y + gk‖ ≤ ε2/3

for some y , or

‖c(xk)‖ > κfε and ‖J(xk)z‖ ≤ ε

for some z .
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Conclusions

Conclusions

Many open questions . . . but very interesting

Analysis for unconstrained second-order optimality also possible

Jarre’s example ⇒ global optimization much harder

Algorithm design profits from complexity analysis

Many issues regarding regularizations still unresolved

ARC is optimal amongst second-order method

Many thanks for your attention!
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