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Data assimilation in weather forecasting

(Attempt to predict. . .

tomorrow’s weather

the average ocean temperature
next month

the future gravity field

the next ionospheric currents

. . .
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Data assimilation in weather forecasting (2)

Data: température, wind, pression, . . . everywhere and at all times !

May involve more than 1.000.000.000 variables!
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Data assimilation in weather forecasting (3)

The principle:
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Data assimilation in weather forecasting (3)

The principle:

Minimize the error between model and past observations
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and “background” prediction
• Température for the last 2.5 days
• Run the model to minimize

the gap between I model and observations

min
x0

1

2
‖x0 − xb‖2B−1 +

1

2

N∑
i=0

‖HM(ti , x0)− bi‖2R−1
i
.
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Data assimilation in weather forecasting (3)

The principle:

Minimize the error between model and past observations
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• Situation 2.5 days ago
and “background” prediction
• Température for the last 2.5 days
• Run the model to minimize

the gap between I model and observations
• Predict tomorrow’s temperature
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The 4D-VAR approach

min
x

1

2
‖x − xb‖2B−1 +

1

2

N∑
i=0

‖HM(ti , x)− bi‖2R−1
i
.

a weighted nonlinear least-squares problems

⇒ a Gauss-Newton (linearization) approach

⇒ iterately solve (level-1 iterations)

min
x

1

2
〈x − xb,B

−1(x − xb)〉+
1

2
〈Hx − d ,R−1(Hx − d)〉

(a (very) large quadratic minimization problem)
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Solving the 4D-VAR subproblem

Analytic solution:

(I + BHTR−1H)x = BHTR−1d

In pratice:

use Conjugate Gradients (or other Krylov space solver)

for a (very) limited number of level-2 iterations

(with preconditioning, but not discussed here)

⇒ need products of the type

(I + BHTR−1H)v for a number of vectors v

Focus here on how to compute Bv (B large)
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Modelling covariance

A widely used approach (Derber + Rosati, 1989, Weaver + Courtier, 2001):

Spatial background correlation ≈ diffusion process

i.e.

Computing Bv
≈

integrating a diffusion equation starting from the state v .

use p steps of an implicit integration scheme

(level-3 iteration, each involving a solve with B!!!)
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The integration iteration

Define

Θh = I +
L
2p

∆h

(∆h is the discrete Laplacian, L is the correlation length).
For each integration (z and p given)

1 u0 =
(
diag(Θ−p

h

)−1/2
z (diagonal scaling)

2 u` = Θ−1
h u`−1 (` = 1, . . . , p)

3 Bz =
(
diag(Θ−p

h

)−1/2
up (diagonal scaling)

Our question: how to solve Θhu` = u`−1 ?
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The integration iteration

Our question: how to solve Θhu` = u`−1 ?

Carrier + Ngodock (2010):

Implicit integration + CG is ≈ 5 times faster than explicit integration!

But:

What about multigrid ??

Is an approximate solution of the system (CG or MG) altering the
spatial properties of the correlation?

Inexact solves ?
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Approximately diffusing a Dirac pulse

Compare the diffusion of a Dirac pulse using approximate linear solvers
and exact factorization, as a function of correlation length:
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Note: cost(1 MG V-cycle) ≈ cost(4 CG iterations)
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Comparing the computational costs of CG vs MG

Consider a 2D shallow-water system and perform a complete data
assimilation exercize
(3 level-1 iterations, 15 level-2 iterations, p = 6, tol = 10−4)

Number of matrix-vectors products in the solution of involved linear systems
as a function of problem size
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Conclusions

Use of diffusion-based correlation models in 4DVAR

Linear algebra crucial for reasonable performance

MG outperforms CG when use in the integration loop

Spatial correlation properties preserved by approximate linear solves

More arguments using eigenvalues and condition numbers

Many thanks for your attention!
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