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The problem and how to caracterize a solution

The problem

We consider the unconstrained nonlinear programming problem:
minimize f(x)
for x € R" and f : R” — R smooth.
Important special case: the nonlinear least-squares problem
minimize f(x) = 1||F(x)|]?

for x € R" and F : R" — R™ smooth.
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The problem and how to caracterize a solution
A typical application of nonlinear least-squares

Consider a (physical, chemical, biological, ...) process evolving over time:

y = P(t)

and a parametrized model for this process

y ::Aﬂ(t,X)

for which observations {y; ~ P(t;)}7°% are known.
How to choose x, the model parameters? Often:

nobs

X, = arg mXin 1 Z lyi = M(t;,x)|13
i=1

Examples in sciences, engineering, economy, medecine, psychlogy, . ..
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The problem and how to caracterize a solution
Unconstrained optimization algorithms

More generally, how to find

X, = argmin f(x)
X

(assuming the problem is well-defined) 777
Typically, generate a sequence of iterates {xx}32, such that

{f(xk)}ozo is decreasing

and “hope” that, for some solution x,, {xx}22y — X« !
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The problem and how to caracterize a solution
How to generate the iterates?

A (good?) sequence of iterates {xx}7°, is generated by

| unconstrained optimization algorithms

(search methods (no derivatives of f used))

°
° (steepest descent)
° and its variants ensuring global convergence

e trust-region methods
e cubic regularization methods
o (linesearch methods)
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The problem and how to caracterize a solution

How is an (approximate) solution recognized?

Stop the algorithm as soon as

@ the slope of f is (approximately) zero, i.e.

IVxf (i)l < € (Lrst-order optimality)

@ the curvature of f is (approximately) non-negative, i.e.

Amin[Vix f (k)] > —en (2nd-order optimality)

for some (small) e, > 0 and ey > 0.

THE COMPLEXITY QUESTION:
How many iterations are needed at most?
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Complexity for achieving approximate 1lrst-order optimality
The complexity question

THE COMPLEXITY QUESTION:
How many iterations are needed at most?

needs assumptions on the smoothness of f [unspecified here]

(convex) vs.

strongly depends on the algorithm!
o the model of f being used (linear/quadratic/cubic)
o the model minimization (global vs. local)
o the cost of an iteration

typically very pessimistic

(usually quite tricky and technical...)
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Complexity for achieving approximate 1lrst-order optimality

A first approach to first-order optimality

Consider achieving (approximate) lrst-order optimality:

SURPRISE nr 1: a bound exists!
(and is independent of problem dimension)

Gradient methods

O(1/eg)

Nesterov

1rst-order trust-re

gion O(l/eé)

Gratton, Sartenaer and T.
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Complexity for achieving approximate 1lrst-order optimality
How to prove such results?

© Prove that, at “successful iterations” (j € S),

f(XJ) - f(Xj—i—l) > /@,||fo()g+1)||°‘, a=2

@ Assume ||V f(xj)|| > €, forall j=0,... k.
Then, for ng(k) = |SN{1,...,k}|,

k k
o 1
ns(k)eg < Y [[Vuf(xg10)]* < = > () = F(x41)]
j=0,jes " j=0,jes
f(xo) — f(Xpt1 f(xo) — &
o )= ) _ flo)
and thus f _f
nS(k) < La*
Kr€
© Prove that
k < ksns(k)
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Complexity for achieving approximate 1lrst-order optimality

More on first-order optimality (1)

SURPRISE nr 2:
a better bound exists for (cubic) regularization methods

With global model min

0(1/¢y%)

Nesterov

With local model min

0(1/¢g%)

Cartis, Gould and T.
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Complexity for achieving approximate 1lrst-order optimality

More on first-order optimality (2)

MOREOVER: the better bound (for cubic regularization) is

@ sharp

@ optimal for 2nd-order methods

Explicit counter example built by Hermite interpolation
(Cartis, Gould and T.)

x10°
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22021
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Complexity for achieving approximate 1lrst-order optimality

More on first-order optimality (3)

IN ADDITION:

the not-so-good bound for steepest descent is also sharp

Another explicit counter example built by Hermite interpolation

(Cartis, Gould and T.)
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Complexity for achieving approximate 1lrst-order optimality

And then...

SURPRISE nr 3:

Newton's method may need as many iterations

as steepest descent (in its worst case)!!!
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= Second-order information useless in the worst case!
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Complexity for achieving approximate 1lrst-order optimality
Other results

We can also prove that

o the (better) bound for cubic regularization extend to

e methods using finite-difference gradients
o derivative-free methods

(but now depends also on dimension)
@ the boundedness of level sets has no impact on the complexity bound

@ the not-so-good bound for steepest descent extends to composite
non-smooth functions

@ much better results hold for the convex case

@ also on special function classes (gradient dominated,...)
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Complexity for achieving approximate 2nd-order optimality

Finding weak unconstrained minimizers

We are now interested in finding x, such that

[V f (i) < €g and At sl LRl = —@)

(needs second-order information)
For the cubic regularization:

With global model min | O(1/€]) | Nesterov

With line model min O(l/eg) Cartis, Gould and T.
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Complexity for achieving approximate 2nd-order optimality

Finding weak unconstrained minimizers (2)

But also

Cubic reg. | Trust-region

€H < €g O(e’) | O(er’)
sharp sharp

e <en< e | O | 0,

sharp
-3/2 —[2,5/2
Ve < O(es %) | 0%
sharp “sharp”

Practically sensible: ey ~ | /€
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Constrained problems
Constrained optimization

Consider the constrained nonlinear programming problem:

minimize f(x)
xeF

for x ¢ R" and f : R" = R smooth, and where

F is convex.

‘Typical: bounds on the variables

@ exploit (cheap) projections on convex sets

@ prove global convergence + function-evaluation complexity
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Constrained problems
A cubic regularization algorithm for the constrained case

For projection-variants to achieve (approximate) lrst-order optimality

SURPRISE nr 4:
The same bounds hold as for the uncontrained case!!!

Irst-order cubic regularization | O(1/€)

2nd-order cubic regularization O(l/ezr/z)

Cartis, Gould and T.

= Convex bounds irrelevant for lrst-order complexity!
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Finally. . .
Conclusions and perspectives

strong position of the cubic regularization approach

worst-case analysis not irrelevant for algorithm design

challenging emerging area with many open questions

Many thanks for your attention!
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Finally. . .

Further reading
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