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The problem and how to caracterize a solution

The problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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The problem and how to caracterize a solution

A typical application of nonlinear least-squares

Consider a (physical, chemical, biological, . . . ) process evolving over time:

y = P(t)

and a parametrized model for this process

y = M(t, x)

for which observations {yi ≈ P(ti )}nobsi=1 are known.
How to choose x , the model parameters? Often:

x∗ = arg min
x

1
2

nobs∑
i=1

‖yi −M(ti , x)‖22

Examples in sciences, engineering, economy, medecine, psychlogy, . . .
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The problem and how to caracterize a solution

Unconstrained optimization algorithms

More generally, how to find

x∗ = arg min
x

f (x)

(assuming the problem is well-defined) ???
Typically, generate a sequence of iterates {xk}∞k=0 such that

{f (xk)}∞k=0 is decreasing

and “hope” that, for some solution x∗, {xk}∞k=0 → x∗ !
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The problem and how to caracterize a solution

How to generate the iterates?

A (good?) sequence of iterates {xk}∞k=0 is generated by

unconstrained optimization algorithms

(search methods (no derivatives of f used))

gradient methods (steepest descent)

Newton methods and its variants ensuring global convergence

trust-region methods
cubic regularization methods
(linesearch methods)
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The problem and how to caracterize a solution

How is an (approximate) solution recognized?

Stop the algorithm as soon as

the slope of f is (approximately) zero, i.e.

‖∇x f (xk)‖ ≤ εg (1rst-order optimality)

the curvature of f is (approximately) non-negative, i.e.

λmin[∇xx f (xk)] ≥ −εH (2nd-order optimality)

for some (small) εg > 0 and εH > 0.

THE COMPLEXITY QUESTION:
How many iterations are needed at most?
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Complexity for achieving approximate 1rst-order optimality

The complexity question

THE COMPLEXITY QUESTION:
How many iterations are needed at most?

needs assumptions on the smoothness of f [unspecified here]

(convex) vs. NONCONVEX

strongly depends on the algorithm!

the model of f being used (linear/quadratic/cubic)
the model minimization (global vs. local)
the cost of an iteration

typically very pessimistic

(usually quite tricky and technical. . . )
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Complexity for achieving approximate 1rst-order optimality

A first approach to first-order optimality

Consider achieving (approximate) 1rst-order optimality:

SURPRISE nr 1: a bound exists!
(and is independent of problem dimension)

Gradient methods O(1/ε2g ) Nesterov

1rst-order trust-region O(1/ε2g ) Gratton, Sartenaer and T.
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Complexity for achieving approximate 1rst-order optimality

How to prove such results?

1 Prove that, at “successful iterations” (j ∈ S),

f (xj)− f (xj+1) ≥ κr‖∇x f (xj+1)‖α, α = 2

2 Assume ‖∇x f (xj)‖ ≥ εg for all j = 0, . . . , k .
Then, for nS(k) = |S ∩ {1, . . . , k}|,

nS(k) εαg ≤
k∑

j=0, j∈S
‖∇x f (xj+1)‖α ≤ 1

κr

k∑
j=0, j∈S

[f (xj)− f (xj+1)]

≤ f (x0)− f (xk+1)
κr ≤ f (x0)− f∗

κr

and thus
nS(k) ≤ f (x0)− f∗

κr εα

3 Prove that
k ≤ κsnS(k)
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Complexity for achieving approximate 1rst-order optimality

More on first-order optimality (1)

SURPRISE nr 2:
a better bound exists for (cubic) regularization methods

With global model min O(1/ε
3/2
g ) Nesterov

With local model min O(1/ε
3/2
g ) Cartis, Gould and T.
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Complexity for achieving approximate 1rst-order optimality

More on first-order optimality (2)

MOREOVER: the better bound (for cubic regularization) is

sharp

optimal for 2nd-order methods

Explicit counter example built by Hermite interpolation
(Cartis, Gould and T.)
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Complexity for achieving approximate 1rst-order optimality

More on first-order optimality (3)

IN ADDITION:
the not-so-good bound for steepest descent is also sharp

Another explicit counter example built by Hermite interpolation
(Cartis, Gould and T.)
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Complexity for achieving approximate 1rst-order optimality

And then...

SURPRISE nr 3:
Newton’s method may need as many iterations

as steepest descent (in its worst case)!!!
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⇒ Second-order information useless in the worst case!
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Complexity for achieving approximate 1rst-order optimality

Other results

We can also prove that

the (better) bound for cubic regularization extend to

methods using finite-difference gradients
derivative-free methods

(but now depends also on dimension)

the boundedness of level sets has no impact on the complexity bound

the not-so-good bound for steepest descent extends to composite
non-smooth functions

much better results hold for the convex case

also on special function classes (gradient dominated,. . . )
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Complexity for achieving approximate 2nd-order optimality

Finding weak unconstrained minimizers

We are now interested in finding xk such that

‖∇x f (xk)‖ ≤ εg and λmin[∇xx f (xk)] ≥ −εH

(needs second-order information)
For the cubic regularization:

With global model min O(1/ε3g ) Nesterov

With line model min O(1/ε3g ) Cartis, Gould and T.
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Complexity for achieving approximate 2nd-order optimality

Finding weak unconstrained minimizers (2)

But also

Cubic reg. Trust-region

εH ≤ εg O(ε−3H ) O(ε−3H )
sharp sharp

εg < εH <
√
εg O(ε−3H ) O(ε

−{3,5}
H )

sharp

√
εg ≤ εH O(ε

−3/2
g ) O(ε

−[2,5/2]
g )

sharp “sharp”

Practically sensible: εH ≈
√
εg
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Constrained problems

Constrained optimization

Consider the constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Typical: bounds on the variables

Main ideas:

exploit (cheap) projections on convex sets

prove global convergence + function-evaluation complexity
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Constrained problems

A cubic regularization algorithm for the constrained case

For projection-variants to achieve (approximate) 1rst-order optimality

SURPRISE nr 4:
The same bounds hold as for the uncontrained case!!!

1rst-order cubic regularization O(1/ε2g )

2nd-order cubic regularization O(1/ε
3/2
g )

Cartis, Gould and T.

⇒ Convex bounds irrelevant for 1rst-order complexity!
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Finally. . .

Conclusions and perspectives

strong position of the cubic regularization approach

worst-case analysis not irrelevant for algorithm design

challenging emerging area with many open questions

Many thanks for your attention!
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Finally. . .
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