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What is data assimilation?

You use a kind of data assimilation scheme if you sneeze whilst driving
along the motorway.
As your eyes close involuntary; you retain in your mind a picture of the
road ahead and traffic nearby [observations],
as well as a mental model of how the car will behave in the short time
[dynamical system]
before you reopen your eyes and make a course correction [adjustment to
observations].

O’Neil et al (2004)
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Introduction The forward problem

Predicting the state of the atmosphere, of the ocean

The state of the atmosphere or the ocean (the system) is characterized by
state variables that are classically designated as fields:

velocity components

pressure

density

temperature

salinity

A dynamical model predicts the state of the system at a time given the
state of the ocean at a earlier time. We address here this estimation
problem. Applications are found in climate, meteorology, ocean, neutronic,
hydrology, seismic,... (forecasting) problems. Involving large computers
and nearly real-time computations.
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Introduction The forward problem

Predicting the state of the atmosphere of the ocean

Data: temperature, wind, pressure, . . . everywhere and at all times!
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Introduction The forward problem

Data collection
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Introduction Control theory

Optimal control problem

The fundamental problem of optimal control reads:

Definition

Find the control u (initial state parameters) out of a set of admissible controls U which
minimizes the cost functional

J =

∫ t1

t0

F (t, x, u)dt

subject to

ẋ = f(t, x, u), with x0 depending on u
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Introduction Control theory

DA as an optimal control problem

Since the problem of DA is to bring the model state closer to a given set observations,
this may be expressed in terms of minimizing:

J =

∫ t1

t0

(H(x)− y)TR−1(H(x)− y)dt

subject to

ẋ = f(t, x, u)

or in discrete form (that we will consider for the rest)

J =
N∑
i=0

(H(xi)− yi)
TR−1(H(xi)− yi)

subject to

xi =M(t,x0,u)
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Introduction Control theory

High performance computing point of view

Typical sizes would be for this problem 108 unknowns and 107

observations (Rabier, MTO)

If no particular structure taken into account, the solution of the
problem on a modern (3 · 109 operations/s) computer would take 200
centuries of computation by the normal equations

In terms of memory, working with the matrix in core memory of a
computer not practicable

Therefore iterative methods are used on parallel computers

Furthermore, maintaining good parallel performance is just vital for
4D-Var, wrt stochastic methods. MOMA chantier : CNES, MTO,
CERFACS, IRIT, IMT
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Introduction Control theory

Regularization technique

If all mapping involved in the problem where linear, the data assimilation
problem would often result

in a linear least squares problem with more unknown than equations

in a very ill-conditioned problem

A regularization technique is often needed. This is done using the
background information

J (x0) =
1

2
‖x0 − xb‖2B−1 +

1

2

N∑
i=0

‖Hi(xi)− yi‖2R−1
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Introduction Control theory

Four-Dimensional Variational (4D-Var) formulation

→ Very large-scale nonlinear weighted least-squares problem:

min
x∈Rn

f(x) =
1

2
||x− xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

where:

Size of real (operational) problems: x, xb ∈ R106

, yj ∈ R105

The observations yj and the background xb are noisy

Mj are model operators (nonlinear)

Hj are observation operators (nonlinear)

B is the covariance background error matrix

Rj are covariance observation error matrices
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Introduction Control theory

Incremental 4D-Var

Rewrite the problem as:

min
x∈Rn

f(x) =
1

2
||ρ(x)||22

Incremental 4D-Var is an inexact/truncated Gauss-Newton algorithm:

Linearize ρ around the current iterate x̃ and solves

min
x∈Rn

1

2
‖ρ(x̃) + J(x̃)(x− x̃)‖22

where J(x̃) is the Jacobian of ρ(x) at x̃

Solve a sequence of linear systems (normal equations)

JT (x̃)J(x̃)(x− x̃) = −JT (x̃)ρ(x̃)

where the matrix is symmetric positive definite and varies along the iterations
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Reduced space Krylov methods

Context

We want to find the minimizer x(t0) of the 4D-Var functional

J [x(t0)] =
1

2
(x(t0)− xb)TB−1(x(t0)− xb)

+
1

2

p∑
j=0

(Hj(x(tj))− yo
j )

TR−1
j (Hj(x(tj))− yo

j ),

where
x(tj) =Mj,0(x(t0));
B : background-error covariance matrix;
Rj : observation-error covariance matrices,
Hj : maps the model field at time tj to the observation space.
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Reduced space Krylov methods

Incremental 4D-Var Approach: algo overview

1 Transform the 4D-Var in a sequence of quadratic minimization
problems

2 Increments δx
(k)
0 are min. of functions J (k) defined by

J [δx0] =
1

2
‖δx0 − [xb − x0]‖2B−1 +

1

2
‖Hδx0 − d‖2R−1

3 Perform update

x(k+1)(t0) = x(k)(t0) + δx
(k)
0 .
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Reduced space Krylov methods

Inner minimization

Minimizing

J [δx0] =
1

2
‖δx0 − [xb − x0]‖2B−1 +

1

2
‖Hδx0 − d‖2R−1

amounts to solve

(B−1 +HTR−1H)δx0 = B−1(xb − x0) +HTR−1d.

Exact solution writes

xb − x0 +
(
B−1 +HTR−1H

)−1
HTR−1

(
d−H(xb − x0)

)
,

or equivalently (using the S-M-Woodbury formula)

xb − x0 +BHT
(
R+HBHT

)−1
(
d−H(xb − x0)

)
.
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Reduced space Krylov methods

Dual formulation : PSAS

1 Very popular when few observations compared to model variables.
Stimulated a lot of discussions e.g. in the Ocean and Atmosphere
communities (cfr P. Gauthier)

2 Relies on

xb − x0 +BHT
(
R+HBHT

)−1
(
d−H(xb − x0)

)
3 Iteratively solve(

I+R−1HBH
T
)
w = R−1(d−H(xb − x0)) for w

4 Set
δx0 = xb − x0 +BHTw
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Reduced space Krylov methods

Experiments

0 20 40 60 80
10

2

10
3

10
4

10
5

 size(B) = 1024      size(R) = 256

Iterations

C
o

st
 f

u
n

ct
io

n

 

 

RPCG
PSAS

Figure: The cost function versus the inner iterations for 1 Gauss-Newton iteration.
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Reduced space Krylov methods

Motivation : PSAS and CG-like algorithm

1 CG minimizes the Incremental 4D-Var function during its iterations.
It minimizes a quadratic approximation of the non quadratic function
: Gauss-Newton in the model space.

2 PSAS does not minimize the Incremental 4D-Var function during its
iterations but works in the observation space.

Our goal : put the advantages of both approaches together in a
Trust-Region framework, to guarantee convergence:

Keeping the variational property, to get the so-called Cauchy decrease
even when iterations are truncated.

Being computationally efficient whenever the number of observations
is significantly smaller than the size of the state vector.

Getting global convergence in the observation space !
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Reduced space Krylov methods

CG-like algorithm : assumptions 1

1 Suppose the CG algorithm is applied to solve the Inc-4D using a
preconditioning matrix F

2 Suppose there exists Gm×m such that

FHT = BHTG

3 For ”exact” preconditioners

(
B−1 +HTR−1H

)−1
HT = BHT

(
I+R−1HBHT

)−1
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Reduced space Krylov methods Working in the observation space

Preconditioned CG on Incremental 4D-Var cost function

Initialization steps

Loop: WHILE

1 qi−1 = Api−1

2 αi−1 = rTi−1zi−1 /q
T
i−1pi−1

3 vi = vi−1 + αi−1pi−1

4 ri = ri−1 + αi−1qi−1

5 zi = Fri
6 βi = rTi zi / r

T
i−1zi−1

7 pi = −zi + βipi−1

Initialization steps

Loop: WHILE

1 qi−1 =
(HTR−1H + B−1)pi−1

2 αi−1 = rTi−1zi−1 /q
T
i−1pi−1

3 vi = vi−1 + αi−1pi−1

4 ri = ri−1 + αi−1qi−1

5 zi = Fri
6 βi = rTi zi / r

T
i−1zi−1

7 pi = −zi + βipi−1
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Reduced space Krylov methods Working in the observation space

An useful observation

Theorem

Suppose that

1 BHTG = FHT.

2 v0 = xb − x0.

→ vectors r̂i, p̂i, v̂i, ẑi and q̂i such that

ri = HTr̂i,

pi = BHTp̂i,

vi = v0 +BHTv̂i,

zi = BHTẑi,

qi = HTq̂i
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Reduced space Krylov methods Working in the observation space

Preconditioned CG on Incremental 4D-Var cost function
(bis)

Initialization steps

given v0; r0 = (HTR−1H + B−1)v0 − b, . . .

Loop: WHILE

1 HTq̂i−1 = HT(R−1HB−1HT + Im)p̂i−1

2 αi−1 = rTi−1zi−1 / q̂
T
i−1p̂i−1

3 BHTv̂i = BHT(vi−1 + αi−1p̂i−1)

4 HTr̂i = HT(ri−1 + αi−1q̂i−1)

5 BHTẑi = FHTr̂i = BHTGr̂i
6 βi = (rTi zi / r

T
i−1zi−1)

7 BHTp̂i = BHT(−ẑi + βip̂i−1)
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Reduced space Krylov methods Working in the observation space

Restricted PCG (version 1) : expensive

Initialization steps

given v0; r0 = (HTR−1H + B−1)v0 − b, . . .

Loop: WHILE

1 q̂i−1 = (Im + R−1HB−1HT)p̂i−1

2 αi−1 = r̂Ti−1HBHT ẑi−1 / q̂
T
i−1HBHT p̂i−1

3 v̂i = v̂i−1 + αi−1p̂i−1

4 r̂i = r̂i−1 + αi−1q̂i−1

5 ẑi = FHTr̂i = Gr̂i
6 βi = r̂Ti HBHT ẑi / r̂

T
i−1HBHT ẑi−1

7 p̂i = −ẑi + βip̂i−1
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Reduced space Krylov methods Working in the observation space

More transformations

1 Consider w and t defined by

wi = HBHTẑi and ti = HBHTp̂i

2 From Restricted PCG (version 1)

ti =

{
−w0 if i = 0,
−wi + βiti−1 if i > 0,

3 Use these relations into Restricted PCG (version 1)

4 Transform Restricted PCG (version 1) into Restricted PCG (version 2)
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Reduced space Krylov methods Working in the observation space

Restricted PCG (version 2) : right inner-product!

Initialization steps

Loop: WHILE

1 q̂i−1 = R−1ti−1 + p̂i−1

2 αi−1 = wT
i−1r̂i−1 / q̂

T
i−1ti−1

3 v̂i = v̂i−1 + αi−1p̂i−1

4 r̂i = r̂i−1 + αi−1q̂i−1

5 ẑi = Gr̂i
6 wi = HBHTẑi
7 βi = wT

i r̂i /w
T
i−1r̂i−1

8 p̂i = −ẑi + βip̂i−1

9 ti = −wi + βiti−1
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Reduced space Krylov methods Quasi-Newton warm-start preconditioners

Finding efficient preconditioners

→ Limited Memory preconditioning! (Fisher (1998), Morales and Nocedal
(2000), Tschimanga et al. (2008))

The idea is:

1 Formulate the limited memory Quasi-Newton matrix

2 Generate the preconditioner using the information from CG iterations.

Want to find G that satisfies

FHT = BHTG

for a given F .
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Reduced space Krylov methods Quasi-Newton warm-start preconditioners

G as a Quasi-Newton warm-start preconditioner : Gilbert,
Lemarechal, Nocedal, Byrd, Zhu

Formulation of F as a Quasi-Newton Limited Memory
Preconditioner

Fk+1 = (I − τkpkq
T
k )Fk(I − τkqkp

T
k ) + τkpkp

T
k

pk is the search direction

τk = 1/(qTk pk)

qk = (B−1 +HTR−1H)pk

∆Fk defined by ∆Fk = Fk+1 − Fk , is the solution to the
problem:

min
∆Fk

∥∥∥W1/2
∆FkW

1/2
∥∥∥
F

subject to ∆Fk = ∆F
T
k , Fk+1qk = pk

Formulation for G as a Quasi-Newton Limited Memory
Preconditioner

Gk+1 = (I − τ̂k p̂k(Mq̂k)
T

)Gk(I − τ̂k q̂k p̂
T
kM)

+ τ̂k p̂k p̂
T
kM

M = HBHT , p̂k is the search direction,

q̂k = (Im + R−1HBHT )p̂k and

τ̂k = 1/(q̂Tk HBH
T p̂k)

∆Gk defined by ∆Gk = Gk+1 −Gk is the solution to
the problem:

min
∆Gk

∥∥∥∥(WM)
1/2

∆Gk(M
−1
W )

1/2
∥∥∥∥
F

subject to M∆Gk = ∆G
T
kM, Gk+1q̂k = p̂k
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Reduced space Krylov methods Quasi-Newton warm-start preconditioners

Computationally efficient RPCG algorithm using
Quasi-Newton Preconditioner

Loop: WHILE

1 q̂i−1 = R−1ti−1 + p̂i−1

2 αi−1 = wT
i−1r̂i−1 / q̂

T
i−1ti−1

3 v̂i = v̂i−1 + αi−1p̂i−1

4 r̂i = r̂i−1 + αi−1q̂i−1

5 l̂i = HBHTr̂i
6 ẑi = Gr̂i
7 wi = GT l̂i
8 βi = wT

i r̂i /w
T
i−1r̂i−1

9 p̂i = −ẑi + βip̂i−1

10 ti = −wi + βiti−1

11 mqi−1 = (li−1 − li−2)/αi−1

1 Consider a new vector l is defined as

li = HBH
T
r̂i

2 ẑi = Gr̂i and wi = HBHT ẑi

3 HBHTG is symmetric (HFHT = HBHTG)

wi = HBH
T
Gr̂i = G

T
HBH

T
r̂i = G

T
li

4 Multiply line 18 of RPCG (r̂i = r̂i−1 − αiq̂i) with

HBHT gives

HBH
T
q̂i = (li − li−1)/αi
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Reduced space Krylov methods Quasi-Newton warm-start preconditioners

Convergence Properties

If FA has eigenvalues µ1 ≤ µ2 ≤ ... ≤ µn, PCG algorithm with zero initial starting
vector satisfies the inequality:

‖xk+1 − x∗‖A ≤ 2(

√
µn −

√
µ1√

µn +
√
µ1

)k ‖x∗‖A

where A = B−1 +HTR−1H

If GÂ has eigenvalues ν1 ≤ ν2 ≤ ... ≤ νm, RPCG with zero initial starting vector
satisfies the inequality:

‖xk+1 − x∗‖A ≤ 2(

√
νm −

√
ν1√

νm +
√
ν1

)k ‖x∗‖A

where Â = I +R−1HBHT

‖xk+1 − x∗‖A ≤ 2(

√
νm −

√
ν1√

νm +
√
ν1

)k ‖x∗‖A ≤ 2(

√
µn −

√
µ1√

µn +
√
µ1

)k ‖x∗‖A
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Reduced space Krylov methods Quasi-Newton warm-start preconditioners

When H changes!

When the observation operator H changes, FHT = BHTG is not
satisfied.

Solution: To re-generate G by using the recent HBHT

It is costly!

We can approximate HBHT (Using quasi-Newton formula!) and use
this information to re-generate G. This is computationally efficient,
but the system matrix is not symmetric with respect to the
approximated inner product.

We can use FOM algorithm which is a solver for unsymmetric systems.
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Reduced space Krylov methods Quasi-Newton warm-start preconditioners

Experiments
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Reduced space Krylov methods Quasi-Newton warm-start preconditioners

Comments

We summarize here the main features of RPCG:

It amounts to solve the observation system with the right
inner-product HBHT

It is mathematically equivalent to PCG in the sense that, in exact
arithmetic, both algorithms generate exactly the same iterates.

It is possible to find G that satisfies FHT = BHTG for a given F to
accelerate convergence in dual space.

It contains a single occurrence of the matrix-vector products by B,
H, HT and R−1 per iteration.
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Reduced space Krylov methods Implementation and numerical experimentation

Loss (and recovery) of orthogonality : CONGRAD vs
M1QN3

1 The modified (G-S) orthogonalization scheme writes

ri ←
i−1∏
j=1

(
In −

rjr
T
j

rTj Frj

)
ri.

2 We suggest the following re-orthogonalization scheme

r̂i ←
i−1∏
j=1

(
Im −

r̂jw
T
j

r̂Tj wj

)
r̂i. (1)

3 Note that the total number of pairs to be stored can be reduced if
selective reorthogonalization is performed.
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Reduced space Krylov methods Implementation and numerical experimentation

Loss (and recovery) of orthogonality : experiment
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Figure: Orthogonalization issues.
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Reduced space Krylov methods Implementation and numerical experimentation

Conclusions

Have proposed a reformulation of the PCG for

(B−1 +HTR−1H)δx0 = B−1(xb − x0) +HTR−1d

The RPCG is mathematically equivalent to PCG

Exploits the fact that all vectors lie in a subspace of IRm

Cheaper than CG (memory and computation)

Some numerical experiments shown
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Reduced space Krylov methods Implementation and numerical experimentation

Perpectives

Perpectives

Behaviour in presence of round-off error

Find another efficient preconditioners F such that

FHT = BHTG

Implement RPCG in a real life data assimilation system : RTRA
project
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Using inexact matrix-vector products

Towards further reduction of the cost

We have shown that RPCG allows memory and computational cost reduction
whenever the number of observation is smaller than the size of the control vector

Similar results are possible with other Krylov methods (GMRES, FOM, ...)

The question now is: can we reduce cost further ?

Possible answer: inexact (cheap) matrix-vector products (truncated B−1, R−1,
simplified models, ...)

(Simoncini and Szyld, van den Eshop and Sleipen, Giraud, Gratton and Langou, ...)

→ But, there is a need of a stable modification of RPCG.
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Using inexact matrix-vector products

The Arnoldi process

Define (in the full space) A = In +BHTR−1H and set

K = BHT , L = R−1H

the successive nested Krylov subspaces generated by the sequence

b, (γIn +KTL)b, (γIn +KTL)2b, (γIn +KTL)3b, . . . (2)

or, equivalently, by

b, (KTL)b, (KTL)2b, (KTL)3b, . . . (3)

The Arnoldi process generates an orthonormal basis of each of the these subspaces, i.e.
a set of vectors {vi}k+1

i=1 with v1 = b/‖b‖ such that, after k steps,

KTLVk = Vk+1Hk, (4)

where Vk ≡ [v1, . . . , vk] and Hk is a (k + 1)× k upper-Hessenberg matrix.
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Using inexact matrix-vector products

Related methods: GMRES, MINRES, FOM, CG

Depending on how the matrix Hk is exploited to solve the problem we have

The GMRES algorithm (≡ MINRES for KT = L)

yk = arg min
y
‖Hky − β1e1‖, sk = Vkyk

The FOM algorithm (≡ CG for KT = L)

H�
k y = β1e1, sk = Vkyk

here, H�
k is the leading k × k submatrix of Hk.

GMRES (FOM) use long recurrences while MINRES (CG) use short ones.

Let

rk = (I +KTK)Vkyk − b and fk =
1

2
yTk V

T
k (γI +KTK)Vkyk − bTVkyk

→ GMRES and MINRES monotionically minimize rk while FOM and CG monotically
minimize fk along the iterations.
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Using inexact matrix-vector products

Range-space GMRES and FOM (RSGMR and RSFOM)

As CG may be rewritten in the observation space to yield RPCG, algorithms GMRES,
MINRES and FOM may be rewritten to yields similar variants.

Why a range-space GMRES and FOM (RSGMR and RSFOM)?

The FOM setting provides better accuracy and is much better suited to use
inexact matrix-vector products.

The cost of storing an orthonormal basis of the successive Krylov spaces is much
lower for range-space methods than for full-space ones.
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Using inexact matrix-vector products

Exact and inexact products: FOM vs CG

Is CG a reasonable framework for inexact products ?

Comparing ‖rk‖/(‖A‖‖s∗‖) for FOM, CG with reortho and CG for exact (left) and inexact (right) products

(τ = 10−9, κ ≈ 106)
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Using inexact matrix-vector products

Stability and convergence with inexact product

We want to bound ‖rk‖ in the context of Arnoldi process under inexact matrix-vector
products.

Some reasons to consider this question

The inexact nature of computer arithmetic implies that such such errors are
inevitable

To allow matrix-vector products in an inexact but cheaper form

Note that

the analysis is for GMRES but that in the context of FOM similar conclusions will
hold.

standard CG and MINRES are no longer equivalent to FOM and GMRES in the
context of unsymmetric perturbations.
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Using inexact matrix-vector products

Two error models

Assume that each iteration i product by K, K or L is inexact, that is

Li = L+ EL,i, KT
i = KT + EKT ,i, and Ki = K + EK,i

for some errors EL,i, EKT ,i, and EK,i. Consider two error models to describe the
inaccuracy in the matrix-vector products.

Backward:

‖EK,i+1‖ ≤ τK,i+1‖K‖,
‖EKT ,i+1‖ ≤ τKT ,i+1‖K‖,
‖EL,i+1‖ ≤ τL,i+1‖L‖,
‖EKT ,∗‖ ≤ τ∗‖K‖

Forward:

‖EK,i+1 un‖ ≤ τK,i+1‖Kun‖,
‖EKT ,i+1 um‖ ≤ τKT ,i+1‖Kum‖
‖EL,i+1 un‖ ≤ τL,i+1‖Lun‖
‖EKT ,∗ um‖ ≤ τ∗‖Kum‖
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Results for the backward error model

Define
qk = Hkyk − βe1, G = max[‖K‖, ‖L‖], ωk = max

i,...,k
‖v̂i‖

κ(K) = condition number of K

(... after some analysis ...)

Theorem

Assume the backward-error model. Then

‖rk‖ ≤
√

2(k + 1) ‖qk‖+ ‖K‖ωk
[
τ∗γ
√
k‖yk‖+ 4G2∑k

i=1 |[yk]i| τi
]

≤
√

2(k + 1)
[
‖qk‖+ τmaxκ(K) (γ + 4G2)‖yk‖

]
.

where τmax = max[τ1, . . . , τk].
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Results for the forward error model

Theorem

Assume the forward-error model. Then

‖rk‖ ≤
√

2(k + 1) ‖qk‖+
√
2

[
τ∗γ
√
k‖yk‖+ 4G ‖K‖

∑k
i=1 |[yk]i| τi

]
≤

√
2(k + 1)

[
‖qk‖+ τmax (γ + 4G ‖K‖)‖yk‖

]
.

Note in both sets of bounds:

The first of these bounds allows for variable accuray requirements

special role of τ∗.
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Error models (1)

Is the error model important? (ε = 10−5, κ ≈ 102)

Backward error model Forward error model

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )
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Error models (2)

Yes, it can definitely make the difference (ε = 10−5, κ ≈ 109)

Backward error model Forward error model

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )
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Fixed vs variable accuracy threshold (1)

Can we use variable accuracy thresholds efficiently? (ε = 10−5, κ ≈ 102)

Fixed τ τ ≈ 1/‖qk‖

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )
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Fixed vs variable accuracy threshold (2)

Maybe..., not obvious. (ε = 10−5, κ ≈ 102)

Fixed τ τ ≈ 1/‖qk‖

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ )
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Conclusions

Range space methods may be designed to gain from low rank

Further gains may be obtained from inexact products

Formal bounds on the residual norm are available in this context

Forward error modelling gives more flexibility than backward

True application: a real challenge (but we are working on it!)
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Thank you for your attention !
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