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The nonlinear unconstrained optimization problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth, possibly nonconvex

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
Applications: model estimation, nonlinear regression, data assimilation in

weather forecasting, geological exploration, image reconstruction, etc., etc.

Central to numerical scientific computing !
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How to solve it?

The main idea: iterative descent methods

iterative process generates a sequence of approximate solutions

each new iterate has a lower value of f than its predecessors

step based on ∇x f (xk) and (maybe) ∇xx f (xk).

globalization to ensure convergence from arbitrary starting points

A jungle of algorithms!
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Descent methods: a mountaineering view . . .
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Descent methods: a path towards the lake
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When do we stop?

Stop the iteration when

the surface is locally (nearly) flat

i.e. (in maths) when
‖∇x f (xk)‖ ≤ ε

(ε ∈ (0, 1) is a user-specified accuracy threshold)

A minimization algorithm = a rather complex (discrete) dynamical system
moving towards a (possibly very) distant goal

Our question today:

How fast does it get there?

(depends on ε, need to count “oracle” calls )
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Some notable algorithms (the use of local models)

How to compute the next iterate? Use a local model for f !

a linear model
f (xk + s) ≈ f (xk) + sT∇x f (xk)

Cauchy’s steepest descent method

a quadratic model

f (xk + s) ≈ f (xk) + sT∇x f (xk) + 1
2
sT∇xx f (xk)s

Newton’s method

a quadratic model + bound on the distance

f (xk + s) ≈ f (xk) + sT∇x f (xk) + 1
2
sT∇xx f (xk)s ‖s‖ ≤ ∆k

the trust-region method

a quadratic model + cubic penalization of distance

f (xk + s) ≈ f (xk) + sT∇x f (xk) + 1
2
sT∇xx f (xk)s + 1

3
σk‖s‖3

the cubic regularization method (ARC)
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Augustin Cauchy (1789-1857) Isaac Newton (1642-1727)
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What is known? (1)

How many function evaluations (iterations) (oracle calls) are needed to

ensure that ‖∇x f (xk)‖ ≤ ε?

The steepest descent algorithm requires at most⌈
κC
ε2

⌉
function evaluations

(Nesterov)

Newton’s method (when convergent) requires at most

??? function evaluations
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What is known? (2)

The trust-region algorithm requires at most

??? function evaluations

(Gratton, Sartenaer, T.)

The ARC algorithm requires at most⌈
κC
ε3/2

⌉
function evaluations

(Nesterov / Cartis, Gould, T.)

Some new results follow. . . (Cartis, Gould, T.)
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Complexity bound for ARC

Is the bound in O(ε−3/2) sharp? YES!!! (under reasonable assumptions)

Construct a unidimensional example with

x0 = 0, xk+1 = xk +

(
1

k + 1

) 1
3
+η

,

f0 =
2

3
ζ(1 + 3η), fk+1 = fk −

2

3

(
1

k + 1

)1+3η

,

gk = −
(

1

k + 1

) 2
3
+2η

, Hk = 0 and σk = 1,

Use Hermite interpolation on [xK , xk+1].
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An example of slow ARC (1)
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An example of slow ARC (2)
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An example of slow ARC (3)
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An example of slow ARC (4)
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Complexity bound for steepest-descent

Is the bound in O(ε−2) sharp? YES!!! (under reasonable assumptions)

As before, construct a unidimensional example with

gk = −
(

1

k + 1

) 1
2
+η

, and Hk = 1,

x0 = 0, xk+1 = xk + αk

(
1

k + 1

) 1
2
+η

,

for some steplength αk > 0 such that

0 < α ≤ αk ≤ α < 2,

giving the step

sk
def
= xk+1 − xk = αk

(
1

k + 1

) 1
2
+η

.
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An example of slow steepest descent (1)
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An example of slow steepest-descent (2)
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An example of slow steepest-descent (3)
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An example of slow steepest descent (4)
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Slow Newton

A big surprise:

Newton’s method may require as much as⌈
κC
ε2

⌉
function evaluations

to obtain ‖gk‖ ≤ ε (under reasonable assumptions)

The trsut-region method may require as much as⌈
κC
ε2

⌉
function evaluations

to obtain ‖gk‖ ≤ ε (under reasonable assumptions)

Example (for both) now bi-dimensional
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An example of slow Newton
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More general second-order methods (work in progress)

Assume that, for β ∈ (0, 1], the step is computed by

(Hk + λk I )sk = −gk and 0 ≤ λk ≤ κs‖sk‖β

(ex: Newton, ARC, (TR), . . . )

The corresponding method may require as much as⌈
κC

ε−(β+2)/(β+1)

⌉
function evaluations

to obtain ‖gk‖ ≤ ε on functions with bounded and (segment-
wise) β-Hölder continuous Hessians.

Note: ranges form ε−2 to ε−3/2

ARC is optimal within this class
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The constrained case

Can we apply the same ideas to the constrained case?

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Main ideas:

exploit (cheap) projections on convex sets

use the same conceptual approach
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Constrained step computation (1)

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

subject to
x + s ∈ F

σ is the (adaptive) regularization parameter

Criticality measure: (replaces ‖∇x f (xk)‖ ≤ ε)

χ(xk)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (xk), d〉
∣∣∣∣ ,
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Walking through the pass...
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Walking through the pass...with a sherpa
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Function-Evaluation Complexity for COCARC (2)

The COCARC algorithm requires at most⌈
κC
ε3/2

⌉
function evaluations

(for some κC independent of ε) to achieve χ(xk) ≤ ε

Caveat: cost of solving the subproblem c.f. unconstrained case!!!
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Conclusions

Conclusions

More known on 1rst-order and DFO methods
(Vicente / Cartis, Gould, T.)

Many open questions . . . but very interesting

Algorithm design profits from complexity analysis

Many issues regarding regularizations still unresolved

ARC is optimal amongst second-order methods

Many thanks for your attention!
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Conclusions
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