Inexact range-space Krylov solvers for linear systems arising from inverse problems

Serge Gratton, Philippe Toint and Jean Tshimanga

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

Hong Kong, January 2010

K ロ K K d K K K X X R X X R X R R

 $2Q$

Motivation: data assimilation for weather forecasting

(Attempt to) predict. . .

- **o** tomorrow's weather
- the ocean's average temperature next month
- **o** future gravity field
- future currents in the ionosphere

. . .

Data assimilation for weather forecasting (2)

Data: temperature, wind, pressure, ... everywhere and at all times!

4 **D** F

May involve up to 1,000,000,000 variables!

Data assimilation for weather forecasting (3)

The principle:

temp. vs. days

• Known situation 2.5 days ago and background prediction

Data assimilation for weather forecasting (3)

The principle:

temp. vs. days

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days

つひい

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days
- Run the model to minimize difference I between model and observations

temp. vs. days

$$
\min_{x_0} \frac{1}{2} ||x_0 - x_b||_{B^{-1}}^2 + \frac{1}{2} \sum_{i=0}^N ||\mathcal{HM}(t_i, x_0) - b_i||_{R_i^{-1}}^2.
$$

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations

temp. vs. days

- Known situation 2.5 days ago and background prediction
- Record temperature for the past 2.5 days
- Run the model to minimize difference I between model and observations
- Predict temperature for the next day

Data assimilation for weather forecasting (4)

Analysis of the ocean's heat content: CERFACS (2009)

Much better fit!

4 0 8

Data assimilation problem: reformulations (1)

initial formulation:

$$
\min_{x_0} \frac{1}{2} ||x_0 - x_b||_{B^{-1}}^2 + \frac{1}{2} \sum_{i=0}^N ||\mathcal{HM}(t_i, x_0) - y_i||_{R_i^{-1}}^2.
$$

linearize, concatenate successive times and define $x_0 = x_5 + s$.

$$
\min_{x_0} \frac{1}{2}(x_s + s - x_b)^T B^{-1}(x_s + s - x_b) + \frac{1}{2}(Hs - d)^T R^{-1}(Hs - d)
$$

write optimality conditions, using $c = x_b - x_s$:

$$
(B^{-1} + H^{T}R^{-1}H)s = H^{T}d + B^{-1}c
$$

つへへ

Data assimilation problem: reformulations (2)

precondition using $z = B^{-1/2}s$ and :

$$
\left(I + \underbrace{B^{1/2}H^T R^{-1/2}}_{K^T} \underbrace{R^{-1/2}H B^{1/2}}_{K}\right)z = \underbrace{B^{1/2}H^T R^{-1/2}}_{K^T} R^{-1/2}d + B^{-1/2}c
$$

or

precondition using $z = B^{-1}s$:

$$
\left(I + \underbrace{H^T R^{-1}}_{K^T} \underbrace{H B^{-1}}_{L}\right) z = \underbrace{H^T R^{-1}}_{K^T} d + B^{-1} c
$$

In practice: use CG with reorthogonalization (on problems where $n \approx 100,000$)...

The formal problem

Assume we now wish to solve

$$
(\gamma I_n + K^T L)s = b
$$

where $\gamma \neq 0$

Note: We do not assume full-rank of K or L

4 0 8 4

 299

The problem's sizes

But

4 0 8 ⊣⊢ 299

The standard GMRES for unsymmetric systems $Ax = b$

Based on the sequence of nested Krylov spaces:

$$
\mathcal{K}_k(A,b) = \mathsf{span}(b,Ab,\ldots,A^{k-1}b)
$$

Main idea:

At iteration k.

- build an orthonormal basis of $\mathcal{K}_k(A, b)$
- "solve" the problem in $\mathcal{K}_k(A, b)$ using this basis
- o check for convergence?
- + get the solution in \mathbb{R}^n

"solve" may be:

• minimize the residual of the restricted problem \Rightarrow GMRES

• solve a (small) system of linear equations \Rightarrow FOM

GMRES for $Ax = b(2)$

How to do that?

using $\mathcal{K}_{k-1}(A, b) \subset \mathcal{K}_k(A, b)$, incrementally build the basis of the span of

$$
V_k = [v_1, v_2, \dots, v_{k-1}, v_k] \quad \text{with} \quad V_k^T V_k = I_k
$$

by

- computing Av_{k-1} (to create a new dimension)
- projecting this vector on $\mathcal{K}_{k-1}(\mathit{A},\mathit{b})^\perp$ and normalizing the result

Philippe Toint (Namur) **January 2010** 11 / 30

GMRES for $Ax = b(3)$

How to do that?

2. Reduce the problem to $\mathcal{K}_k(A, b)$ (i.e. $x_k \in \mathcal{K}_k(A, b)$)

$$
\|\underbrace{AV_ky_k - b}_{\text{size n}}\| = \|V_{k+1}H_ky_k - \beta V_{k+1}e_1\| = \|\underbrace{H_ky_k - \beta e_1}_{\text{size k}}\|
$$

Then solve

$$
\min_{y} ||H_{k}y - \beta e_{1}|| \rightarrow y_{k} \quad \text{or} \quad \text{solve}_{y} H_{k}^{\Box}y = \beta e_{1} \rightarrow y_{k}
$$
\n
$$
||H_{k}|| - || \quad \text{or} \quad |H_{k}^{\Box}|| = ||
$$
\n(minimum residual)

\n(Galerkin)

\n(negligeable cost...)

4 0 8

 QQ

GMRES for $Ax = b(4)$

How to do that?

3. Test convergence: terminate if

$$
||H_k y_k - \beta e_1|| \le \epsilon_A \quad \text{or}
$$

$$
\frac{\|H_k y_k - \beta e_1\|}{\|H_k\| \|y_k\| + \beta} \le \epsilon_R
$$

4 0 8

4. Reconstruct solution in \mathbb{R}^n :

$$
x_k = V_k y_y
$$

$$
= \begin{bmatrix} 1 \\ V_k \\ V_k \end{bmatrix}
$$

 QQ

GMRES, FOM, MINRES and CG for $Ax = b$

 ${||r_k||}$ decreases monotonically, where $r_k = AV_k y_k - b$

(GMRES)

$$
f_k = y_k^T V_k^T A V_k y_k - b^T V_k y_k
$$
 decreases monotonically

(FOM)

• Can be extended to exploit symmetry \Rightarrow MINRES, CG

(in exact arithmetic)

Performs well in practice, but high storage cost (V_k) . \bullet

 200

The standard GMRES algorithm

$$
s = \mathsf{GMRES}(K, L, b)
$$

\n- \n**Observe that:**\n
$$
\beta_1 = \|b\|
$$
\n and\n $v_1 = b/\beta_1$.\n
\n- \n**For**\n $k = 1, \ldots, m$,\n
	\n- \n**or**\n $w_k = K^T L v_k$ \n
	\n- \n**or**\n $i = 1, \ldots, k$,\n
		\n- \n**or**\n $H_{i,k} = v_i^T w_k$ \n
		\n- \n**or**\n $w_k \leftarrow w_k - H_{i,k} v_i$ \n
		\n- \n**or**\n $W_{k,k} \leftarrow W_{k,k} + \gamma$,\n
			\n- \n**or**\n $\beta_{k+1} = H_{k+1,k} = \|w_k\|$,\n
			\n- \n**or**\n $v_{k+1} = w_k / \beta_{k+1}$,\n
			\n- \n**or**\n $y_k = \arg \min_y \|Hy - \beta_1 e_1\|$,\n
			\n- \n**or**\n $i \in \mathbb{I} + y_k - \beta_1 e_1\| < \epsilon$, break.\n
			\n\n
		\n- \n**return**\n $s = V_k y_k$.\n
		\n

 299

 $\rightarrow \equiv$

メロメ メ都 メメミメ

Range-space GMRES: the main idea

Return to the case of interest where

$$
A = \gamma I_n + K^T L \quad \text{and} \quad b = K^T d.
$$

Observe that

$$
\text{span}_{i=0,\dots,k-1} \left[\left(\gamma I_n + K^{\mathsf{T}} L \right)^i b \right] = \text{span}_{i=0,\dots,k-1} \left[\left(K^{\mathsf{T}} L \right)^i b \right]
$$

$$
\mathcal{K}_k(\gamma I_n + K^{\mathsf{T}} L, b) = \text{span}(b, K^{\mathsf{T}} L b, \dots, (K^{\mathsf{T}} L)^{k-1} b)
$$

$$
= \text{span}(K^{\mathsf{T}} d, K^{\mathsf{T}} L K^{\mathsf{T}} d, \dots, (K^{\mathsf{T}} L)^{k-1} K^{\mathsf{T}} d)
$$

$$
= K^{\mathsf{T}} \text{span}(d, L K^{\mathsf{T}} d, \dots, (L K^{\mathsf{T}})^{k-1} d)
$$

$$
\mathcal{K}_k(\gamma I_n + K^T L, b) = K^T \mathcal{K}_k(LK^T, d)
$$

4 0 8

(Gratton, Tshimanga for CG)

 QQ

The range-space GMRES (1)

Main objectives

all vectors now of size m! Factor K^T in the algorithm $(v = K^T \hat{v})$

good variational properties maintained

need to compute norms in \mathbb{R}^n :

$$
\|\mathbf{v}\|^2 = \|\mathbf{K}^T \hat{\mathbf{v}}\|^2 = \hat{\mathbf{v}}^T \underbrace{\mathbf{K} \mathbf{K}^T \mathbf{v}}_{\hat{z}} = \hat{\mathbf{v}}^T \hat{z}
$$

store \hat{V}_k and \hat{Z}_k (but of size $m)$

• additional product by K to compute $||v_k|| \dots$

No free lunch. . . for the unsymmetric case

The range-space GMRES (2)

$s = RSGMR0(K, L, d)$

\n- \n**1** Define
$$
p_1 = K^T d
$$
, $\hat{z}_1 = K p_1$,\n
\n- \n**2** Set $\beta_1 = \sqrt{d^T \hat{z}_1}$, $\hat{v}_1 = d/\beta_1$, $\hat{z}_1 \leftarrow \hat{z}_1/\beta_1$ and $p_1 \leftarrow p_0/\beta_1$.\n
\n- \n**3** For $k = 1, \ldots, m$,\n
\n- \n**4** For $i = 1, \ldots, k$,\n
\n- \n**5** If $i = 1, \ldots, k$,\n
\n- \n**6** If $i_k = \hat{z}_i^T \hat{w}_k$,\n
\n- \n**7** If $\hat{w}_k = \hat{w}_k - H_{i,k} \hat{v}_i$ \n
\n- \n**8** If $k_k \leftarrow H_{k,k} + \gamma$,\n
\n- \n**9** $p_{k+1} = K^T \hat{w}_k$, $\hat{z}_{k+1} = K p_k$, $\beta_{k+1} = H_{k+1,k} = \sqrt{\hat{z}_{k+1}^T \hat{w}_k}$,\n
\n- \n**10** $\hat{v}_{k+1} \leftarrow \hat{w}_k/\beta_{k+1}$, $\hat{z}_{k+1} \leftarrow \hat{z}_k/\beta_{k+1}$, $p_{k+1} \leftarrow p_k/H_{k+1,k}$,\n
\n- \n**2** $y_k = \arg \min_y ||Hy - \beta_1 e_1||$,\n
\n- \n**3** If $||Hy_k - \beta_1 e_1|| < \epsilon$, break.\n
\n- \n**3** Return $s = K^T \hat{V}_k y_k$.\n
\n

The range-space GMRES (3)

If $b \not\in \mathsf{range}(K^{\mathcal{T}})$...

• change K (and L)!

$$
\overline{K} = \left[\begin{array}{c} K \\ b^T \end{array} \right] \quad \text{and} \quad \overline{L} = \left[\begin{array}{c} L \\ 0^T \end{array} \right]
$$

and

$$
\overline{K}^{\mathcal{T}}\overline{L} = K^{\mathcal{T}}L \quad \text{with} \quad \overline{K}^{\mathcal{T}}e_{m+1} = b
$$

4 0 8

• vectors of size $m + 1$.

 299

The range-space GMRES (4)

$s = RSGMR(K, L, b)$

\n- \n**1** Define
$$
\beta_1 = ||b||
$$
, $p_1 = b$, $u = Kb$, $\hat{z}_1 = u/\beta_1$, and $\hat{v}_1 = e_{m+1}/\beta_1$.\n
\n- \n**2** For $k = 1, \ldots, m+1$, $\mathbf{w}_k^T = [(L_{pk})^T 0]$, $\hat{w}_k \leftarrow \hat{w}_k/\beta_k$, for $i = 1, \ldots, k$, $H_{i,k} = [\hat{z}_i^T 0] \hat{w}_k$ \n
\n- \n**3** $H_{k,k} \leftarrow H_{k,k} + \gamma$, H

Full- vs range-space Krylov methods

At iteration k :

Can we reduce cost further?

4 0 8

 QQ

Inexact products: the context

Possible answer: inexact matrix-vector products

(Simoncini and Szyld, van den Eshof and Sleipen, Giraud, Gratton and Langou, . . .)

Motivations:

- **o** stability wrt roundoff errors (remember iterates of RSGMR belong to range $(\mathcal{K}^\mathcal{T})!$)
- allow cheap products (truncated B^{-1} , R^{-1} , simplified models,...)

Two error models for the result of $p \approx Av$:

1 Backward:

$$
p = (A + E)v \quad \text{with} \quad ||E|| \leq \tau ||A||
$$

² Forward:

$$
p = Av + e \quad \text{with} \quad ||e|| \leq \tau ||Av||.
$$

 200

Inexact products: results for the backward error model

Define

$$
q_k = H_k y_k - \beta e_1
$$
, $G = \max[||K||, ||L||]$ $\omega_k = \max_{1,...,k} ||\hat{v}_i||$

 $\kappa(K)$ = condition number of K

(. . . after some analysis. . .)

Assume the backward error model. Then
\n
$$
||r_k|| \leq \sqrt{2(k+1)} ||q_k||
$$
\n
$$
+||K||\omega_k \left[\tau_* \gamma \sqrt{k} ||y_k|| + 4 G^2 \sum_{i=1}^k |[y_k]_i| \tau_i \right]
$$
\n
$$
\leq \sqrt{2(k+1)} [||q_k|| + \tau_{\max} \kappa(K) (\gamma + 4 G^2) ||y_k||].
$$

Inexact products: results for the forward error model

Assume the forward error model. Then
\n
$$
||r_k|| \leq \sqrt{2(k+1)} ||q_k|| + \sqrt{2} \left[\tau_* \gamma \sqrt{k} ||y_k|| + 4 G ||K|| \sum_{i=1}^k |[y_k]_i| \tau_i \right]
$$
\n
$$
\leq \sqrt{2(k+1)} \left[||q_k|| + \tau_{\max} (\gamma + 4 G ||K||) ||y_k|| \right]
$$

Note in both sets of bounds:

- first of these bounds allow for variable accuracy requirements
- o special role of τ_*

つひひ

CG with inexact products

Is CG a reasonable framework for inexact products?

Comparing $||r_k||/(||A|| \, ||s_*||)$ for FOM, CG with reorthog and CG for exact(left) and inexact (right) products ($\tau=10^{-9}$, $\kappa\approx10^6)$

RSGMR and the error models (2)

RSGMR and the error models (2)

Fixed vs variable accuracy thresholds (1)

Fixed vs variable accuracy thresholds (2)

Conclusions

Conclusions

- Range space methods may be designed to gain from low rank
- Further gains may be obtained from inexact products
- Formal bounds on the residual norms are available in this context
- Forward error modelling gives more flexibility than backward
- Many open questions . . . but very interesting
- Opens further doors for algorithm design:
	- efficiently spending one's "inaccuracy budget"
	- **short recurrence methods**
	- \bullet inexact full-space methods using forward error(?)
	- \bullet ...
- True application: a real challenge (but we are working on it!)

Many thanks for your attention!

4 0 8