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Data assimilation problems

Motivation: data assimilation for weather forecasting

(Attempt to) predict. . .

tomorrow’s weather

the ocean’s average temperature
next month

future gravity field

future currents in the ionosphere

. . .
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Data assimilation problems

Data assimilation for weather forecasting (2)

Data: temperature, wind, pressure, . . . everywhere and at all times!

May involve up to 1,000,000,000 variables!
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Data assimilation problems

Data assimilation for weather forecasting (3)

The principle:
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Data assimilation problems

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations
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• Record temperature for the past 2.5 days
• Run the model to minimize difference

I between model and observations

min
x0
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‖x0 − xb‖2B−1 +

1

2

N∑
i=0

‖HM(ti , x0)− bi‖2R−1
i
.
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Data assimilation problems

Data assimilation for weather forecasting (3)

The principle:

Minimize deviation between model and past observations
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temp. vs. days

• Known situation 2.5 days ago
and background prediction
• Record temperature for the past 2.5 days
• Run the model to minimize difference

I between model and observations
• Predict temperature for the next day
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Data assimilation problems

Data assimilation for weather forecasting (4)

Analysis of the ocean’s heat content: CERFACS (2009)

Much better fit!
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Data assimilation problems

Data assimilation problem: reformulations (1)

initial formulation:

min
x0

1

2
‖x0 − xb‖2B−1 +

1

2

N∑
i=0

‖HM(ti , x0)− yi‖2R−1
i
.

linearize, concatenate successive times and define x0 = xs + s:

min
x0

1
2
(xs + s − xb)TB−1(xs + s − xb) + 1

2
(Hs − d)TR−1(Hs − d)

write optimality conditions, using c = xb − xs :

(B−1 + HTR−1H)s = HTd + B−1c
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Data assimilation problems

Data assimilation problem: reformulations (2)

precondition using z = B−1/2s and :(
I + B1/2HTR−1/2︸ ︷︷ ︸R−1/2HB1/2︸ ︷︷ ︸) z = B1/2HTR−1/2︸ ︷︷ ︸R−1/2d + B−1/2c

KT K KT

or

precondition using z = B−1s:(
I + HTR−1︸ ︷︷ ︸HB−1︸ ︷︷ ︸) z = HTR−1︸ ︷︷ ︸ d + B−1c

KT L KT

In practice: use CG with reorthogonalization
(on problems where n ≈ 100, 000). . .
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Krylov iterative methods

The formal problem

Assume we now wish to solve

(γIn + KTL)s = b

where γ 6= 0
γIn + KT L


=

Note: We do not assume full-rank of K or L
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Krylov iterative methods

The problem’s sizes

But
γIn

︸ ︷︷ ︸

+

︸︷︷︸


=

n ≈ 1,000,000,000 !!! m ≈ 100, 000

Wish to work in IRm!
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Krylov iterative methods

The standard GMRES for unsymmetric systems Ax = b

Based on the sequence of nested Krylov spaces:

Kk(A, b) = span(b,Ab, . . . ,Ak−1b)

Main idea:

At iteration k ,

build an orthonormal basis of Kk(A, b)

“solve” the problem in Kk(A, b) using this basis

check for convergence?

+ get the solution in IRn

“solve” may be:

minimize the residual of the restricted problem ⇒ GMRES

solve a (small) system of linear equations ⇒ FOM
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Krylov iterative methods

GMRES for Ax = b (2)

How to do that?

1. using Kk−1(A, b) ⊂ Kk(A, b), incrementally build the basis of the
span of

Vk =
[
v1, v2, . . . , vk−1, vk

]
with V T

k Vk = Ik

by
computing Avk−1 (to create a new dimension)

projecting this vector on Kk−1(A, b)⊥ and normalizing the result

A Vk = Vk+1 Hk
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Krylov iterative methods

GMRES for Ax = b (3)

How to do that?

2. Reduce the problem to Kk(A, b) (i.e. xk ∈ Kk(A, b))

‖AVkyk − b︸ ︷︷ ︸ ‖ = ‖Vk+1Hkyk − βVk+1e1‖ = ‖Hkyk − βe1︸ ︷︷ ︸ ‖
size n size k

Then solve

miny ‖Hky − βe1‖ → yk or solvey H�
k y = βe1 → yk∥∥∥∥ Hk −

∥∥∥∥ or H�
k =

(minimum residual) (Galerkin)

(negligeable cost. . . )
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Krylov iterative methods

GMRES for Ax = b (4)

How to do that?

3. Test convergence: terminate if

‖Hkyk − βe1‖ ≤ εA or
‖Hkyk − βe1‖
‖Hk‖ ‖yk‖+ β

≤ εR

4. Reconstruct solution in IRn:

xk = Vkyy

= Vk

Philippe Toint (Namur) January 2010 13 / 30



Krylov iterative methods

GMRES, FOM, MINRES and CG for Ax = b

{‖rk‖} decreases monotonically, where rk = AVkyk − b

(GMRES)

fk = yT
k V T

k AVkyk − bTVkyk decreases monotonically

(FOM)

Can be extended to exploit symmetry ⇒ MINRES, CG

(in exact arithmetic)

Performs well in practice, but high storage cost (Vk).
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Krylov iterative methods

The standard GMRES algorithm

s = GMRES( K , L, b )

1 Define β1 = ‖b‖ and v1 = b/β1.
2 For k = 1, . . . ,m,

1 wk = KTLvk

2 for i = 1, . . . , k,

1 Hi,k = vT
i wk

2 wk ← wk − Hi,kvi

3 Hk,k ← Hk,k+γ,
4 βk+1 = Hk+1,k = ‖wk‖,
5 vk+1 = wk/βk+1,
6 yk = arg miny ‖Hy − β1e1‖,
7 if ‖Hyk − β1e1‖ < ε, break.

3 Return s = Vkyk .
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Krylov iterative methods

Range-space GMRES: the main idea

Return to the case of interest where

A = γIn + KTL and b = KTd .

Observe that

spani=0,...,k−1

[(
γIn + KTL

)i
b

]
= spani=0,...,k−1

[(
KTL

)i
b

]
Kk(γIn + KTL, b) = span(b,KTLb, . . . , (KTL)k−1b)

= span(KTd ,KTLKTd , . . . , (KTL)k−1KTd)

= KT span(d , LKTd , . . . , (LKT )k−1d)

Kk(γIn + KTL, b) = KTKk(LKT , d)

(Gratton, Tshimanga for CG)
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Krylov iterative methods

The range-space GMRES (1)

Main objectives

all vectors now of size m! Factor KT in the algorithm (v = KT v̂)

good variational properties maintained

need to compute norms in IRn:

‖v‖2 = ‖KT v̂‖2 = v̂T KKT v︸ ︷︷ ︸ = v̂T ẑ

ẑ

store V̂k and Ẑk (but of size m)

additional product by K to compute ‖vk‖. . .

No free lunch. . . for the unsymmetric case
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Krylov iterative methods

The range-space GMRES (2)

s = RSGMR0( K , L, d )

1 Define p1 = KTd , ẑ1 = Kp1,

2 Set β1 =
√

dT ẑ1, v̂1 = d/β1 ẑ1 ← ẑ1/β1 and p1 ← p0/β1.
3 For k = 1, . . . ,m,

1 ŵk = Lpk

2 for i = 1, . . . , k,

1 Hi,k = ẑT
i ŵk

2 ŵk ← ŵk − Hi,k v̂i

3 Hk,k ← Hk,k + γ,

4 pk+1 = KT ŵk , ẑk+1 = Kpk , βk+1 = Hk+1,k =
√

ẑT
k+1ŵk ,

5 v̂k+1 ← ŵk/βk+1, ẑk+1 ← ẑk/βk+1,, pk+1 ← pk/Hk+1,k ,
6 yk = arg miny ‖Hy − β1e1‖,
7 if ‖Hyk − β1e1‖ < ε, break.

4 Return s = KT V̂kyk .
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Krylov iterative methods

The range-space GMRES (3)

If b 6∈ range(KT ). . .

change K (and L)!

K =

[
K
bT

]
and L =

[
L

0T

]
and

K
T

L = KTL with K
T

em+1 = b

vectors of size m + 1.
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Krylov iterative methods

The range-space GMRES (4)

s = RSGMR( K , L, b )

1 Define β1 = ‖b‖, p1 = b, u = Kb, ẑ1 = u/β1,
and v̂1 = em+1/β1.

2 For k = 1, . . . ,m+1,
1 ŵT

k = [(Lpk)T 0], ŵk ← ŵk/βk ,
2 for i = 1, . . . , k,

1 Hi,k = [ẑT
i 0] ŵk

2 ŵk ← ŵk − Hi,k v̂i

3 Hk,k ← Hk,k + γ,

4 pk+1 = [KT b] ŵk , ẑk+1 = Kpk+1, ζk+1 = [uT β2
1 ] ŵk ,

5 βk+1 = Hk+1,k =
√

[ẑT
k+1 ζk+1] ŵk ,

6 v̂k+1 ← ŵk/βk+1, ẑk+1 ← ẑk/βk+1,
7 yk = arg miny ‖Hy − β1e1‖,
8 if ‖Hyk − β1e1‖ < ε, break.

3 Return s = [KT b]V̂kyk .
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Krylov iterative methods

Full- vs range-space Krylov methods

At iteration k :

GMRES RSGMR

storage n(k + 1) + k(k + 3)/2 n + (2m + 1)k + k(k + 3)/2
internal flops 4nk + 3n + [sol ] 4mk + 7m + [sol ]
products by KT , L KT , K , L

FOM (sym) RSFOM (sym)

storage n(k + 1) + k(k + 3)/2 (2m + 1)k + k(k + 3)/2
internal flops 4nk + 3n + [sol ] 4mk + 6m + [sol ]
products by KT , K KT , K

Can we reduce cost further?
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Krylov iterative methods

Inexact products: the context

Possible answer: inexact matrix-vector products

(Simoncini and Szyld, van den Eshof and Sleipen, Giraud, Gratton and Langou, . . . )

Motivations:

stability wrt roundoff errors
(remember iterates of RSGMR belong to range(KT )! )

allow cheap products (truncated B−1, R−1, simplified models,. . . )

Two error models for the result of p ≈ Av :

1 Backward:
p = (A + E )v with ‖E‖ ≤ τ‖A‖

2 Forward:
p = Av + e with ‖e‖ ≤ τ‖Av‖.
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Krylov iterative methods

Inexact products: results for the backward error model

Define

qk = Hkyk − βe1, G = max [ ‖K‖, ‖L‖ ] ωk = max
1,...,k

‖v̂i‖

κ(K ) = condition number of K

(. . . after some analysis. . . )

Assume the backward error model. Then

‖rk‖ ≤
√

2(k + 1) ‖qk‖

+‖K‖ωk

[
τ∗γ
√

k‖yk‖+ 4 G 2
∑k

i=1 |[yk ]i | τi
]

≤
√

2(k + 1)
[
‖qk‖+ τmaxκ(K ) (γ + 4 G 2)‖yk‖

]
.
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Krylov iterative methods

Inexact products: results for the forward error model

Assume the forward error model. Then

‖rk‖ ≤
√

2(k + 1) ‖qk‖+
√

2

[
τ∗γ
√

k‖yk‖+ 4 G ‖K‖
∑k

i=1 |[yk ]i | τi
]

≤
√

2(k + 1)

[
‖qk‖+ τmax (γ + 4 G ‖K‖)‖yk‖

]

Note in both sets of bounds:

first of these bounds allow for variable accuracy requirements

special role of τ∗
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Krylov iterative methods

CG with inexact products

Is CG a reasonable framework for inexact products?

Comparing ‖rk‖/(‖A‖ ‖s∗‖) for FOM, CG with reorthog and CG for
exact(left) and inexact (right) products (τ = 10−9, κ ≈ 106)
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Krylov iterative methods

RSGMR and the error models (2)

Is the error model important? (ε = 10−5, κ ≈ 102)

Backward error model Forward error model

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ)
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Krylov iterative methods

RSGMR and the error models (2)

Yes , it can definitely make a difference (ε = 10−5, κ ≈ 109)

Backward error model Forward error model

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ)
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Krylov iterative methods

Fixed vs variable accuracy thresholds (1)

Can we use variable accuracy thresholds efficiently? (ε = 10−5, κ ≈ 102)

Fixed τ τ ≈ 1/‖qk‖

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ)
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Krylov iterative methods

Fixed vs variable accuracy thresholds (2)

Maybe. . . , not obvious. (ε = 10−5, κ ≈ 109)

Fixed τ τ ≈ 1/‖qk‖

(normalized ‖rk‖, normalized ‖qk‖, accuracy threshold τ)
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Conclusions

Conclusions

Range space methods may be designed to gain from low rank

Further gains may be obtained from inexact products

Formal bounds on the residual norms are available in this context

Forward error modelling gives more flexibility than backward

Many open questions . . . but very interesting

Opens further doors for algorithm design:

efficiently spending one’s “inaccuracy budget”
short recurrence methods
inexact full-space methods using forward error(?)
. . .

True application: a real challenge
(but we are working on it!)

Many thanks for your attention!
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