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Cubic regularization for unconstrained problems

The problem

We consider the unconstrained nonlinear programming problem:
minimize f(x)
for x € R" and f : R” — R smooth.
Important special case: the nonlinear least-squares problem
minimize f(x) = 1||F(x)|?

for x € R" and F : R" — R™ smooth.
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Cubic regularization for unconstrained problems

A useful observation

Note the following: if

@ f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f(x+s) = f(x)+(s,g(x)) + (s, H(x)s)
+ 31— a)(s, [H(x + as) — H(x)]s) da
< f(x) + (s, 8(x)) + 4(s, H(x)s) + iL][|s]3

m(s)

— reducing m from s = 0 improves f since m(0) = f(x). ‘
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Cubic regularization for unconstrained problems

The cubic regularization

Change from trust-regions:

s

min  f(x) + (s, g(x)) + (s, H(x)s) s.t. ||s|| <A

to cubic regularization:

min  f(x) + (s,g(x)) + 3(s, H(x)s) + 1o]s]®

S

o is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard /Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Cubic regularization for unconstrained problems

Cubic regularization highlights

F(x+5) < m(s) = F(x) +5 g(x) + §sTH(x)s + LL|s|33

o Nesterov and Polyak minimize m globally and

e N.B. m may be non-convex!
o efficient scheme to do so if H has sparse factors

@ global (ultimately rapid) convergence to a 2nd-order critical point of f

@ better worst-case function-evaluation complexity than previously
known

Obvious questions: ‘

@ can we avoid the global Lipschitz requirement?

@ can we approximately minimize m and retain good worst-case
function-evaluation complexity?

@ does this work well in practice?
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Cubic regularization for unconstrained problems

Cubic overestimation

o fec(C?

o f, g and H at xi are fi, gx and H,
@ symmetric approximation By to Hy
°

By and Hj bounded at points of interest

Use

@ cubic overestimating model at xx
_ T T 3
mi(s) = fic+ 5 8k + 35" Bis + Joulsl2
e oy is the iteration-dependent regularisation weight

o easily generalized for regularisation in My-norm ||s||p, = \/sT Mis
where M is uniformly positive definite
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Cubic regularization for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 1.1: The ARC Algorithm

Step 0: Initialization: xg and og > 0 given. Set kK =0

Step 1: Step computation: Compute s, for which | my(sk) < my(sy)

Cauchy point: s = —agg, & aj = arg min my(—agk)
acRy

f(xk) — F(xk + sk)
f(Xk) — mk(sk)

Step 2: Step acceptance: Compute py =

Xk + Sk if Pk >

and set x = .
ktl { Xk otherwise

Step 3: Update the regularization parameter:

Ok4+1 €
(0, 04] if p > very successful
[0k, y10K] if < pk < successful
[v10k, Y20«] otherwise unsuccessful
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Cubic regularization for unconstrained problems

Local convergence theory for cubic regularization (1)

The Cauchy condition:

18] Al
1+ [[Hill”\ ok

mi(xk) — mi(xk + sk) > Kerllgkl| min

The bound on the stepsize:

H
lsell < 3max |10l [l
Ok Ok

(Cartis/Gould/T)
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Cubic regularization for unconstrained problems

Local convergence theory for cubic regularization (2)

And therefore. . .

I =
Jim {lgk|l =0

Under stronger assumptions can show that

If s, minimizes my over subspace with orthogonal basis Qj,

lim Q/ H,Q, =0
k—o0
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Cubic regularization for unconstrained problems
Fast convergence

For fast asymptotic convergence = need to improve on Cauchy point:
minimize over Krylov subspaces
. . 1
o g stopping-rule: [[Vsmy(si )| < min(1, [|gl|2)llgxll
o s stopping-rule: [[Vsmy(si)|| < min(1, [|sk]| )llgkll

If By satisfies the Dennis-Moré condition

1(Bk — Hi)skll/ skl — O whenever ||gx|| — 0
and xx — X, with positive definite H(x;)

= Q-superlinear convergence of xx under the g- and s-rules

If additionally H(x) is locally Lipschitz around x, and
1(Bk — Hi)sill = O(llsk1*)

= Q-quadratic convergence of x; under the s-rule
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Cubic regularization for unconstrained problems

Function-evaluation complexity (1)

How many function evaluations (iterations) are needed to ensure that

gkl < €?

So long as for very successful iterations ox1 < 30 for 3 < 1

The basic ARC algorithm requires at most

Pﬂzl—‘ function evaluations
€

for some k¢ independent of €
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Cubic regularization for unconstrained problems

Function-evaluation complexity (2)

How many function evaluations (iterations) are needed to ensure that

gkl < €?

If H is globally Lipschitz, the s-rule is applied and additionally
sk is the global (line) minimizer of my(ask) as a function of «,
the ARC algorithm requires at most

[—2/521 function evaluations
€

for some kg independent of e.

Note: an O(e~3) bound holds for convergence to second-order critical

points.
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Cubic regularization for unconstrained problems

Function-evaluation complexity (3)

Is the bound in O(e=3/2) sharp?

Construct a unidimensional example with

1\t
x0 =0, Xeq41=xkx+ <> ;

k+1
2 2/ 1\
0 34( +3n),  fip1="f 3<k+1> ,
1 %4‘277
8k <k+1> , x =0 and oy ,

‘Use Hermite interpolation on [xK,xk+1].‘
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Cubic regularization for unconstrained problems

An example of slow ARC (1)

x10°
22223

2.2022

2.22221

2.22221

222211

2.222F

2222 L L L L L L L L
0

The objective function
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Cubic regularization for unconstrained problems

An example of slow ARC (2)

The first derivative
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Cubic regularization for unconstrained problems

An example of slow ARC (3)

The second derivative
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Cubic regularization for unconstrained problems

An example of slow ARC (4)

The third derivative
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Cubic regularization for unconstrained problems

Minimizing the model

l m(s)=f+sg+ 1s"Bs+ Lo|s|3

° ‘Small problems:‘

use Moré-Sorensen-like method with modified secular equation
(also OK as long as factorization is feasible)

° ‘ Large problems: ‘

an iterative Krylov space method

lapproximate solution |

‘ Numerically sound procedures for computing exact/approximate steps
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Cubic regularization for unconstrained problems

The main features of adaptive cubic regularization

And the result is. ..

| longer steps on ill-conditioned problems |

‘ similar (very satisfactory) convergence analysis ‘

| best function-evaluation complexity for nonconvex problems |

| excellent performance and reliability |
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Cubic regularization for unconstrained problems

Numerical experience — small problems using Matlab

Performance Profile: iteration count — 131 CUTETr problems
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Regularization techniques for constrained problems
The constrained case

lCan we apply regularization to the constrained case?‘

Consider the constrained nonlinear programming problem:

minimize f(x)
xecF

for x € R" and f : R" — R smooth, and where

F is convex.

@ exploit (cheap) projections on convex sets
@ define using the generalized Cauchy point idea

@ prove global convergence + function-evaluation complexity
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Regularization techniques for constrained problems

Constrained step computation (1)

min  f(x) + (s,g(x)) + i(s, H(x)s) + 1o]s]®

s

subject to
x+seF

o is the (adaptive) regularization parameter

Criticality measure: ‘ (as before)

va(X)v d) ’

min
x+deF,|d||<1
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Regularization techniques for constrained problems

The generalized Cauchy point for ARC

Cauchy step: | Goldstein-like piecewise linear seach on my along the

gradient path projected onto F

Find
def
XEC = P}'[Xk — t,fcgk] = Xk + S,fc (tﬁc > 0)

such that

Mi(xgS) < F(xk) + Kus(8k, Si<)  (below linear approximation)
and either

mi(xg€) > f(xk) + Kis(8k,s¢*)  (above linear approximation)

or
1Pruscy 8l < ol s§)] (close to path’s end)

no trust-region condition!
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Regularization techniques for constrained problems

Searching for the ARC-GCP

5 T T
| |

my(0 +s) = —3.57s; — 1.5sp — s3 + 515 + 3522 + sp83 — 2s§+% HSH3 such that s < 1.5
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Regularization techniques for constrained problems
A constrained regularized algorithm

Algorithm 2.1: ARC for Convex Constraints (COCARC)

Step 0: Initialization. xo € F, o¢ given. Compute f(xp), set k = 0.
Step 1: Generalized Cauchy point. If x, not critical, find the
xg¢ by on the
regularized
Step 2: Step calculation. Compute s, and x,j def Xk + Sk such
that mi(x) < my(x£°).
Step 3: Acceptance of the trial point. Compute f(x,") and py.
If px > m1, then xkr1 = Xk + Sk; otherwise Xx41 = Xk-
Step 4: Regularisation parameter update. Set
(0,04] if pk >,
ok+1 € { ok, 1104 if pk € [m,m2),
1ok v20k] if pi <
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Regularization techniques for constrained problems
Local convergence theory for COCARC

The Cauchy condition:

Xk Xk 1}

my(xi) — me(xi + sk) > K min | —————,, / —,
k( k) k( k k)_ CRXk [1+||Hk|| o

The bound on the stepsize:

||sk|] < 3 max

1 1
1Al (xk\® (x)?
ox \ox) \ok

And therefore. . .

lim xx =0
=

(Cartis/Gould/T)
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Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (1)

But

What about function-evaluation complexity?

If, for very successful iterations, oxi1 < 30 for 73 < 1,
the COCARC algorithm requires at most

P‘—g—‘ function evaluations
€

(for some k¢ independent of €) to achieve xx < €

Do the nicer bounds for unconstrained optimization extend to the
constrained case?
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Regularization techniques for constrained problems

Function-evaluation complexity for COCARC (2)

As for unconstrained, impose a termination rule on the subproblem
solution:

e Do not terminate solving min,, . r my(x; + s) before

XY < min(Kueps 1561 X6

where

[ Vx ,d
cradE <> M) >‘

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers
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Regularization techniques for constrained problems

Walking through the pass...

feasible

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

A “beyond the pass” constrained problem with
3
m(x,y) = —x — &y — x* — &y + 1[<* + y?]2
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Regularization techniques for constrained problems

Walking through the pass...with a sherpa

feasible

A piecewise descent path from xj to x,j on

3
m(x,y) = —x = {&y = 55 = oy’ + 1 + ¥
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Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (2)

Assume also
o Xy — x;r in a bounded number of feasible descent substeps
o [[Hi — Vot ()|l < sl
o V,«f(:) is globally Lipschitz continuous
o {xx} bounded

The COCARC algorithm requires at most

{"3”(/2—‘ function evaluations
€

(for some k¢ independent of €) to achieve yx < €

Caveat: cost of solving the subproblem

Philippe Toint (Namur) August 2009 31/ 42



Unregularized methods
Without regularization 7

What is known for unregularized (standard) methods?

The steepest descent method requires at most

{ig-‘ function evaluations
€

for obtaining ||gk|| < e.

Sharp???

Newton's method (when convergent) requires at most

?7? function evaluations

for obtaining ||gk|| < e.
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Unregularized methods
Slow steepest descent (1)

For steepest descent, the bound of

{%Q-‘ function evaluations

is sharp on functions with Lipschitz continuous gradients.

As before, construct a unidimensional example with

1\
X0 =0, Xep1=xk+ ok (k—l—1> )

for some steplength «ay > 0 such that
O<a<ar<a<?,
giving the step
def 1\
Sk = Xk4+1 — Xk = Qk <k—i—1> .
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Unregularized methods
Slow steepest descent (1)

Also set

= - pr— —_— - l E—
fo = 2C(1+2T7), fk+1 fk ak(l 2Oék) <k+1> s

1\
- (— d He=1
()" s

‘Use Hermite interpolation on [xK,ka].‘
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Unregularized methods

An example of slow steepest descent (1)
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2.4999
2.4999 -
2.4999
2.4999

2.4999
0

The objective function
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Unregularized methods

An example of slow steepest-descent (2)

The first derivative
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Unregularized methods

An example of slow steepest-descent (3)

The second derivative
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Unregularized methods

An example of slow steepest descent (4)

The third derivative
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Unregularized methods

Slow Newton (1)

A big surprise:

Newton's method may require as much as

{%Q-‘ function evaluations

€

to obtain ||gk|| < € on functions with bounded and (segment-
wise) Lipschitz continuous Hessians.

Example now bi-dimensional
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Unregularized methods

Slow Newton (2)

The conditions are now:

AL
x0= (0,007, xey1=xc+ (m)

=5 KO+2) 4+, =i~

1+n
gk = — <‘:'l'1>2 , and Hk:((:'L) <1O>2>

k+1

Use previous example for x; and Hermite interpolation on [xk, xk41] for XQ.‘
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Conclusions
Conclusions

@ Many open questions ... but very interesting

@ | Algorithm design profits from complexity analysis

@ Many issues regarding regularizations still unresolved

Many thanks for your attention!
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