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Cubic regularization for unconstrained problems

The problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Cubic regularization for unconstrained problems

A useful observation

Note the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1
0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖32︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Cubic regularization for unconstrained problems

The cubic regularization

Change from trust-regions:

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to cubic regularization:

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Cubic regularization for unconstrained problems

Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sT H(x)s + 1

3
L‖s‖32

Nesterov and Polyak minimize m globally and exactly

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case function-evaluation complexity than previously
known

Obvious questions:

can we avoid the global Lipschitz requirement?

can we approximately minimize m and retain good worst-case
function-evaluation complexity?

does this work well in practice?
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Cubic regularization for unconstrained problems

Cubic overestimation

Assume

f ∈ C 2

f , g and H at xk are fk , gk and Hk

symmetric approximation Bk to Hk

Bk and Hk bounded at points of interest

Use

cubic overestimating model at xk

mk(s) ≡ fk + sTgk + 1
2
sTBks + 1

3
σk‖s‖32

σk is the iteration-dependent regularisation weight
easily generalized for regularisation in Mk -norm ‖s‖Mk

=
√

sTMks
where Mk is uniformly positive definite
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Cubic regularization for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 1.1: The ARC Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Step computation: Compute sk for which mk(sk) ≤ mk(sC
k)

Cauchy point: sC
k = −αC

kgk & αC
k = arg min

α∈IR+

mk(−αgk)

Step 2: Step acceptance: Compute ρk =
f (xk)− f (xk + sk)

f (xk)−mk(sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 3: Update the regularization parameter:
σk+1 ∈

(0, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful
[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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Cubic regularization for unconstrained problems

Local convergence theory for cubic regularization (1)

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCR‖gk‖min

 ‖gk‖
1 + ‖Hk‖

,

√
‖gk‖
σk



The bound on the stepsize:

‖sk‖ ≤ 3 max

‖Hk‖
σk

,

√
‖gk‖
σk


(Cartis/Gould/T)
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Cubic regularization for unconstrained problems

Local convergence theory for cubic regularization (2)

And therefore. . .

lim
k→∞

‖gk‖ = 0

first-order global convergence

Under stronger assumptions can show that

If sk minimizes mk over subspace with orthogonal basis Qk ,

lim
k→∞

QT
k HkQk � 0

second-order global convergence
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Cubic regularization for unconstrained problems

Fast convergence

For fast asymptotic convergence =⇒ need to improve on Cauchy point:
minimize over Krylov subspaces

g stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖gk‖
1
2 )‖gk‖

s stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖sk‖ )‖gk‖

If Bk satisfies the Dennis-Moré condition

‖(Bk − Hk)sk‖/‖sk‖ → 0 whenever ‖gk‖ → 0

and xk → x∗ with positive definite H(x∗)

=⇒ Q-superlinear convergence of xk under the g- and s-rules

If additionally H(x) is locally Lipschitz around x∗ and

‖(Bk − Hk)sk‖ = O(‖sk‖2)

=⇒ Q-quadratic convergence of xk under the s-rule
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Cubic regularization for unconstrained problems

Function-evaluation complexity (1)

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

So long as for very successful iterations σk+1 ≤ γ3σk for γ3 < 1

The basic ARC algorithm requires at most⌈
κC

ε2

⌉
function evaluations

for some κC independent of ε

c.f. steepest descent
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Cubic regularization for unconstrained problems

Function-evaluation complexity (2)

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ε?

If H is globally Lipschitz, the s-rule is applied and additionally
sk is the global (line) minimizer of mk(αsk) as a function of α,
the ARC algorithm requires at most⌈

κS

ε3/2

⌉
function evaluations

for some κS independent of ε.

c.f. Nesterov & Polyak
Note: an O(ε−3) bound holds for convergence to second-order critical
points.
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Cubic regularization for unconstrained problems

Function-evaluation complexity (3)

Is the bound in O(ε−3/2) sharp? YES!!!

Construct a unidimensional example with

x0 = 0, xk+1 = xk +

(
1

k + 1

) 1
3
+η

,

f0 =
2

3
ζ(1 + 3η), fk+1 = fk −

2

3

(
1

k + 1

)1+3η

,

gk = −
(

1

k + 1

) 2
3
+2η

, Hk = 0 and σk = 1,

Use Hermite interpolation on [xK , xk+1].
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Cubic regularization for unconstrained problems

An example of slow ARC (1)
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Cubic regularization for unconstrained problems

An example of slow ARC (2)
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Cubic regularization for unconstrained problems

An example of slow ARC (3)
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Cubic regularization for unconstrained problems

An example of slow ARC (4)
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Cubic regularization for unconstrained problems

Minimizing the model

m(s) ≡ f + sT g + 1
2
sT Bs + 1

3
σ‖s‖32

Small problems:

use Moré-Sorensen-like method with modified secular equation
(also OK as long as factorization is feasible)

Large problems:

an iterative Krylov space method

approximate solution

Numerically sound procedures for computing exact/approximate steps
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Cubic regularization for unconstrained problems

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best function-evaluation complexity for nonconvex problems

excellent performance and reliability
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Cubic regularization for unconstrained problems

Numerical experience — small problems using Matlab
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Regularization techniques for constrained problems

The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

minimize f (x)
x ∈ F

for x ∈ IRn and f : IRn → IR smooth, and where

F is convex.

Main ideas:

exploit (cheap) projections on convex sets

define using the generalized Cauchy point idea

prove global convergence + function-evaluation complexity
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Regularization techniques for constrained problems

Constrained step computation (1)

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

subject to
x + s ∈ F

σ is the (adaptive) regularization parameter

Criticality measure: (as before)

χ(x)
def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇x f (x), d〉
∣∣∣∣ ,
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Regularization techniques for constrained problems

The generalized Cauchy point for ARC

Cauchy step: Goldstein-like piecewise linear seach on mk along the
gradient path projected onto F

Find
xGC
k = PF [xk − tGC

k gk ]
def
= xk + sGC

k (tGC
k > 0)

such that

mk(xGC
k ) ≤ f (xk) + κubs〈gk , s

GC
k 〉 (below linear approximation)

and either

mk(xGC
k ) ≥ f (xk) + κlbs〈gk , s

GC
k 〉 (above linear approximation)

or
‖PT (xGC

k )[−gk ]‖ ≤ κepp|〈gk , s
GC
k 〉| (close to path’s end)

no trust-region condition!
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Regularization techniques for constrained problems

Searching for the ARC-GCP
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Regularization techniques for constrained problems

A constrained regularized algorithm

Algorithm 2.1: ARC for Convex Constraints (COCARC)

Step 0: Initialization. x0 ∈ F , σ0 given. Compute f (x0), set k = 0.

Step 1: Generalized Cauchy point. If xk not critical, find the
generalized Cauchy point xGC

k by piecewise linear search on the
regularized cubic model.

Step 2: Step calculation. Compute sk and x+
k

def
= xk + sk∈ F such

that mk(x+
k ) ≤ mk(xGC

k ).

Step 3: Acceptance of the trial point. Compute f (x+
k ) and ρk .

If ρk ≥ η1, then xk+1 = xk + sk ; otherwise xk+1 = xk .

Step 4: Regularisation parameter update. Set

σk+1 ∈


(0, σk ] if ρk ≥ η2,
[σk , γ1σk ] if ρk ∈ [η1, η2),
[γ1σk , γ2σk ] if ρk < η1.
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Regularization techniques for constrained problems

Local convergence theory for COCARC

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCRχk min

[
χk

1 + ‖Hk‖
,

√
χk

σk
, 1

]

The bound on the stepsize:

‖sk‖ ≤ 3 max

[
‖Hk‖
σk

,

(
χk

σk

) 1
2

,

(
χk

σk

) 1
3

]

And therefore. . .

lim
k→∞

χk = 0

(Cartis/Gould/T)
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Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (1)

But

What about function-evaluation complexity?

If, for very successful iterations, σk+1 ≤ γ3σk for γ3 < 1,
the COCARC algorithm requires at most⌈

κC

ε2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

c.f. steepest descent

Do the nicer bounds for unconstrained optimization extend to the
constrained case?
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Regularization techniques for constrained problems

Function-evaluation complexity for COCARC (2)

As for unconstrained, impose a termination rule on the subproblem
solution:

Do not terminate solving minxk+s∈F mk(xk + s) before

χm
k (x+

k ) ≤ min(κstop, ‖sk‖)χk

where

χm
k (x)

def
=

∣∣∣∣ min
x+d∈F ,‖d‖≤1

〈∇xmk(x), d〉
∣∣∣∣

c.f. the “s-rule” for unconstrained

Note: OK at local constrained model minimizers
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Regularization techniques for constrained problems

Walking through the pass...
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Regularization techniques for constrained problems

Walking through the pass...with a sherpa
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Regularization techniques for constrained problems

Function-Evaluation Complexity for COCARC (2)

Assume also

xk ← x+
k in a bounded number of feasible descent substeps

‖Hk −∇xx f (xk)‖ ≤ κ‖sk‖2

∇xx f (·) is globally Lipschitz continuous

{xk} bounded

The COCARC algorithm requires at most⌈
κC

ε3/2

⌉
function evaluations

(for some κC independent of ε) to achieve χk ≤ ε

Caveat: cost of solving the subproblem c.f. unconstrained case!!!
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Unregularized methods

Without regularization ?

What is known for unregularized (standard) methods?

The steepest descent method requires at most⌈
κC

ε2

⌉
function evaluations

for obtaining ‖gk‖ ≤ ε.

Sharp???

Newton’s method (when convergent) requires at most

??? function evaluations

for obtaining ‖gk‖ ≤ ε.
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Unregularized methods

Slow steepest descent (1)

For steepest descent, the bound of⌈
κC

ε2

⌉
function evaluations

is sharp on functions with Lipschitz continuous gradients.

As before, construct a unidimensional example with

x0 = 0, xk+1 = xk + αk

(
1

k + 1

) 1
2
+η

,

for some steplength αk > 0 such that

0 < α ≤ αk ≤ α < 2,

giving the step

sk
def
= xk+1 − xk = αk

(
1

k + 1

) 1
2
+η

.

Philippe Toint (Namur) August 2009 33 / 42



Unregularized methods

Slow steepest descent (1)

Also set

f0 =
1

2
ζ(1 + 2η), fk+1 = fk − αk(1− 1

2
αk)

(
1

k + 1

)1+2η

,

gk = −
(

1

k + 1

) 1
2
+η

, and Hk = 1,

Use Hermite interpolation on [xK , xk+1].
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Unregularized methods

An example of slow steepest descent (1)
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Unregularized methods

An example of slow steepest-descent (2)
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Unregularized methods

An example of slow steepest-descent (3)
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Unregularized methods

An example of slow steepest descent (4)
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Unregularized methods

Slow Newton (1)

A big surprise:

Newton’s method may require as much as⌈
κC

ε2

⌉
function evaluations

to obtain ‖gk‖ ≤ ε on functions with bounded and (segment-
wise) Lipschitz continuous Hessians.

Example now bi-dimensional
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Unregularized methods

Slow Newton (2)

The conditions are now:

x0 = (0, 0)T , xk+1 = xk +

 (
1

k+1

) 1
2
+η

1

 ,

f0 =
1

2
[ζ(1 + 2η) + ζ(2)] , fk+1 = fk−

1

2

[(
1

k + 1

)1+2η

+

(
1

k + 1

)2
]
,

gk = −


(

1
k+1

) 1
2
+η(

1
k+1

)2

 , and Hk =

(
1 0

0
(

1
k+1

)2

)

Use previous example for x1 and Hermite interpolation on [xK , xk+1] for x2.
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Unregularized methods

An example of slow Newton
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Conclusions

Conclusions

Many open questions . . . but very interesting

Algorithm design profits from complexity analysis

Many issues regarding regularizations still unresolved

Many thanks for your attention!

Philippe Toint (Namur) August 2009 42 / 42


	Cubic regularization for unconstrained problems
	Regularization techniques for constrained problems
	Unregularized methods
	Conclusions

