An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

Coralia Cartis, Nick Gould and Philippe Toint

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

Buenos-Aires, IFIP, July 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The problem

We consider the unconstrained nonlinear programming problem:

```
minimize f(x)
```

for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth.

Important special case: the nonlinear least-squares problem

```
minimize f(x) = \frac{1}{2} ||F(x)||^2
```

for $x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

A useful observation

Note the following: if

• f has gradient g and globally Lipschitz continuous Hessian H with constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

$$f(x+s) = f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \int_0^1 (1-\alpha) \langle s, [H(x+\alpha s) - H(x)]s \rangle d\alpha \leq \underbrace{f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}L \|s\|_2^3}_{m(s)}$$

 \implies reducing *m* from s = 0 improves *f* since m(0) = f(x).

The cubic regularization

Change from trust-regions:

$$\min_{s} \quad f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle \; \text{ s.t. } \; \|s\| \leq \Delta$$

to cubic regularization:

$$\min_{s} f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3} \sigma \|s\|^{3}$$

 σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)

→ ∃ →

Cubic regularization highlights

$$f(x+s) \leq m(s) \equiv f(x) + s^T g(x) + \frac{1}{2} s^T H(x) s + \frac{1}{3} L \|s\|_2^3$$

- Nesterov and Polyak minimize *m* globally and exactly
 - N.B. *m* may be non-convex!
 - efficient scheme to do so if H has sparse factors
- global (ultimately rapid) convergence to a 2nd-order critical point of f
- better worst-case function-evaluation complexity than previously known

Obvious questions:

- can we avoid the global Lipschitz requirement?
- can we approximately minimize *m* and retain good worst-case function-evaluation complexity?
- o does this work well in practice?

Cubic overestimation

Assume

• $f \in C^2$

- f, g and H at x_k are f_k , g_k and H_k
- symmetric approximation B_k to H_k
- B_k and H_k bounded at points of interest

Use

• cubic overestimating model at x_k

$$m_k(s) \equiv f_k + s^T g_k + \frac{1}{2} s^T B_k s + \frac{1}{3} \sigma_k ||s||_2^3$$

- σ_k is the iteration-dependent regularisation weight
- easily generalized for regularisation in M_k -norm $||s||_{M_k} = \sqrt{s^T M_k s}$ where M_k is uniformly positive definite

Cubic regularization for unconstrained problems

Adaptive Regularization with Cubic (ARC)

Algorithm 1.1: The ARC Algorithm

Step 0: Initialization: x_0 and $\sigma_0 > 0$ given. Set k = 0Step 1: Step computation: Compute s_k for which $m_k(s_k) \le m_k(s_k^c)$ Cauchy point: $s_k^c = -\alpha_k^c g_k$ & $\alpha_k^c = \arg \min_{\alpha \in \mathbf{R}_+} \overline{m_k(-\alpha g_k)}$ Step 2: Step acceptance: Compute $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k(s_k)}$ and set $x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > 0.1 \\ x_k & \text{otherwise} \end{cases}$ Step 3: Update the regularization parameter: $\sigma_{k+1} \in$ $\begin{cases} (0, \sigma_k] = \frac{1}{2}\sigma_k & \text{if } \rho_k > 0.9 \\ [\sigma_k, \gamma_1 \sigma_k] = \sigma_k & \text{if } 0.1 \le \rho_k \le 0.9 \\ [\gamma_1 \sigma_k, \gamma_2 \sigma_k] = 2\sigma_k & \text{otherwise} \end{cases} \text{ unsuccessful}$ very successful unsuccessful

Image: Image:

Local convergence theory for cubic regularization (1)

The Cauchy condition:

$$m_k(x_k) - m_k(x_k + s_k) \ge \kappa_{CR} \|g_k\| \min\left[rac{\|g_k\|}{1 + \|H_k\|}, \sqrt{rac{\|g_k\|}{\sigma_k}}
ight]$$

The bound on the stepsize:

$$\|\boldsymbol{s}_{k}\| \leq 3 \max\left[rac{\|\boldsymbol{H}_{k}\|}{\sigma_{k}}, \sqrt{rac{\|\boldsymbol{g}_{k}\|}{\sigma_{k}}}
ight]$$

(Cartis/Gould/T)

Local convergence theory for cubic regularization (2)

And therefore. . .

$$\lim_{k\to\infty}\|g_k\|=0$$

first-order global convergence

Under stronger assumptions can show that

If s_k minimizes m_k over subspace with orthogonal basis Q_k , $\lim_{k\to\infty}Q_k^{\mathsf{T}}H_kQ_k\succeq 0$

second-order global convergence

Fast convergence

For fast asymptotic convergence \Longrightarrow need to improve on Cauchy point: minimize over Krylov subspaces

- g stopping-rule: $\|\nabla_s m_k(s_k)\| \le \min(1, \|g_k\|^{\frac{1}{2}})\|g_k\|$
- s stopping-rule: $\|
 abla_s m_k(s_k)\| \le \min(1, \|s_k\| \)\|g_k\|$

If B_k satisfies the Dennis-Moré condition $\|(B_k-H_k)s_k\|/\|s_k\| o 0$ whenever $\|g_k\| o 0$

and $x_k \rightarrow x_*$ with positive definite $H(x_*)$

 \implies Q-superlinear convergence of x_k under the g- and s-rules

If additionally H(x) is locally Lipschitz around x_* and $\|(B_k - H_k)s_k\| = O(\|s_k\|^2)$

Q-quadratic convergence of x_k under the s-rule

イロト イヨト イヨト イヨト

Function-evaluation complexity

How many function evaluations (iterations) are needed to ensure that

 $\|g_k\| \leq \epsilon?$

• so long as for very successful iterations $\sigma_{k+1} \leq \gamma_3 \sigma_k$ for $\gamma_3 < 1$ \implies basic ARC algorithm requires at most

 $\left\lceil \frac{\kappa_{\rm C}}{z^2} \right\rceil$ function evaluations

for some κ_{C} independent of ϵ

c.f. steepest descent

 if H is globally Lipschitz, the s-rule is applied and additionally s_k is the global (line) minimizer of m_k(αs_k) as a function of α ⇒ ARC algorithm requires at most

$\left[\frac{\kappa_{\rm S}}{\epsilon^{3/2}}\right]$ function evaluations

for some $\kappa_{\rm S}$ independent of ϵ

c.f. Nesterov & Polyak

Cubic regularization for unconstrained problems

Minimizing the model

$$m(s) \equiv f + s^T g + \frac{1}{2} s^T B s + \frac{1}{3} \sigma \|s\|_2^3$$

• Small problems:

use Moré-Sorensen-like method with modified secular equation (also OK as long as factorization is feasible)

• Large problems:

an iterative Krylov space method

approximate solution

Numerically sound procedures for computing exact/approximate steps

Cubic regularization for unconstrained problems

The main features of adaptive cubic regularization

And the result is...

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best function-evaluation complexity for nonconvex problems

excellent performance and reliability

Numerical experience — small problems using Matlab

Philippe Toint (Namur)

July 2009 14 / 26

The constrained case

Can we apply regularization to the constrained case?

Consider the constrained nonlinear programming problem:

$$egin{array}{cc} {
m minimize} & f(x) \ x \in \mathcal{F} \end{array}$$

for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth, and where

 \mathcal{F} is convex.

Main ideas:

- exploit (cheap) projections on convex sets
- define using the generalized Cauchy point idea
- prove global convergence + function-evaluation complexity

Constrained step computation (1)

$$\begin{split} \min_{s} \quad f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}\sigma \|s\|^3 \\ \text{subject to} \\ x + s \in \mathcal{F} \end{split}$$

σ is the (adaptive) regularization parameter

Criticality measure: (as before)

$$\chi(x) \stackrel{\mathrm{def}}{=} \left| \min_{x+d \in \mathcal{F}, \|d\| \leq 1} \langle \nabla_x f(x), d \rangle \right|,$$

The generalized Cauchy point for ARC

Cauchy step: Goldstein-like piecewise linear seach on m_k along the gradient path projected onto \mathcal{F}

Find

$$x_k^{ ext{GC}} = P_\mathcal{F}[x_k - t_k^{ ext{GC}}g_k] \stackrel{ ext{def}}{=} x_k + s_k^{ ext{GC}} \quad (t_k^{ ext{GC}} > 0)$$

such that

$$m_k(x_k^{ ext{GC}}) \leq f(x_k) + \kappa_{ ext{ubs}} \langle g_k, s_k^{ ext{GC}}
angle$$
 (below linear approximation)

and either

$$m_k(x_k^{ ext{GC}}) \geq f(x_k) + \kappa_{ ext{lbs}} \langle g_k, s_k^{ ext{GC}}
angle$$
 (above linear approximation)

or

$$\| {\sf P}_{{\cal T}(x_k^{\rm GC})}[-g_k] \| \le \kappa_{\scriptscriptstyle {\rm epp}} |\langle g_k, s_k^{\scriptscriptstyle {\rm GC}} \rangle| \qquad ({\rm close \ to \ path's \ end})$$

no trust-region condition!

Searching for the ARC-GCP

A constrained regularized algorithm

Algorithm 2.1: ARC for Convex Constraints (COCARC)

Step 0: Initialization. $x_0 \in \mathcal{F}$, σ_0 given. Compute $f(x_0)$, set k = 0.

- Step 1: Generalized Cauchy point. If x_k not critical, find the generalized Cauchy point x_k^{GC} by piecewise linear search on the regularized cubic model.
- Step 2: Step calculation. Compute s_k and $x_k^+ \stackrel{\text{def}}{=} x_k + s_k \in \mathcal{F}$ such that $m_k(x_k^+) \leq m_k(x_k^{\text{GC}})$.
- Step 3: Acceptance of the trial point. Compute $f(x_k^+)$ and ρ_k . If $\rho_k \ge \eta_1$, then $x_{k+1} = x_k + s_k$; otherwise $x_{k+1} = x_k$.

Step 4: Regularisation parameter update. Set

$$\sigma_{k+1} \in \begin{cases} (0, \sigma_k] & \text{if } \rho_k \ge \eta_2, \\ [\sigma_k, \gamma_1 \sigma_k] & \text{if } \rho_k \in [\eta_1, \eta_2), \\ [\gamma_1 \sigma_k, \gamma_2 \sigma_k] & \text{if } \rho_k < \eta_1. \end{cases}$$

Local convergence theory for COCARC

The Cauchy condition:

$$m_k(x_k) - m_k(x_k + s_k) \ge \kappa_{ ext{CR}} \chi_k \min\left[rac{\chi_k}{1 + \|H_k\|}, \sqrt{rac{\chi_k}{\sigma_k}}, 1
ight]$$

The bound on the stepsize:

$$\|\boldsymbol{s}_{k}\| \leq 3 \max\left[\frac{\|\boldsymbol{H}_{k}\|}{\sigma_{k}}, \left(\frac{\chi_{k}}{\sigma_{k}}\right)^{\frac{1}{2}}, \left(\frac{\chi_{k}}{\sigma_{k}}\right)^{\frac{1}{3}}
ight]$$

And therefore. . .

$$\lim_{k \to \infty} \chi_k = 0$$

(Cartis/Gould/T)

Philippe Toint (Namur)

Function-Evaluation Complexity for COCARC (1)

But

What about function-evaluation complexity?

c.f. steepest descent

Do the nicer bounds for unconstrained optimization extend to the constrained case?

Function-evaluation complexity for COCARC (2)

As for unconstrained, impose a termination rule on the subproblem solution:

• Do not terminate solving $\min_{x_k+s\in\mathcal{F}} m_k(x_k+s)$ before

$$\chi_k^{\mathsf{m}}(x_k^+) \le \min(\kappa_{\text{stop}}, \|s_k\|) \, \chi_k$$

where

$$\chi_k^{\mathsf{m}}(x) \stackrel{\mathrm{def}}{=} \left| \min_{x+d \in \mathcal{F}, \|d\| \leq 1} \langle \nabla_x m_k(x), d \rangle \right|$$

c.f. the "s-rule" for unconstrained

Note: OK at local constrained model minimizers

Walking through the pass...

A "beyond the pass" constrained problem with

$$m(x,y) = -x - \frac{42}{100}y - \frac{3}{10}x^2 - \frac{1}{10}y^3 + \frac{1}{3}[x^2 + y^2]^{\frac{3}{2}}$$

Walking through the pass...with a sherpa

A piecewise descent path from x_k to x_k^+ on

$$m(x,y) = -x - \frac{42}{100}y - \frac{3}{10}x^2 - \frac{1}{10}y^3 + \frac{1}{3}[x^2 + y^2]^{\frac{3}{2}}$$

Function-Evaluation Complexity for COCARC (2)

Assume also

- $x_k \leftarrow x_k^+$ in a bounded number of feasible descent substeps
- $||H_k \nabla_{xx}f(x_k)|| \leq \kappa ||s_k||^2$
- $abla_{xx}f(\cdot)$ is globally Lipschitz continuous
- $\{x_k\}$ bounded

Caveat: cost of solving the subproblem

c.f. unconstrained case!!!

- Much left to do... but very interesting
- Meaningful numerical evaluation still needed for many of these algorithms
- Many issues regarding regularizations still unresolved

Many thanks for your attention!