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The problem

We consider the unconstrained nonlinear programming problem:
minimize f(x)
for x € R" and f : R” — R smooth.
Important special case: the nonlinear least-squares problem
minimize f(x) = 1||F(x)|?

for x € R" and F : R" — R™ smooth.
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Unconstrained optimization — a “mature” area?

minirrgnize f(x) where f e C! (maybe C?)
xe

Currently two main competing (but similar) methodologies

° \Linesearch methods\

@ compute a descent direction s, from x
@ set Xx4+1 = Xk + Sk to improve f

@ | Trust-region methods‘

@ compute a step s, from xi to improve a model my of f
within the trust-region ||s¢|| < A

@ set xg11 = Xk + Sk if mg and f “agree” at xx + s

@ otherwise set xx+1 = Xk and reduce the radius A

Philippe Toint (Namur) Veszprem, December 2008 4 /34



A useful theoretical observation

Consider trust-region method where

‘ model = true objective function ‘

Then
@ model and objective always agree

@ trust-region radius goes to infinity
= |a linesearch method \

Nice consequence:

‘A unique convergence theory! ‘

(Shultz/Schnabel /Byrd, 1985, T., 1988, Conn/Gould/T., 2000)
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The keys to convergence theory for trust regions

The Cauchy condition:

my(xk) — mi(xk + sk) > Krrl g« || min [%, Ak]

The bound on the stepsize:

sl <A

And we derive:

Global convergence to first/second-order critical points
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Regularization techniques Cubic

Regularization Techniques
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Regularization techniques Cubic

Is there anything more to say?

Observe the following: if

@ f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f(x+s)

f(x) + (s,g(x)) + (s, H(x)s)
+ [ (1= a)(s, [H(x + as) — H(x)]s) da
< f(x) + (s,8(x)) + 4(s, H(x)s) + iL]||s]3

m(s)

— reducing m from s = 0 improves f since m(0) = f(x). ‘
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Regularization techniques Cubic

The cubic regularization

Change from

to

s

min  f(x) + (s, g(x)) + (s, H(x)s) s.t. ||s]| <A

min
S

F(x) + (s,&(x)) + (s, H(x)s) + 1olls[’

o is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard /Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Regularization techniques Cubic

Cubic regularization highlights

‘ f(x +5) < m(s) = £(x) +s"g(x) + 1s"H(x)s + 1L]s]13

@ Nesterov and Polyak minimize m globally

@ N.B. m may be non-convex!
o efficient scheme to do so if H has sparse factors

@ global (ultimately rapid) convergence to a 2nd-order critical point of f

@ better worst-case complexity than previously known

@ can we avoid the global Lipschitz requirement?

@ can we approximately minimize m and retain good worst-case
complexity?

@ does this work well in practice?
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Regularization techniques Cu

Cubic overestimation

o fe(C?
o f, g and H at x, are fi, gk and H
@ symmetric approximation By to Hy

@ By and Hj bounded at points of interest

Use

@ cubic overestimating model at xx
— T T 3
mk(s) =fi+s' g+ %S Bys + % ”SH2
@ 0y is the iteration-dependent regularisation weight

o easily generalized for regularisation in My-norm ||s||p, = v/sT Mis
where M is uniformly positive definite
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Regularization techniques

Adaptive Cubic Overestimation (ACO)

Given xg, and oo > 0, for k =0, 1,... until convergence,

@ compute a step s for which | my(sk) < my(s)

o Cauchy point: sg = —afg, & af= arg mrén my(—agk)
aciRy
f(Xk) — f(Xk + Sk)
f(Xk) — mk(sk)

Xk + Sk if px >
X otherwise

@ compute px =

@ set xy41 = {

@ given 72 > 1 > 1, set

(0, o] if px > very successful
Oka1 € [0k, y104] if < pr < successful
[v10k, Y20] otherwise unsuccessful

c.f. trust-region methodsl
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Regularization techniques Cubic

Local convergence theory for cubic regularization (1)

The Cauchy condition:

IEA A
L+[[Hell” Vo«

my(xk) — me(xk + sk) > Ker||gk|| min

The bound on the stepsize:

H
lsell < 3min | 17l /gl
Ok Ok

(Cartis/Gould/T)

Philippe Toint (Namur) Veszprem, December 2008 13 / 34



Regularization techniques Cubic

Local convergence theory for cubic regularization (2)

And therefore. . .

li =0
Jim (EA

Under stronger assumptions can show that
limg o0 Q;Z—Hka =0

if s, minimizes my over subspace with orthogonal basis matrix Qx
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Regularization techniques Cubic

Fast convergence

For fast asymptotic convergence => need to improve on Cauchy point:
minimize over Krylov subspaces

) . 1
o g stopping-rule: ||[Vsmy(sk)|l < min(1, [|g||2)l|gkll
@ s stopping-rule: [[Vsmg(sk)l] < min(1, |Isk]l )llg«ll

If By satisfies the Dennis-Moré condition

1Bk = Hi)skl|/llskll — 0 whenever [|gx[| — 0

and xx — x, with positive definite H(x;)

=—> Q-superlinear convergence of x; under both the g- and s-rules

If additionally H(x) is locally Lipschitz around x, and
(B — Hic)sill = O(lIsk %)

= Q-quadratic convergence of xx under the s-rule
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Regularization techniques Cu

Iteration complexity

How many iterations are needed to ensure that ||g|| < €?

@ so long as for very successful iterations oy 1 < 30 for 3 < 1
= basic ACO algorithm requires at most
P‘—SW iterations
€
for some k¢ independent of €
@ if H is globally Lipschitz, the s-rule is applied and additionally si is
the global (line) minimizer of mg(ask) as a function of «

= ACO algorithm requires at most
(%W iterations

for some kg independent of €
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Regularization techniques Cubic

Minimizing the model

‘ m(s)=f+sTg+ 1s"Bs+ lofs|3

Derivatives:

o A\ =olsl2
@ Vim(s) =g+ Bs+ s

© Vesm(s) = B+ A + X <H§H> (HZH) T

Optimality: | any global minimizer s, of m satisfies

(B4+A)s. = —g
o A\ =ollsl2

@ B + Al is positive semi-definite
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Regularization techniques Cubic

The (adapted) secular equation

Require
(B+A)s=—g and X=os|>
Define s(A):
(B4+A)s(A) =—g
and find scalar A as the root of secular equations

1 9—-0 or c=0

A A
Isll2 =5 =0 or rdye—§ SO ~

@ values and derivatives of s(\) satisfy linear systems with symmetric
positive definite B + A/
@ need to be able to factorize B + A/
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Regularization techniques Cubic

Plots of secular functions against A

Example: g = (0.25 1), H = diag(—1 1) and 0 =2

A 1 o A
HS(/\)H2—;:0 —— —~ =20 c=0

Is)ll2 A Is()ll2
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Regularization techniques

Large problems — approximate solutions

Seek instead global minimizer of m(s) in a j-dimensional (j < n) subspace
SCR”
@ g € § = ACO algorithm globally convergent
@ Q@ orthogonal basis for § =— s = Qu where
u= argmin f+u’(Q7g)+ tu"(QTBQ)u+ i|lul3
velR’
= use secular equation to find u
o if S is the Krylov space generated by {Big}{:;é
— QTBQ = T, tridiagonal
= can factor T + A/ to solve secular equation even if j is large
@ using g- or s-stopping rule = fast asymptotic convergence for ACO

@ using s-stopping rule => good iteration complexity for ACO
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Regularization techniques Cubic

The main features of adaptive cubic regularization

And the result is. ..

‘ longer steps on ill-conditioned problems ‘

‘ similar (very satisfactory) convergence analysis ‘

‘ best known worst-case complexity for nonconvex problems ‘

‘ excellent performance and reliability ‘
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Regularization techniques Cubic

Numerical experience — small problems using Matlab

Performance Profile: iteration count — 131 CUTEr problems

fraction of problems for which method within o of best

0.4 q
0.3F 4
0.2 B
01k ACO - g stopping rule (3 failures) |
= = = ACO - s stopping rule (3 failures)

----- trust-region (8 failures)

0 L L L L I I I
1 15 2 25 3 35 4 4.5 5
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Regularization techniques Quadratic

The quadratic regularization for NLS

Consider the Gauss-Newton method for nonlinear least-squares problems.

Change from

min %||c(x)||2 + (s, J(x) Tc(x)) + (s, J(x)TJ(x)s) st. [|s| <A

to

min  [lc(x) + J(x)sl + 1o]s|?

o is the (adaptive) regularization parameter

(idea by Nesterov)
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Regularization techniques Quadratic

Quadratic regularization: reformulation

Note that

min  [lc(x) + J(x)s + 3o]s|?

4

min v+ iofs|? such that [c(x)+ J(x)s|? = v
v,s

)

exact penalty function for the problem of minimizing ||s|| subject to
c(x) + J(x)s =0.
Iterative techniques. . . as for the cubic case (Cartis, Gould,T.):

’solve the problem in nested Krylov subspaces‘

@ Lanczos — factorization of tridiagonal matrices
° scalar secular equation (solution by Newton's method)
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Regularization techniques Quadratic

The keys to convergence theory for quadratic regularization

The Cauchy condition:

el [ IS7edl 1 e
el ™ [T+ 1375 owllad

m(xx) — m(xk + Sk) > Kar

The bound on the stepsize:

s < 5 el
= 2 oxlle
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Regularization techniques Quadratic

Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

@ general values of m and n,

@ exact/approximate subproblem solution
(Bellavia/Cartis/Gould /Morini/T.)
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A unifying concept:
Nonlinear stepsize control
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Nonlinear stepsize control

Towards a unified global convergence theory

@ recover a unified global convergence theory
@ possibly open the door for new algorithms
@ cast all three methods into a generalized TR framework

@ allow this TR to be updated nonlinearly
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Nonlinear stepsize control
Towards a unified global convergence theory (2)

Given
@ 3 continuous first-order criticality measures ¥(x), ¢(x), x(x)

@ an adaptive stepsize parameter ¢

define a ‘generalized radius A(6, x(x)) ‘ such that

A(+,x) is CP, strictly increasing and concave,
A(0, x) = 0 for all x,

A(0,-) is non-increasing

e & ¢ ¢
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Nonlinear stepsize control
Towards a unified global convergence theory (3)

@ the generalized Cauchy condition:

m(xx) — m(xx + sk) > kK min | ————,
(i) =l +5) 2 e min | 3

@ the generalized bound on the stepsize:

skl <
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Nonlinear stepsize control
The nonlinear stepsize control algorithm

Algorithm 2.1: Nonlinear Stepsize Control Algorithm

Step 0: Initialization: xg € R”, dy given. Set k = 0.

Step 1: Step computation: Choose a model and find a
step sy satisfying and

Step 2: Step acceptance: Compute f(xx + sx) and

f(xk) — f(xk + sk)
mye(xic) — my(xi + sk)

Pk =
Set xx1+1 = Xk + Sk if px > N1} Xk41 = Xk otherwise.
Step 3: Stepsize parameter update: Choose

[Vi6k, 720K if i <,
€4 [720k, k] i pk € [, m2),
[0k, +0<] it pr =12

Set k +— k+ 1 and go to Step 1.
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Nonlinear stepsize control

Resulting convergence theory

Similar to trust-region convergence theory, but

‘more work to prove that A(dk, xx) remains bounded away from zero

(assumptions of A(d, x) crucial here)
and the result is ...

' . _
k_')Toom'"[m,lbk,Xk] 0
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Nonlinear stepsize control
Covers all previous cases

trust regions:

ok = Yk = xk = |lgkll, A, x) =46
cubic regularization:

bk = Vi = Xk = ll&«ll, 5k=%k, A5, x) = VX
quadratic regularization:

JF
oc=xi = WPl v — TR b=k AG0 = ox

a method by Fan and Yuan:

bk =Xk = Vi = ||g«ll, A(d,x) = dx
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Conclus
Conclusions

@ Much left to do. .. but very interesting

@ Could lead to very methods
Example:

Vi = ¢k = xk = |l &kl A(8,x) = v/ox

@ Meaningful numerical evaluation still needed

@ Many issues regarding regularizations still unresolved

(see http://perso.fundp.ac.be/ phtoint/publications.html for references)
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