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The problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Unconstrained optimization — a “mature” area?

minimize
x∈IRn

f (x) where f ∈ C 1 (maybe C 2 )

Currently two main competing (but similar) methodologies

Linesearch methods

compute a descent direction sk from xk

set xk+1 = xk + αksk to improve f

Trust-region methods

compute a step sk from xk to improve a model mk of f

within the trust-region ‖sk‖ ≤ ∆
set xk+1 = xk + sk if mk and f “agree” at xk + sk
otherwise set xk+1 = xk and reduce the radius ∆
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A useful theoretical observation

Consider trust-region method where

model = true objective function

Then

model and objective always agree

trust-region radius goes to infinity

⇒ a linesearch method
Nice consequence:

A unique convergence theory!

(Shultz/Schnabel/Byrd, 1985, T., 1988, Conn/Gould/T., 2000)
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The keys to convergence theory for trust regions

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κTR‖gk‖min

[ ‖gk‖
1 + ‖Hk‖

,∆k

]

The bound on the stepsize:

‖s‖ ≤ ∆

And we derive:

Global convergence to first/second-order critical points

Is there anything more to say?
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Regularization techniques Cubic

Regularization Techniques
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Regularization techniques Cubic

Is there anything more to say?

Observe the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1
0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖32

︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Regularization techniques Cubic

The cubic regularization

Change from

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Regularization techniques Cubic

Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sT H(x)s + 1

3
L‖s‖3

2

Nesterov and Polyak minimize m globally

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case complexity than previously known

Obvious questions:

can we avoid the global Lipschitz requirement?

can we approximately minimize m and retain good worst-case
complexity?

does this work well in practice?
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Regularization techniques Cubic

Cubic overestimation

Assume

f ∈ C 2

f , g and H at xk are fk , gk and Hk

symmetric approximation Bk to Hk

Bk and Hk bounded at points of interest

Use

cubic overestimating model at xk

mk(s) ≡ fk + sTgk + 1
2
sTBks + 1

3
σk‖s‖32

σk is the iteration-dependent regularisation weight
easily generalized for regularisation in Mk -norm ‖s‖Mk

=
√

sTMks

where Mk is uniformly positive definite
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Regularization techniques Cubic

Adaptive Cubic Overestimation (ACO)

Given x0, and σ0 > 0, for k = 0, 1, . . . until convergence,

compute a step sk for which mk(sk) ≤ mk(sC
k)

Cauchy point: sC
k = −αC

kgk & αC
k = arg min

α∈IR+

mk(−αgk)

compute ρk =
f (xk)− f (xk + sk)

f (xk)−mk(sk)

set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

given γ2 ≥ γ1 > 1, set

σk+1 ∈







(0, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful

[γ1σk , γ2σk ] = 2σk otherwise unsuccessful

c.f. trust-region methods

Philippe Toint (Namur) Veszprem, December 2008 12 / 34



Regularization techniques Cubic

Local convergence theory for cubic regularization (1)

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCR‖gk‖min




‖gk‖

1 + ‖Hk‖
,

√

‖gk‖
σk





The bound on the stepsize:

‖sk‖ ≤ 3 min




‖Hk‖
σk

,

√

‖gk‖
σk





(Cartis/Gould/T)
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Regularization techniques Cubic

Local convergence theory for cubic regularization (2)

And therefore. . .

lim
k→∞

‖gk‖ = 0

Under stronger assumptions can show that

limk→∞ QT
k HkQk � 0

if sk minimizes mk over subspace with orthogonal basis matrix Qk
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Regularization techniques Cubic

Fast convergence

For fast asymptotic convergence =⇒ need to improve on Cauchy point:
minimize over Krylov subspaces

g stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖gk‖
1
2 )‖gk‖

s stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖sk‖ )‖gk‖

If Bk satisfies the Dennis-Moré condition

‖(Bk − Hk)sk‖/‖sk‖ → 0 whenever ‖gk‖ → 0

and xk → x∗ with positive definite H(x∗)

=⇒ Q-superlinear convergence of xk under both the g- and s-rules

If additionally H(x) is locally Lipschitz around x∗ and

‖(Bk − Hk)sk‖ = O(‖sk‖2)

=⇒ Q-quadratic convergence of xk under the s-rule
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Regularization techniques Cubic

Iteration complexity

How many iterations are needed to ensure that ‖gk‖ ≤ ǫ?
so long as for very successful iterations σk+1 ≤ γ3σk for γ3 < 1
=⇒ basic ACO algorithm requires at most

⌈
κC

ǫ2

⌉

iterations

for some κC independent of ǫ c.f. steepest descent

if H is globally Lipschitz, the s-rule is applied and additionally sk is
the global (line) minimizer of mk(αsk) as a function of α
=⇒ ACO algorithm requires at most

⌈
κS

ǫ3/2

⌉

iterations

for some κS independent of ǫ c.f. Nesterov & Polyak
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Regularization techniques Cubic

Minimizing the model

m(s) ≡ f + sT g + 1
2
sT Bs + 1

3
σ‖s‖3

2

Derivatives:

λ = σ‖s‖2
∇sm(s) = g + Bs + λs

∇ssm(s) = B + λI + λ

(

s
‖s‖

)(

s
‖s‖

)T

Optimality: any global minimizer s∗ of m satisfies

(B + λ∗I )s∗ = −g

λ∗ = σ‖s∗‖2
B + λ∗I is positive semi-definite
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Regularization techniques Cubic

The (adapted) secular equation

Require

(B + λI )s = −g and λ = σ‖s‖2

Define s(λ):
(B + λI )s(λ) = −g

and find scalar λ as the root of secular equations

‖s(λ)‖2 − λ
σ = 0 or 1

‖s(λ)‖2 −
σ
λ

= 0 or λ
‖s(λ)‖2 − σ = 0

values and derivatives of s(λ) satisfy linear systems with symmetric
positive definite B + λI

need to be able to factorize B + λI

Philippe Toint (Namur) Veszprem, December 2008 18 / 34



Regularization techniques Cubic

Plots of secular functions against λ

Example: g = (0.25 1)T , H = diag(−1 1) and σ = 2

‖s(λ)‖2 −
λ

σ
= 0

1

‖s(λ)‖2
− σ

λ
= 0

λ

‖s(λ)‖2
− σ = 0
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Regularization techniques Cubic

Large problems — approximate solutions

Seek instead global minimizer of m(s) in a j-dimensional (j ≪ n) subspace
S ⊆ IRn

g ∈ S =⇒ ACO algorithm globally convergent

Q orthogonal basis for S =⇒ s = Qu where

u = arg min
u∈IRj

f + uT (QTg) + 1
2
uT (QTBQ)u + 1

3
‖u‖32

=⇒ use secular equation to find u

if S is the Krylov space generated by {B ig}j−1
i=0

=⇒ QTBQ = T , tridiagonal
=⇒ can factor T + λI to solve secular equation even if j is large

using g- or s-stopping rule =⇒ fast asymptotic convergence for ACO

using s-stopping rule =⇒ good iteration complexity for ACO
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Regularization techniques Cubic

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability
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Regularization techniques Cubic

Numerical experience — small problems using Matlab
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Regularization techniques Quadratic

The quadratic regularization for NLS

Consider the Gauss-Newton method for nonlinear least-squares problems.
Change from

min
s

1
2
‖c(x)‖2 + 〈s, J(x)T c(x)〉+ 1

2
〈s, J(x)T J(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

‖c(x) + J(x)s‖+ 1
2
σ‖s‖2

σ is the (adaptive) regularization parameter

(idea by Nesterov)
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Regularization techniques Quadratic

Quadratic regularization: reformulation

Note that

min
s

‖c(x) + J(x)s‖+ 1
2
σ‖s‖2

⇔

min
ν,s

ν + 1
2
σ‖s‖2 such that ‖c(x) + J(x)s‖2 = ν2

exact penalty function for the problem of minimizing ‖s‖ subject to
c(x) + J(x)s = 0.
Iterative techniques. . . as for the cubic case (Cartis, Gould,T.):

solve the problem in nested Krylov subspaces

Lanczos → factorization of tridiagonal matrices
different scalar secular equation (solution by Newton’s method)
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Regularization techniques Quadratic

The keys to convergence theory for quadratic regularization

The Cauchy condition:

m(xk)−m(xk + sk) ≥ κQR

‖JT
k ck‖
‖ck‖

min

[ ‖JT
k ck‖

1 + ‖JT
k Jk‖

,
‖JT

k ck‖
σk‖ck‖

]

The bound on the stepsize:

‖sk‖ ≤
1

2

‖JT
k ck‖

σk‖ck‖
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Regularization techniques Quadratic

Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

general values of m and n,

exact/approximate subproblem solution

(Bellavia/Cartis/Gould/Morini/T.)
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Nonlinear stepsize control

A unifying concept:
Nonlinear stepsize control
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Nonlinear stepsize control

Towards a unified global convergence theory

Objectives:

recover a unified global convergence theory

possibly open the door for new algorithms

Idea:

cast all three methods into a generalized TR framework

allow this TR to be updated nonlinearly
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Nonlinear stepsize control

Towards a unified global convergence theory (2)

Given

3 continuous first-order criticality measures ψ(x), φ(x), χ(x)

an adaptive stepsize parameter δ

define a generalized radius ∆(δ, χ(x)) such that

∆(·, χ) is C 1, strictly increasing and concave,

∆(0, χ) = 0 for all χ,

∆(δ, ·) is non-increasing

δ ∂∆
∂δ

(δ, χ) ≤ κ∆∆(δ, χ)

. . .
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Nonlinear stepsize control

Towards a unified global convergence theory (3)

the generalized Cauchy condition:

m(xk)−m(xk + sk) ≥ κNφk min

[
ψk

1 + ‖Hk‖
,∆(δk , χk)

]

the generalized bound on the stepsize:

‖sk‖ ≤ ∆(δk , χk)
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Nonlinear stepsize control

The nonlinear stepsize control algorithm

Algorithm 2.1: Nonlinear Stepsize Control Algorithm

Step 0: Initialization: x0 ∈ IRn, δ0 given. Set k = 0.
Step 1: Step computation: Choose a model mk(xk + s) and find a

step sk satisfying generalized Cauchy and ‖sk‖ ≤ ∆(δk , χk).

Step 2: Step acceptance: Compute f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

Set xk+1 = xk + sk if ρk ≥ η1; xk+1 = xk otherwise.

Step 3: Stepsize parameter update: Choose

δk+1 ∈







[γ1δk , γ2δk ] if ρk < η1,
[γ2δk , δk ] if ρk ∈ [η1, η2),
[δk ,+∞] if ρk ≥ η2.

Set k ← k + 1 and go to Step 1.
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Nonlinear stepsize control

Resulting convergence theory

Similar to trust-region convergence theory, but

more work to prove that ∆(δk , χk) remains bounded away from zero

(assumptions of ∆(δ, χ) crucial here)
and the result is . . .

lim
k→+∞

min[φk , ψk , χk ] = 0

Unified first-order convergence theory!
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Nonlinear stepsize control

Covers all previous cases

trust regions:

φk = ψk = χk = ‖gk‖, ∆(δ, χ) = δ

cubic regularization:

φk = ψk = χk = ‖gk‖, δk = 1
σk

, ∆(δ, χ) =
√
δχ

quadratic regularization:

φk = χk =
‖JT

k Fk‖
‖Fk‖ , ψk = ‖JT

k Fk‖, δk = 1
σk

, ∆(δ, χ) = δχ

a method by Fan and Yuan:

φk = χk = ψk = ‖gk‖, ∆(δ, χ) = δχ

Philippe Toint (Namur) Veszprem, December 2008 33 / 34



Conclusions

Conclusions

Much left to do. . . but very interesting

Could lead to very untypical methods
Example:

ψk = φk = χk = ‖gk‖, ∆(δ, χ) =
√

δχ

Meaningful numerical evaluation still needed

Many issues regarding regularizations still unresolved

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)
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