Nonlinear stepsize control, Trust-Region and Regularization Algorithms for Unconstrained **Optimization**

Philippe Toint (input by Stefania Bellavia, Coralia Cartis, Nick Gould and Benedetta Morini)

Department of Mathematics,University of Namur, Belgium

(philippe.toint@fundp.ac.be)

Veszprem, December [20](#page-0-0)[08](#page-1-0)

1 [Regularization techniques](#page-8-0)

- \bullet [Cubic](#page-8-0)
- **·** [Quadratic](#page-24-0)

[Nonlinear stepsize control](#page-28-0)

 \Box

1 [Regularization techniques](#page-8-0)

- \bullet [Cubic](#page-8-0)
- **·** [Quadratic](#page-24-0)

1 [Regularization techniques](#page-8-0)

- \bullet [Cubic](#page-8-0)
- **·** [Quadratic](#page-24-0)

[Conclusions](#page-35-0)

We consider the unconstrained nonlinear programming problem:

```
minimize f(x)
```
for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth.

Important special case: the nonlinear least-squares problem

minimize $f(x) = \frac{1}{2} ||F(x)||^2$

for $x \in \mathbb{R}^n$ and $F: \mathbb{R}^n \to \mathbb{R}^m$ smooth.

 QQQ

$$
\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \text{ where } f \in C^1 \quad \text{(maybe} \quad C^2 \text{)}
$$

Currently two main competing (but similar) methodologies

Linesearch methods

- compute a descent direction s_k from x_k
- set $x_{k+1} = x_k + \alpha_k s_k$ to improve f

Trust-region methods ۵

- compute a step s_k from x_k to improve a model m_k of f within the trust-region $||s_k|| \leq \Delta$
- set $x_{k+1} = x_k + s_k$ if m_k and f "agree" at $x_k + s_k$
- otherwise set $x_{k+1} = x_k$ and reduce the radius Δ

Consider trust-region method where

 $model = true$ objective function

Then

- model and objective always agree
- **•** trust-region radius goes to infinity

 \Rightarrow a linesearch method

Nice consequence:

A unique convergence theory!

(Shultz/Schnabel/Byrd, 1985, T., 1988, Conn/Gould/T., 2000)

The keys to convergence theory for trust regions

The Cauchy condition:

$$
m_k(x_k) - m_k(x_k + s_k) \geq \kappa_{\text{TR}} \|g_k\| \min\left[\frac{\|g_k\|}{1 + \|H_k\|}, \Delta_k\right]
$$

The bound on the stepsize:

$$
\|s\|\leq \Delta
$$

And we derive:

Global convergence to first/second-order critical points

Is there anything more to say?

Regularization Techniques

Observe the following: if

 \bullet f has gradient g and globally Lipschitz continuous Hessian H with constant 2L

Regularization techniques Cubic

Taylor, Cauchy-Schwarz and Lipschitz imply

$$
f(x+s) = f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle
$$

+ $\int_0^1 (1-\alpha) \langle s, [H(x + \alpha s) - H(x)]s \rangle d\alpha$

$$
\leq \underbrace{f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}L||s||_2^3}{m(s)}
$$

 \implies reducing m from $s = 0$ improves f since $m(0) = f(x)$.

The cubic regularization

Change from

$$
\min_{s} \quad f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle \text{ s.t. } ||s|| \leq \Delta
$$

to

$$
\min_{s} f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3} \sigma \|s\|^3
$$

 σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)

Cubic regularization highlights

$$
f(x+s) \leq m(s) \equiv f(x) + s^T g(x) + \frac{1}{2} s^T H(x) s + \frac{1}{3} L \|s\|_2^3
$$

- Nesterov and Polyak minimize *m* globally
	- N.B. *m* may be non-convex!
	- \bullet efficient scheme to do so if H has sparse factors
- \bullet global (ultimately rapid) convergence to a 2nd-order critical point of f
- **•** better worst-case complexity than previously known

Obvious questions:

- can we avoid the global Lipschitz requirement?
- \bullet can we approximately minimize m and retain good worst-case complexity?
- does this work well in practice?

Cubic overestimation

Assume

$f \in C^2$

- f, g and H at x_k are f_k , g_k and H_k
- symmetric approximation B_k to H_k
- \bullet B_k and H_k bounded at points of interest

Use

• cubic overestimating model at x_k

$$
m_k(s) \equiv f_k + s^T g_k + \frac{1}{2} s^T B_k s + \frac{1}{3} \sigma_k ||s||_2^3
$$

- \bullet σ_k is the iteration-dependent regularisation weight
- easily generalized for regularisation in M_k -norm $\|s\|_{M_k} = \sqrt{s^{\mathsf{T}} M_k s}$ where M_k is uniformly positive definite

つひひ

Adaptive Cubic Overestimation (ACO)

Given x_0 , and $\sigma_0 > 0$, for $k = 0, 1, \ldots$ until convergence,

Regularization techniques Cubic

compute a step s_k for which $\left\lceil \frac{m_k(s_k) \leq m_k(s_k^{\mathsf{C}})}{s_k^{\mathsf{C}}} \right\rceil$

\n- \n Cauchy point: \n
$$
s_k^C = -\alpha_k^C g_k \quad \& \alpha_k^C = \arg\min_{\alpha \in \mathbb{R}_+} m_k(-\alpha g_k)
$$
\n
\n- \n Compute \n
$$
\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k(s_k)}
$$
\n
\n- \n set \n
$$
x_{k+1} = \n \begin{cases}\n x_k + s_k & \text{if } \rho_k > 0.1 \\
x_k & \text{otherwise}\n \end{cases}
$$
\n
\n- \n given \n
$$
\gamma_2 \geq \gamma_1 > 1, \text{ set}
$$
\n
$$
\sigma_{k+1} \in \n \begin{cases}\n (0, \sigma_k) = \frac{1}{2} \sigma_k & \text{if } \rho_k > 0.9 \\
[\sigma_k, \gamma_1 \sigma_k] = \sigma_k & \text{if } 0.1 \leq \rho_k \leq 0.9\n \end{cases}
$$
\n successful\n
$$
\text{unsuccessful}
$$
\n
\n

c.f. trust-region methods

Local convergence theory for cubic regularization (1)

Regularization techniques Cubic

The Cauchy condition:

$$
m_k(x_k) - m_k(x_k + s_k) \geq \kappa_{CR} \|g_k\| \min \left[\frac{\|g_k\|}{1 + \|H_k\|}, \sqrt{\frac{\|g_k\|}{\sigma_k}}\right]
$$

The bound on the stepsize:

$$
\|s_k\| \leq 3 \min\left[\frac{\|H_k\|}{\sigma_k}, \sqrt{\frac{\|g_k\|}{\sigma_k}}\right]
$$

(Cartis/Gould/T)

Local convergence theory for cubic regularization (2)

And therefore. . .

$$
\lim_{k\to\infty} \|g_k\|=0
$$

Under stronger assumptions can show that

$$
\text{lim}_{k\to\infty} Q_k^T H_k Q_k \succeq 0
$$

if s_k minimizes m_k over subspace with orthogonal basis matrix Q_k

Fast convergence

For fast asymptotic convergence \implies need to improve on Cauchy point: minimize over Krylov subspaces

- g stopping-rule: $\|\nabla_s m_k(s_k)\| \leq \min(1, \|g_k\|^{\frac{1}{2}})\|g_k\|$
- s stopping-rule: $\|\nabla_s m_k(s_k)\|$ ≤ min $(1, \|s_k\|) \|g_k\|$

If B_k satisfies the Dennis-Moré condition

 $\|(B_k - H_k)s_k\|/\|s_k\| \to 0$ whenever $\|g_k\| \to 0$

and $x_k \rightarrow x_*$ with positive definite $H(x_*)$

 \implies Q-superlinear convergence of x_k under both the g- and s-rules

If additionally $H(x)$ is locally Lipschitz around x_* and $||(B_k - H_k)s_k|| = O(||s_k||^2)$

Q-q[u](#page-15-0)adratic conv[e](#page-8-0)rgenceof x_k u[nd](#page-17-0)e[r t](#page-16-0)[h](#page-17-0)e [s-](#page-23-0)[r](#page-24-0)[ul](#page-7-0)e

Iteration complexity

How many iterations are needed to ensure that $||g_k|| \leq \epsilon$?

• so long as for very successful iterations $\sigma_{k+1} \leq \gamma_3 \sigma_k$ for $\gamma_3 < 1$ \implies basic ACO algorithm requires at most

 $\lceil \frac{\kappa_C}{\kappa_C} \rceil$

l

 $\left\lceil \frac{\kappa_{\rm C}}{\epsilon^2} \right\rceil$ iterations for some $\kappa_{\rm C}$ independent of ϵ c.f. steepest descent

• if H is globally Lipschitz, the s-rule is applied and additionally s_k is the global (line) minimizer of $m_k(\alpha s_k)$ as a function of α \implies ACO algorithm requires at most

$$
\frac{\kappa_{\rm S}}{\epsilon^{3/2}}
$$
 iterations

for some $\kappa_{\rm S}$ independent of ϵ c.f. Nesterov & Polyak

つひひ

Minimizing the model

$$
m(s) \equiv f + s^T g + \frac{1}{2} s^T B s + \frac{1}{3} \sigma ||s||_2^3
$$

Derivatives:

 $\lambda = \sigma ||s||_2$

•
$$
\nabla_s m(s) = g + Bs + \lambda s
$$

\n• $\nabla_{ss} m(s) = B + \lambda I + \lambda \left(\frac{s}{\|s\|} \right) \left(\frac{s}{\|s\|} \right)^T$

Optimality: any global minimizer s_* of m satisfies

$$
(B+\lambda_*I)\mathsf{s}_*=-\mathsf{g}
$$

- $\lambda_* = \sigma ||s_*||_2$
- \bullet B + $\lambda_* I$ is positive semi-definite

The (adapted) secular equation

Require

$$
(B + \lambda I)s = -g
$$
 and $\lambda = \sigma ||s||_2$

Define $s(\lambda)$:

$$
(B+\lambda I)s(\lambda)=-g
$$

and find scalar λ as the root of secular equations

$$
||s(\lambda)||_2 - \frac{\lambda}{\sigma} = 0
$$
 or $\frac{1}{||s(\lambda)||_2} - \frac{\sigma}{\lambda} = 0$ or $\frac{\lambda}{||s(\lambda)||_2} - \sigma = 0$

- values and derivatives of $s(\lambda)$ satisfy linear systems with symmetric positive definite $B + \lambda I$
- need to be able to factorize $B + \lambda I$

Plots of secular functions against λ

Example:
$$
g = (0.25 \ 1)^T
$$
, $H = diag(-1 \ 1)$ and $\sigma = 2$

Large problems — approximate solutions

Seek instead global minimizer of $m(s)$ in a *j*-dimensional $(j \ll n)$ subspace $S \subseteq \mathbb{R}^n$

- $g \in S \Longrightarrow$ ACO algorithm globally convergent
- Q orthogonal basis for $S \implies s = Qu$ where

$$
u = \arg\min_{u \in \mathbb{R}'} f + u^{\mathsf{T}}(Q^{\mathsf{T}}g) + \frac{1}{2}u^{\mathsf{T}}(Q^{\mathsf{T}}BQ)u + \frac{1}{3}||u||_2^3
$$

 \implies use secular equation to find u

- if $\mathcal S$ is the Krylov space generated by $\{B^ig\}_{i=0}^{j-1}$ $i=0$ \implies Q^T BQ = T, tridiagonal \implies can factor $T + \lambda I$ to solve secular equation even if *i* is large
- using g- or s-stopping rule \implies fast asymptotic convergence for ACO
- using s-stopping rule \implies good iteration complexity for ACO

 $E \rightarrow 4E + E \rightarrow 790$

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability

Numerical experience — small problems using Matlab

Performance Profile: iteration count − 131 CUTEr problems

The quadratic regularization for NLS

Consider the Gauss-Newton method for nonlinear least-squares problems. Change from

Regularization techniques Quadratic

$$
\min_{s} \quad \tfrac{1}{2} \|c(x)\|^2 + \langle s, J(x)^T c(x) \rangle + \tfrac{1}{2} \langle s, J(x)^T J(x) s \rangle \text{ s.t. } \|s\| \leq \Delta
$$

to

$$
\min_{s} \quad \|c(x) + J(x)s\| + \frac{1}{2}\sigma \|s\|^2
$$

σ is the (adaptive) regularization parameter

 QQ

(idea by Nesterov)

Philippe Toint (Namur) Veszprem, December 2008 23 / 34

Quadratic regularization: reformulation

Note that

$$
\min_{s} \|c(x) + J(x)s\| + \frac{1}{2}\sigma \|s\|^2
$$

$$
\Leftrightarrow
$$

$$
\min_{\nu, s} \quad \nu + \frac{1}{2}\sigma \|s\|^2 \quad \text{such that} \quad \|c(x) + J(x)s\|^2 = \nu^2
$$

exact penalty function for the problem of minimizing $\|s\|$ subject to $c(x) + J(x)s = 0.$

Iterative techniques. \ldots as for the cubic case (Cartis, Gould, \top .):

solve the problem in nested Krylov subspaces

- \bullet Lanczos \rightarrow factorization of tridiagonal matrices
- o different scalar secular equation (solution b[y N](#page-24-0)[e](#page-28-0)[w](#page-24-0)[to](#page-25-0)[n](#page-26-0)['s](#page-23-0) [m](#page-27-0)e[t](#page-7-0)[h](#page-8-0)[o](#page-27-0)[d](#page-28-0)[\)](#page-0-0)

Regularization techniques Quadratic

The keys to convergence theory for quadratic regularization

The Cauchy condition:

$$
m(x_k) - m(x_k + s_k) \ge \kappa_{QR} \frac{\|J_k^T c_k\|}{\|c_k\|} \min \left[\frac{\|J_k^T c_k\|}{1 + \|J_k^T J_k\|}, \frac{\|J_k^T c_k\|}{\sigma_k \|c_k\|}\right]
$$

The bound on the stepsize:

$$
\|s_k\|\leq \frac{1}{2}\frac{\|J_k^{\mathcal T}c_k\|}{\sigma_k\|c_k\|}
$$

Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

- \bullet general values of m and n ,
- \bullet exact/approximate subproblem solution

(Bellavia/Cartis/Gould/Morini/T.)

A unifying concept: Nonlinear stepsize control

Towards a unified global convergence theory

Objectives:

- recover a unified global convergence theory
- **•** possibly open the door for new algorithms

Idea:

- cast all three methods into a generalized TR framework
- allow this TR to be updated nonlinearly

Towards a unified global convergence theory (2)

Given

- 3 continuous first-order criticality measures $\psi(x)$, $\phi(x)$, $\chi(x)$
- an adaptive stepsize parameter δ

define a generalized radius $\Delta(\delta, \chi(x))$ such that

- $\Delta(\cdot, \chi)$ is C^1 , strictly increasing and concave,
- $\Delta(0, \chi) = 0$ for all χ ,
- \bullet $\Delta(\delta, \cdot)$ is non-increasing

$$
\delta \frac{\partial \Delta}{\partial \delta}(\delta, \chi) \leq \kappa_{\Delta} \Delta(\delta, \chi)
$$

 \bullet ...

 \bullet

Towards a unified global convergence theory (3)

• the generalized Cauchy condition:

$$
m(x_k) - m(x_k + s_k) \ge \kappa_{\mathsf{N}} \phi_k \min \left[\frac{\psi_k}{1 + \|H_k\|}, \Delta(\delta_k, \chi_k) \right]
$$

• the generalized bound on the stepsize:

$$
\|\mathbf{s}_k\| \leq \Delta(\delta_k, \chi_k)
$$

The nonlinear stepsize control algorithm

Algorithm 2.1: Nonlinear Stepsize Control Algorithm

Step 0: Initialization: $x_0 \in \mathbb{R}^n$, δ_0 given. Set $k = 0$. Step 1: Step computation: Choose a model $m_k(x_k + s)$ and find a step s_k satisfying generalized Cauchy and $||s_k|| \leq \Delta(\delta_k, \chi_k)$. Step 2: Step acceptance: Compute $f(x_k + s_k)$ and

$$
\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)}
$$

Set $x_{k+1} = x_k + s_k$ if $\rho_k \geq \eta_1$; $x_{k+1} = x_k$ otherwise. Step 3: Stepsize parameter update: Choose

$$
\delta_{k+1} \in \left\{ \begin{array}{lll} [\gamma_1 \delta_k, \gamma_2 \delta_k] & \text{if} & \rho_k < \eta_1, \\ [\gamma_2 \delta_k, \delta_k] & \text{if} & \rho_k \in [\eta_1, \eta_2), \\ [\delta_k, +\infty] & \text{if} & \rho_k \ge \eta_2. \end{array} \right.
$$

Set $k \leftarrow k + 1$ and go to Step 1.

Resulting convergence theory

Similar to trust-region convergence theory, but

more work to prove that $\Delta(\delta_k, \chi_k)$ remains bounded away from zero

(assumptions of $\Delta(\delta, \chi)$ crucial here) and the result is ...

 $\lim_{k \to +\infty} \min[\phi_k, \psi_k, \chi_k] = 0$

Unified first-order convergence theory!

Covers all previous cases

trust regions:

$$
\phi_k = \psi_k = \chi_k = ||g_k||, \qquad \Delta(\delta, \chi) = \delta
$$

cubic regularization:

$$
\phi_k = \psi_k = \chi_k = ||g_k||,
$$
\n $\delta_k = \frac{1}{\sigma_k}, \quad \Delta(\delta, \chi) = \sqrt{\delta \chi}$

quadratic regularization:

$$
\phi_k = \chi_k = \frac{\|J_k^T F_k\|}{\|F_k\|}, \ \psi_k = \|J_k^T F_k\|, \quad \delta_k = \frac{1}{\sigma_k}, \quad \Delta(\delta, \chi) = \delta \chi
$$

a method by Fan and Yuan:

$$
\phi_k = \chi_k = \psi_k = ||g_k||,
$$

- Much left to do... but very interesting
- Could lead to very untypical methods Example:

$$
\psi_k = \phi_k = \chi_k = ||g_k||,
$$
\n $\Delta(\delta, \chi) = \sqrt{\delta \chi}$

- Meaningful numerical evaluation still needed
- Many issues regarding regularizations still unresolved

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)