Nonlinear stepsize control, Trust-Region and Regularization Algorithms for Unconstrained **Optimization**

Philippe Toint (input by Stefania Bellavia, Coralia Cartis, Nick Gould and Benedetta Morini)

Department of Mathematics,University of Namur, Belgium

(philippe.toint@fundp.ac.be)

IRCM Conference, Luxemburg, [O](#page-0-0)c[to](#page-1-0)[ber](#page-0-0) [2](#page-1-0)[00](#page-0-0)[8](#page-7-0)

1 [Regularization techniques](#page-8-0) **•** [Cubic](#page-8-0)

-
- **·** [Quadratic](#page-14-0)

[Nonlinear stepsize control](#page-19-0)

 \leftarrow

1 [Regularization techniques](#page-8-0)

- **•** [Cubic](#page-8-0)
- **·** [Quadratic](#page-14-0)

 \leftarrow

1 [Regularization techniques](#page-8-0)

- **•** [Cubic](#page-8-0)
- **·** [Quadratic](#page-14-0)

 \leftarrow

We consider the unconstrained nonlinear programming problem:

```
minimize f(x)
```
for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth.

Important special case: the nonlinear least-squares problem

minimize $f(x) = \frac{1}{2} ||F(x)||^2$

for $x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

Work in progress...

$$
\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \text{ where } f \in C^1 \quad \text{(maybe } C^2 \text{)}
$$

Currently two main competing (but similar) methodologies

Linesearch methods

- compute a descent direction s_k from x_k
- set $x_{k+1} = x_k + \alpha_k s_k$ to improve f

Trust-region methods

- compute a step s_k from x_k to improve a model m_k of f within the trust-region $||s|| < \Delta$
- set $x_{k+1} = x_k + s_k$ if m_k and f "agree" at $x_k + s_k$
- o otherwise set $x_{k+1} = x_k$ and reduce the radius Δ

Consider trust-region method where

 $model = true$ objective function

Then

- model and objective always agree
- **•** trust-region radius goes to infinity

a linesearch method

Nice consequence:

A unique convergence theory!

(Shultz/Schnabel/Byrd, 1985, T., 1988, Conn/Gould/T., 2000)

The keys to convergence theory for trust regions

The Cauchy condition:

$$
m_k(x_k) - m_k(x_k + s_k) \geq \kappa_{\text{TR}} \|g_k\| \min \left[\frac{\|g_k\|}{1 + \|H_k\|}, \Delta_k\right]
$$

The bound on the stepsize:

$$
\|s\|\leq \Delta
$$

And we derive:

Global convergence to first/second-order critical points

Is there anything more to say?

4 0 8

Regularization Techniques

4 0 8

Observe the following: if

 \bullet f has gradient g and globally Lipschitz continuous Hessian H with constant 2L

Regularization techniques Cubic

Taylor, Cauchy-Schwarz and Lipschitz imply

$$
f(x+s) = f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle
$$

+ $\int_0^1 (1-\alpha) \langle s, [H(x + \alpha s) - H(x)]s \rangle d\alpha$

$$
\leq \underbrace{f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}L||s||_2^3}{m(s)}
$$

 \Rightarrow reducing m from $s = 0$ improves f since $m(0) = f(x)$.

The cubic regularization

Change from

$$
\min_{s} \quad f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle \text{ s.t. } ||s|| \leq \Delta
$$

to

$$
\min_{s} f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3} \sigma \|s\|^3
$$

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)

4 0 8

Regularization techniques Cubic

The keys to convergence theory for cubic regularization

The Cauchy condition:

$$
m_k(x_k) - m_k(x_k + s_k) \ge \kappa_{CR} \|g_k\| \min \left[\frac{\|g_k\|}{1 + \|H_k\|}, \sqrt{\frac{\|g_k\|}{\sigma_k}}\right]
$$

The bound on the stepsize:

$$
\|\mathbf{s}\| \leq 3 \min\left[\frac{\|H_k\|}{\sigma_k}, \sqrt{\frac{\|\mathbf{g}_k\|}{\sigma_k}}\right]
$$

(Cartis/Gould/T)

 \leftarrow

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability

Numerical experience — small problems using Matlab

Performance Profile: iteration count − 131 CUTEr problems

The quadratic regularization for NLS

Consider the Gauss-Newton method for nonlinear least-squares problems. Change from

Regularization techniques Quadratic

$$
\min_{s} \quad \tfrac{1}{2} \|c(x)\|^2 + \langle s, J(x)^T c(x) \rangle + \tfrac{1}{2} \langle s, J(x)^T J(x) s \rangle \text{ s.t. } \|s\| \leq \Delta
$$

to

$$
\min_{s} \|c(x) + J(x)s\| + \frac{1}{2}\sigma \|s\|^2
$$

σ is the (adaptive) regularization parameter

(idea by Nesterov)

Philippe Toint (Namur) **[IRCM Conference](#page-0-0)** Luxemburg, October 2008 13 / 25

Quadratic regularization: reformulation

Note that

exact penalty function for the problem of minimizing $\|s\|$ subject to $c(x) + J(x)s = 0.$

4 **ED**

The keys to convergence theory for quadratic regularization

The Cauchy condition:

$$
m(x_k) - m(x_k + s_k) \ge \kappa_{QR} \frac{\|J_k^T c_k\|}{\|c_k\|} \min \left[\frac{\|J_k^T c_k\|}{1 + \|J_k^T J_k\|}, \frac{\|J_k^T c_k\|}{\sigma_k \|c_k\|}\right]
$$

The bound on the stepsize:

$$
\|s\|\leq \frac{1}{2}\frac{\|J_k^T c_k\|}{\sigma_k\|c_k\|}
$$

 $2Q$

Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

- \bullet general values of m and n,
- \bullet exact/approximate subproblem solution

(Bellavia/Cartis/Gould/Morini/T.)

Computing regularization steps

Iterative techniques. . .

solve the problem in nested Krylov subspaces

- \bullet Lanczos \rightarrow basis of the Krylov subspace
- $\bullet \rightarrow$ factorization of tridiagonal matrices
- different scalar secular equation (solution by Newton's method)

Approach valid for

- **o** trust-region (GLTR),
- cubic and quadratic regularizations

(details in CGT techreport)

A unifying concept: Nonlinear stepsize control

 \leftarrow

Philippe Toint (Namur) **[IRCM Conference](#page-0-0)** Luxemburg, October 2008 18 / 25

Towards a unified global convergence theory

Objectives:

- recover a unified global convergence theory
- **•** possibly open the door for new algorithms

Idea:

- cast all three methods into a generalized TR framework
- allow this TR to be updated nonlinearly

Towards a unified global convergence theory (2)

Given

- **•** two continuous first-order criticality measures $\psi(x)$ and $\psi(x)\chi(x)$
- an adaptive stepsize parameter δ

define a generalized radius $\Delta(\delta, \chi(x))$ such that

- $\Delta(\cdot,\chi)$ is C^1 , strictly increasing and concave,
- $\Delta(0, \chi) = 0$ for all χ ,
- $\Delta(\delta, \cdot)$ is non-increasing

$$
\delta \frac{\partial \Delta}{\partial \delta}(\delta, \chi) \leq \kappa_{\Delta} \Delta(\delta, \chi)
$$

 $\phi(x)$ bounded above

 \bullet ...

 \bullet

つへへ

Towards a unified global convergence theory (3)

• the generalized Cauchy condition:

$$
m(x_k) - m(x_k + s_k) \ge \kappa_N \chi_k \min \left[\frac{\psi_k}{1 + ||H_k||}, \Delta(\delta_k, \chi_k) \right]
$$

• the generalized bound on the stepsize:

$$
\|\mathbf{s}\| \leq \Delta(\delta_k, \chi_k)
$$

The nonlinear stepsize control algorithm

Algorithm 2.1: Nonlinear Stepsize Control Algorithm

Step 0: Initialization: $x_0 \in \mathbb{R}^n$, δ_0 given. Set $k = 0$. Step 1: Step computation: Choose a model $m_k(x_k + s)$ and find a step s_k satisfying generalized Cauchy and $||s_k|| \leq \Delta(\delta_k, \chi_k)$. Step 2: Step acceptance: Compute $f(x_k + s_k)$ and

$$
\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)}
$$

Set $x_{k+1} = x_k + s_k$ if $\rho_k \geq \eta_1$; $x_{k+1} = x_k$ otherwise. Step 3: Stepsize parameter update: Choose

$$
\delta_{k+1} \in \left\{ \begin{array}{lll} [\gamma_1 \delta_k, \gamma_2 \delta_k] & \text{if} & \rho_k < \eta_1, \\ [\gamma_2 \delta_k, \delta_k] & \text{if} & \rho_k \in [\eta_1, \eta_2), \\ [\delta_k, +\infty] & \text{if} & \rho_k \ge \eta_2. \end{array} \right.
$$

Set $k \leftarrow k + 1$ and go to Step 1.

university-logo

Resulting convergence theory

Similar to trust-region convergence theory, but

more work to prove that $\Delta(\delta_k, \chi_k)$ remains bounded away from zero

(assumptions of $\Delta(\delta, \chi)$ crucial here) and the result is

$$
\liminf_{k \to +\infty} \psi_k = 0 \qquad \text{or} \qquad \lim_{k \to +\infty} \chi_k = 0
$$

(both true limits if ψ is non-increasing)

Unified first-order convergence theory!

Covers all previous cases

trust regions:

$$
\chi_k = ||g_k||,
$$
 $\psi_k = 1,$ $\Delta(\delta, \chi) = \delta$

cubic regularization:

$$
\chi_k = ||g_k||,
$$
 $\psi_k = 1,$ $\delta_k = \frac{1}{\sigma_k},$ $\Delta(\delta, \chi) = \sqrt{\delta \chi}$

quadratic regularization:

$$
\chi_k = \frac{\|J_k^T F_k\|}{\|F_k\|}, \quad \psi_k = \|F_k\|, \quad \delta_k = \frac{1}{\sigma_k}, \quad \Delta(\delta, \chi) = \delta \chi
$$

 \leftarrow

Conclusions

Conclusions

- Much left to do... but very interesting
- Could lead to very untypical methods Example:

$$
\chi_k = \|g_k\|, \qquad \Delta(\delta, \chi) = \sqrt{\delta \chi}
$$

- Meaningful numerical evaluation still needed \bullet
- Many issues regarding regularizations still unresolved

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)