Nonlinear stepsize control, Trust-Region and Regularization Algorithms for Unconstrained Optimization

Philippe Toint (input by Stefania Bellavia, Coralia Cartis, Nick Gould and Benedetta Morini)

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

IRCM Conference, Luxemburg, October 2008

- Cubic
- Quadratic

2 Nonlinear stepsize control

3 Conclusions

- Cubic
- Quadratic

3 Conclusions

- Cubic
- Quadratic

3 Conclusions

We consider the unconstrained nonlinear programming problem:

```
minimize f(x)
```

for $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ smooth.

Important special case: the nonlinear least-squares problem

```
minimize f(x) = \frac{1}{2} ||F(x)||^2
```

for $x \in \mathbb{R}^n$ and $F : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

Work in progress...

$$\underset{x \in \mathsf{R}^n}{\text{minimize}} f(x) \text{ where } f \in \mathsf{C}^1 \quad (\mathsf{maybe} \quad \mathsf{C}^2 \)$$

Currently two main competing (but similar) methodologies

Linesearch methods

- compute a descent direction s_k from x_k
- set $x_{k+1} = x_k + \alpha_k s_k$ to improve f

Trust-region methods

- compute a step s_k from x_k to improve a model m_k of f within the trust-region ||s|| ≤ Δ
- set $x_{k+1} = x_k + s_k$ if m_k and f "agree" at $x_k + s_k$
- otherwise set $x_{k+1} = x_k$ and reduce the radius Δ

Consider trust-region method where

model = true objective function

Then

- model and objective always agree
- trust-region radius goes to infinity

 \Rightarrow a linesearch method

Nice consequence:

A unique convergence theory!

(Shultz/Schnabel/Byrd, 1985, T., 1988, Conn/Gould/T., 2000)

The keys to convergence theory for trust regions

The Cauchy condition:

$$m_k(x_k)-m_k(x_k+s_k)\geq \kappa_{ ext{TR}}\|g_k\|\min\left[rac{\|g_k\|}{1+\|H_k\|},\Delta_k
ight]$$

The bound on the stepsize:

$$\|s\| \leq \Delta$$

And we derive:

Global convergence to first/second-order critical points

Is there anything more to say?

Philippe Toint (Namur)

IRCM Conference

6 / 25

Is there anything more to say?

Observe the following: if

• f has gradient g and globally Lipschitz continuous Hessian H with constant 21

Taylor, Cauchy-Schwarz and Lipschitz imply

$$f(x+s) = f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \int_0^1 (1-\alpha) \langle s, [H(x+\alpha s) - H(x)]s \rangle d\alpha \leq \underbrace{f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}L ||s||_2^3}_{m(s)}$$

 \implies reducing *m* from s = 0 improves *f* since m(0) = f(x).

8 / 25

The cubic regularization

Change from

$$\min_{s} \quad f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x) s \rangle \; \text{ s.t. } \; \|s\| \leq \Delta$$

to

$$\min_{s} f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3} \sigma \|s\|^{3}$$

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)

Philippe Toint (Namur)

Regularization techniques Cubic

The keys to convergence theory for cubic regularization

The Cauchy condition:

$$m_k(x_k) - m_k(x_k + s_k) \ge \kappa_{CR} \|g_k\| \min\left[rac{\|g_k\|}{1 + \|H_k\|}, \sqrt{rac{\|g_k\|}{\sigma_k}}
ight]$$

The bound on the stepsize:

$$\|s\| \le 3 \min\left[rac{\|H_k\|}{\sigma_k}, \sqrt{rac{\|g_k\|}{\sigma_k}}
ight]$$

(Cartis/Gould/T)

The main features of adaptive cubic regularization

And the result is...

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability

Cubic

Numerical experience — small problems using Matlab

Philippe Toint (Namur)

Luxemburg, October 2008

Quadratic

The quadratic regularization for NLS

Consider the Gauss-Newton method for nonlinear least-squares problems. Change from

$$\min_{s} \quad \frac{1}{2} \|c(x)\|^2 + \langle s, J(x)^T c(x) \rangle + \frac{1}{2} \langle s, J(x)^T J(x) s \rangle \text{ s.t. } \|s\| \leq \Delta$$

to

$$\min_{s} ||c(x) + J(x)s|| + \frac{1}{2}\sigma ||s||^{2}$$

σ is the (adaptive) regularization parameter

(idea by Nesterov)

Philippe Toint (Namur)

IRCM Conference

Luxemburg, October 2008 13 / 25

Quadratic regularization: reformulation

Note that

mir s	$\ c(x) + J(x)s\ + \frac{1}{2}\sigma\ s\ ^2$
	\Leftrightarrow
	$\min_{\nu,s} \nu + \frac{1}{2}\sigma \ s\ ^2$
such that	$\ c(x) + J(x)s\ ^2 = \nu^2$

exact penalty function for the problem of minimizing ||s|| subject to c(x) + J(x)s = 0.

Philippe Toint (Namur)

IRCM Conference

Luxemburg, October 2008

14 / 25

Regularization techniques Quadratic

The keys to convergence theory for quadratic regularization

The Cauchy condition:

$$m(x_k) - m(x_k + s_k) \ge \kappa_{\text{QR}} \frac{\|J_k^{\mathsf{T}} c_k\|}{\|c_k\|} \min\left[\frac{\|J_k^{\mathsf{T}} c_k\|}{1 + \|J_k^{\mathsf{T}} J_k\|}, \frac{\|J_k^{\mathsf{T}} c_k\|}{\sigma_k \|c_k\|}\right]$$

The bound on the stepsize:

$$\|m{s}\| \leq rac{1}{2} rac{\|J_k^{ op}m{c}_k\|}{\sigma_k\|m{c}_k\|}$$

- • •		/ .	
Phi		unt ()	(lamur)
F 111	поре то		Nation
		(.	· · · - · /

Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

- general values of m and n,
- exact/approximate subproblem solution

(Bellavia/Cartis/Gould/Morini/T.)

Computing regularization steps

Iterative techniques...

solve the problem in nested Krylov subspaces

- Lanczos → basis of the Krylov subspace
- → factorization of tridiagonal matrices
- different scalar secular equation (solution by Newton's method)

Approach valid for

- trust-region (GLTR),
- cubic and quadratic regularizations

(details in CGT techreport)

A unifying concept: Nonlinear stepsize control

Philippe Toint (Namur)

IRCM Conference

Luxemburg, October 2008 18 / 25

Towards a unified global convergence theory

Objectives:

- recover a unified global convergence theory
- possibly open the door for new algorithms

Idea:

- cast all three methods into a generalized TR framework
- allow this TR to be updated nonlinearly

Towards a unified global convergence theory (2)

Given

٥

- two continuous first-order criticality measures $\psi(x)$ and $\psi(x)\chi(x)$
- an adaptive stepsize parameter δ

define a generalized radius $\Delta(\delta, \chi(x))$ such that

- $\Delta(\cdot,\chi)$ is C^1 , strictly increasing and concave,
- $\Delta(0,\chi) = 0$ for all χ ,
- $\Delta(\delta, \cdot)$ is non-increasing

$$\delta \frac{\partial \Delta}{\partial \delta}(\delta, \chi) \leq \kappa_{\Delta} \Delta(\delta, \chi)$$

• $\psi(x)$ bounded above

Towards a unified global convergence theory (3)

• the generalized Cauchy condition:

$$m(x_k) - m(x_k + s_k) \ge \kappa_N \chi_k \min\left[\frac{\psi_k}{1 + \|H_k\|}, \Delta(\delta_k, \chi_k)\right]$$

• the generalized bound on the stepsize:

$$\|s\| \leq \Delta(\delta_k, \chi_k)$$

The nonlinear stepsize control algorithm

Algorithm 2.1: Nonlinear Stepsize Control Algorithm

Step 0: Initialization: $x_0 \in \mathbb{R}^n$, δ_0 given. Set k = 0. Step 1: Step computation: Choose a model $m_k(x_k + s)$ and find a step s_k satisfying generalized Cauchy and $||s_k|| \le \Delta(\delta_k, \chi_k)$. Step 2: Step acceptance: Compute $f(x_k + s_k)$ and

$$\rho_k = \frac{f(x_k) - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)}$$

Set $x_{k+1} = x_k + s_k$ if $\rho_k \ge \eta_1$; $x_{k+1} = x_k$ otherwise. Step 3: Stepsize parameter update: Choose

$$\delta_{k+1} \in \begin{cases} [\gamma_1 \delta_k, \gamma_2 \delta_k] & \text{if } \rho_k < \eta_1, \\ [\gamma_2 \delta_k, \delta_k] & \text{if } \rho_k \in [\eta_1, \eta_2), \\ [\delta_k, +\infty] & \text{if } \rho_k \ge \eta_2. \end{cases}$$

Set $k \leftarrow k + 1$ and go to Step 1.

Resulting convergence theory

Similar to trust-region convergence theory, but

more work to prove that $\Delta(\delta_k, \chi_k)$ remains bounded away from zero

(assumptions of $\Delta(\delta, \chi)$ crucial here) and the result is ...

$$\liminf_{k \to +\infty} \psi_k = 0 \quad \text{ or } \quad \lim_{k \to +\infty} \chi_k = 0$$

(both true limits if ψ is non-increasing)

Unified first-order convergence theory!

Covers all previous cases

trust regions:

$$\chi_k = \|g_k\|, \qquad \psi_k = 1, \qquad \Delta(\delta, \chi) = \delta$$

cubic regularization:

$$\chi_k = \|g_k\|, \qquad \psi_k = 1, \qquad \delta_k = \frac{1}{\sigma_k}, \qquad \Delta(\delta, \chi) = \sqrt{\delta\chi}$$

-

quadratic regularization:

$$\chi_k = \frac{\|J_k^T F_k\|}{\|F_k\|}, \quad \psi_k = \|F_k\|, \quad \delta_k = \frac{1}{\sigma_k}, \quad \Delta(\delta, \chi) = \delta\chi$$

Conclusions

Conclusions

- Much left to do...but very interesting
- Could lead to very untypical methods Example:

$$\chi_k = \|g_k\|, \qquad \Delta(\delta, \chi) = \sqrt{\delta\chi}$$

- Meaningful numerical evaluation still needed
- Many issues regarding regularizations still unresolved

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)