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The problem

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.

Work in progress. . .
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Unconstrained optimization — a “mature” area?

minimize
x∈IRn

f (x) where f ∈ C 1 (maybe C 2 )

Currently two main competing (but similar) methodologies

Linesearch methods

compute a descent direction sk from xk

set xk+1 = xk + αksk to improve f

Trust-region methods

compute a step sk from xk to improve a model mk of f

within the trust-region ‖s‖ ≤ ∆
set xk+1 = xk + sk if mk and f “agree” at xk + sk
otherwise set xk+1 = xk and reduce the radius ∆
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A useful theoretical observation

Consider trust-region method where

model = true objective function

Then

model and objective always agree

trust-region radius goes to infinity

⇒ a linesearch method
Nice consequence:

A unique convergence theory!

(Shultz/Schnabel/Byrd, 1985, T., 1988, Conn/Gould/T., 2000)
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The keys to convergence theory for trust regions

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κTR‖gk‖min

[ ‖gk‖
1 + ‖Hk‖

,∆k

]

The bound on the stepsize:

‖s‖ ≤ ∆

And we derive:

Global convergence to first/second-order critical points

Is there anything more to say?
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Regularization techniques Cubic

Regularization Techniques
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Regularization techniques Cubic

Is there anything more to say?

Observe the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉

+
∫ 1
0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 + 1

3
L‖s‖32

︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Regularization techniques Cubic

The cubic regularization

Change from

min
s

f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 + 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Regularization techniques Cubic

The keys to convergence theory for cubic regularization

The Cauchy condition:

mk(xk)−mk(xk + sk) ≥ κCR‖gk‖min




‖gk‖

1 + ‖Hk‖
,

√

‖gk‖
σk





The bound on the stepsize:

‖s‖ ≤ 3min




‖Hk‖
σk

,

√

‖gk‖
σk





(Cartis/Gould/T)
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Regularization techniques Cubic

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability
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Regularization techniques Cubic

Numerical experience — small problems using Matlab

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fr
ac

tio
n 

of
 p

ro
bl

em
s 

fo
r 

w
hi

ch
 m

et
ho

d 
w

ith
in

 α
 o

f b
es

t

Performance Profile: iteration count − 131 CUTEr problems

 

 

ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
trust−region (8 failures)

Figure:
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Regularization techniques Quadratic

The quadratic regularization for NLS

Consider the Gauss-Newton method for nonlinear least-squares problems.
Change from

min
s

1
2
‖c(x)‖2 + 〈s, J(x)T c(x)〉+ 1

2
〈s, J(x)T J(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

‖c(x) + J(x)s‖ + 1
2
σ‖s‖2

σ is the (adaptive) regularization parameter

(idea by Nesterov)
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Regularization techniques Quadratic

Quadratic regularization: reformulation

Note that

min
s

‖c(x) + J(x)s‖ + 1
2
σ‖s‖2

⇔

min
ν,s

ν + 1
2
σ‖s‖2

such that
‖c(x) + J(x)s‖2 = ν2

exact penalty function for the problem of minimizing ‖s‖ subject to
c(x) + J(x)s = 0.
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Regularization techniques Quadratic

The keys to convergence theory for quadratic regularization

The Cauchy condition:

m(xk)−m(xk + sk) ≥ κQR

‖JT

k
ck‖

‖ck‖
min

[ ‖JT

k
ck‖

1 + ‖JT

k
Jk‖

,
‖JT

k
ck‖

σk‖ck‖

]

The bound on the stepsize:

‖s‖ ≤ 1

2

‖JT

k
ck‖

σk‖ck‖
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Regularization techniques Quadratic

Convergence theory for the quadratic regularization

Convergence results:

Global convergence to first-order critical points

Quadratic convergence to roots

Valid for

general values of m and n,

exact/approximate subproblem solution

(Bellavia/Cartis/Gould/Morini/T.)
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Regularization techniques Quadratic

Computing regularization steps

Iterative techniques. . .

solve the problem in nested Krylov subspaces

Lanczos → basis of the Krylov subspace

→ factorization of tridiagonal matrices

different scalar secular equation (solution by Newton’s method)

Approach valid for

trust-region (GLTR),

cubic and quadratic regularizations

(details in CGT techreport)
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Nonlinear stepsize control

A unifying concept:
Nonlinear stepsize control
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Nonlinear stepsize control

Towards a unified global convergence theory

Objectives:

recover a unified global convergence theory

possibly open the door for new algorithms

Idea:

cast all three methods into a generalized TR framework

allow this TR to be updated nonlinearly

Philippe Toint (Namur) IRCM Conference Luxemburg, October 2008 19 / 25



university-logo

Nonlinear stepsize control

Towards a unified global convergence theory (2)

Given

two continuous first-order criticality measures ψ(x) and ψ(x)χ(x)

an adaptive stepsize parameter δ

define a generalized radius ∆(δ, χ(x)) such that

∆(·, χ) is C 1, strictly increasing and concave,

∆(0, χ) = 0 for all χ,

∆(δ, ·) is non-increasing

δ∂∆
∂δ

(δ, χ) ≤ κ∆∆(δ, χ)

ψ(x) bounded above

. . .
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Nonlinear stepsize control

Towards a unified global convergence theory (3)

the generalized Cauchy condition:

m(xk)−m(xk + sk) ≥ κNχk min

[
ψk

1 + ‖Hk‖
,∆(δk , χk)

]

the generalized bound on the stepsize:

‖s‖ ≤ ∆(δk , χk)
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Nonlinear stepsize control

The nonlinear stepsize control algorithm

Algorithm 2.1: Nonlinear Stepsize Control Algorithm

Step 0: Initialization: x0 ∈ IRn, δ0 given. Set k = 0.
Step 1: Step computation: Choose a model mk(xk + s) and find a

step sk satisfying generalized Cauchy and ‖sk‖ ≤ ∆(δk , χk).

Step 2: Step acceptance: Compute f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

Set xk+1 = xk + sk if ρk ≥ η1; xk+1 = xk otherwise.

Step 3: Stepsize parameter update: Choose

δk+1 ∈







[γ1δk , γ2δk ] if ρk < η1,

[γ2δk , δk ] if ρk ∈ [η1, η2),
[δk ,+∞] if ρk ≥ η2.

Set k ← k + 1 and go to Step 1.
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Nonlinear stepsize control

Resulting convergence theory

Similar to trust-region convergence theory, but

more work to prove that ∆(δk , χk) remains bounded away from zero

(assumptions of ∆(δ, χ) crucial here)
and the result is . . .

lim inf
k→+∞

ψk = 0 or lim
k→+∞

χk = 0

(both true limits if ψ is non-increasing)

Unified first-order convergence theory!
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Nonlinear stepsize control

Covers all previous cases

trust regions:

χk = ‖gk‖, ψk = 1, ∆(δ, χ) = δ

cubic regularization:

χk = ‖gk‖, ψk = 1, δk = 1
σk

, ∆(δ, χ) =
√
δχ

quadratic regularization:

χk =
‖JT

k Fk‖
‖Fk‖ , ψk = ‖Fk‖, δk = 1

σk
, ∆(δ, χ) = δχ
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Conclusions

Conclusions

Much left to do. . . but very interesting

Could lead to very untypical methods
Example:

χk = ‖gk‖, ∆(δ, χ) =
√

δχ

Meaningful numerical evaluation still needed

Many issues regarding regularizations still unresolved

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)
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