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The problem

The general nonlinear programming problem:

minimize f (x)
subject to cE(x) = 0

cI(x) ≥ 0,

for x ∈ IRn, f and c smooth.

Solution algorithms are iterative ({xk}) and based on Newton’s method
(or variant)

very many applications (also in CMS)

Issues: reliability, availability, efficiency
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Our objective

In this talk,

A glimpse into recent (and exciting) new developments
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Filter methods

Filter methods
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Filter methods

Non-monotonicity
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Non-monotonicity often pays!

Philippe Toint (Namur) Nonlinear programming - LONDON 2008 CMS conference 6 / 42



university-logo

Filter methods Constrained optimization

Introducing the filter

Constrained optimization :

use a good method (SQP) to compute a step sk from xk

Ideally

reduce the objective function f (x)

reduce the constraint violation θ(x)

, two potentially conflicting aims /

I Filter method
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Filter methods Constrained optimization

Accepting a new iterate

Idea of Fletcher and Leyffer

Replace the question

What is a better point ?

by

What is a worse point ?

Of course, y is “worse” than x if it is dominated by x , i.e., when

f (x) ≤ f (y) and θ(x) ≤ θ(y)

Accept or reject a trial point ?
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Filter methods Constrained optimization

View of a standard filter

PSfrag replacements

f (x)

0 θ(x)
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Filter methods Constrained optimization

View of a standard filter

��

PSfrag replacements

f (x)
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Filter methods Constrained optimization

View of a standard filter

PSfrag replacements

f (x)

0 theta(x)
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Filter methods Feasibility and least-squares problems

Handling many objectives

Gould, Leyffer and T.

Feasibility

Find x such that
cE (x) = 0 and cI(x) ≥ 0

Least-squares

Find x such that
min
x∈IRn

∑

i∈E∪I

θi(x)2

I More dimensions in the filter space . . .
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Filter methods Feasibility and least-squares problems

The obvious picture
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Filter methods Feasibility and least-squares problems

Numerical experience (1)
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Filter vs. trust-region (CPU time)

Philippe Toint (Namur) Nonlinear programming - LONDON 2008 CMS conference 12 / 42



university-logo

Filter methods Feasibility and least-squares problems

Numerical experience (2)
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Filter methods Unconstrained and bound-constrained optimization

The other extreme case

Gould, Sainvitu and T.

Unconstrained optimization

min
x∈IRn

f (x)

Simple-bound constrained optimization

min f (x)
s.t. l ≤ x ≤ u

Combined methods:

Trust-region + filter + projected gradient

I Multidimensional filter
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Filter methods Unconstrained and bound-constrained optimization

A gradient multidimensional filter

Accept x+
k

more often

A point x dominates a point y whenever

|gi (x)| ≤ |gi (y)| ∀ i = 1, . . . , n

Remember non-dominated points ⇒ FILTER

Accept a new iterate ?

if it is not dominated by any other iterate in the filter
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Filter methods Unconstrained and bound-constrained optimization

Haven’t we seen this before?

PSfrag replacements

g2(x)

0 g1(x)
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Filter methods Unconstrained and bound-constrained optimization

Numerical experience (unconstrained)
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Filter vs. trust-region and LANCELOT B (iterations)
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Filter methods Unconstrained and bound-constrained optimization

Numerical experience: HEART6
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Filter methods Unconstrained and bound-constrained optimization

Numerical experience: EXTROSNB
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Filter methods Unconstrained and bound-constrained optimization

Numerical experience: LOBSTERZ
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Multilevel algorithms

Multilevel algorithms

Multilevel algorithms
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Multilevel algorithms

Motivation

Optimization of continuous problems occurs in a many applications:
shape optimization, data assimilation, control problems, . . .

Recent optimization methods have been designed to cope with these
problems, including multilevel/multigrid algorithms.

These algorithms involve the computation of a hierarchy of problem
descriptions, linked by known operators.

Here: focus on unconstrained/ bound-constrained optimization:

min
(x≥0)

f (x)
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Multilevel algorithms

Hierarchy of problem descriptions

Can we use a structure of the form:

Finest problem description

Restriction ↓ R P ↑ Prolongation

Fine problem description

Restriction ↓ R P ↑ Prolongation

. . .

Restriction ↓ R P ↑ Prolongation

Coarse problem description

Restriction ↓ R P ↑ Prolongation

Coarsest problem description
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Multilevel algorithms

Grid transfer operators

Ri : IRni → IRni−1 Restriction
Pi : IRni−1 → IRni Prolongation
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Multilevel algorithms

Three keys to multigrid algorithms

oscillatory components of the error are representable
on fine grids, but not on coarse grids

iterative methods reduce oscillatory components
much faster than smooth ones

smooth on fine grids → oscillatory on coarse ones
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Multilevel algorithms

How to exploit these keys

Annihilate oscillatory error level by level:

Fine ε

smooth
→ Smooth fine ε Smaller fine ε

↓ R P ↑

Oscil. coarse ε

smooth
→ (recur)

smooth
→ Smooth coarse ε

Note: P and R are not othogonal projectors!

A very efficient method for some linear systems
(when A(smooth modes) ∈ smooth modes)
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Multilevel algorithms

Iteration structure across levels

k k + 1f4(= f) Level 4

0 1 2 ∗f3 Level 3

0 1 2 ∗f2 Level 2
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Multilevel algorithms

Mesh refinement, as different from. . .

Computing good starting points:

Solve the problem on the coarsest level
⇒ Good starting point for the next fine level

Do the same on each level
⇒ Good starting point for the finest level

Finally solve the problem on the finest level
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Multilevel algorithms

. . . V-cycles and Full Multigrid (FMG)

FMG : Combination of mesh refinement and V-cycles
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Multilevel algorithms

Results on an obstacle problem (n = 1272, 6 levels)

unconstrained bound-constrained

Mesh ref. RMTR2 RMTR∞ Mesh ref. RMTR∞

nit 1057 23 10 2768 214

nf 23 38 15 649 240

ng 16 28 14 640 236

nH 17 20 6 32 101
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Multilevel algorithms

Equivalent iterations on the minimum surface problem
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Regularization techniques

Regularization techniques

Regularization techniques
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Regularization techniques

Unconstrained optimization — a “mature” area?

minimize
x∈IR

n
f (x) where f ∈ C 1 (maybe C 2 )

Currently two main competing (but similar) methodologies

Linesearch methods

compute a descent direction sk from xk

set xk+1 = xk + αksk to improve f

Trust-region methods

compute a step sk from xk to improve a model mk of f

within the trust-region ‖s‖ ≤ ∆
set xk+1 = xk + sk if mk and f “agree” at xk + sk
otherwise set xk+1 = xk and reduce the radius ∆
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Regularization techniques

Is there anything more to say?

Recently, Nesterov and Polyak (2006) observed the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉

+
∫ 1
0 (1 − α)〈s, [H(x + αs) − H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 + 1

3
L‖s‖3

2
︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Regularization techniques

The cubic regularization

Change from

min
s

f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 + 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter
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Regularization techniques

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability
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Regularization techniques

Numerical experience — small problems using Matlab
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ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
trust−region (8 failures)

Figure:
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Non-parametric estimation

Non-parametric estimation

Non-parametric estimation
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Non-parametric estimation

The context and problem

Agent decision modelling

Random utility models

Max likelihood parameter estimation

Problem: Value of parameter(s) sometimes unrealistic!
Example: negative VOT. . .

symmetric distribution assumed in random parts of utility!
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Non-parametric estimation

Using advanced optimization tools. . .

What can we do?

avoid irrealistic distribution assumptions

estimate non-parametric distributions from the data

need for an efficient representation of non-parametric distributions

cubic spline representation of inverse CDF

⇒ order constraint on the knot values in likelihood maximization!

efficient projection based trust-region algorithm
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Non-parametric estimation

And the result is. . .

Excellent estimation of asymmetric distribution

A nice application on the behaviour of the BoJ of the FX market

I See Fabian Bastin’s talk!J

Thus . . .

Good use of advanced optimization = progress in CMS
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Conclusions

Conclusions

a vibrant field with new perspectives

expected: more reliable and more efficient methods

. . . available to a larger public

. . . and applications in more challenging domains

CMS continues to be the source of

interesting applications
methodologicaal inspiration

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)
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