A Retrospective Trust-Region Method for Unconstrained Optimization

$\begin{array}{ccc} \mathsf{F. Bastin}^1 & \mathsf{V. Malmedy}^{2,3} & \mathsf{M. Mouffe}^4 & \underline{\mathsf{Ph. Toint}}^2\\ & \mathsf{D. Tomanos}^{2,5} \end{array}$

¹Computing Science and Operational Research Department, University of Montreal ²Department of Mathematics, FUNDP ³F.R.S.-FNRS, Research Fellow ⁴CERFACS, Toulouse ⁵FRIA, Research Fellow (philippe.toint@fundp.ac.be)

AMA Workshop, Hong Kong, June 2008

Outline

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Unconstrained optimization:

$$\min_{x\in \mathbf{R}^n} f(x)$$

with objective function $f: \mathbb{R}^n \to \mathbb{R}$

- nonlinear, twice-continuously differentiable, and bounded below
- no convexity assumption

Basic Trust-Region method (BTR)

Until convergence:

- **(1)** choose a local model m_k of the objective f around x_k
- (a) compute a trial point $x_k + s_k$ that decreases the model m_k within a trust-region $||s_k|| \le \Delta_k$ (a) compute the reduction ratio

$$\rho_k := \frac{f(x_k) - f(x_k + s_k)}{m_k(x_k) - m_k(x_k + s_k)}$$

) if
$$m_k$$
 and f agree at $x_k + s_k$, i.e. $ho_k \geq \eta_1$

then

• update the trust region radius: $\Delta_{k+1} \in \begin{cases} [\Delta_k, \infty) & \text{if } \rho_k \geq \eta_2 \\ [\gamma_2 \Delta_k, \Delta_k) & \text{if } \rho_k \in [\eta_1, \eta_2) \end{cases}$

else

- reject trial point: $x_{k+1} = x_k$
- reduce the trust region radius: $\Delta_{k+1} \in [\gamma_1 \Delta_k, \gamma_2 \Delta_k)$

with $0 < \eta_1 \leq \eta_2 < 1$ and $0 < \gamma_1 \leq \gamma_2 < 1$

Roles of reduction ratio - Main idea of new method

In BTR, the reduction ratio ρ_k plays two roles:

- **1** acceptance of the trial point $x_k + s_k$
- control of the trust-region radius update

Idea: distinguish these two roles, since:

- acceptance step based on how well the current model m_k predicts the decrease of the function f at $x_k + s_k$
- **2** updated radius used to define where the new model m_{k+1} is trusted to agree with the function f around $x_k + s_k$

Retrospective Trust-Region method

Retrospective Trust-Region method (RTR)

Until convergence:

I choose a local model m_k of the objective f around x_k

 if former trial point was rejected then reduce the trust-region radius: Δ_k ∈ [γ₁Δ_{k-1}, γ₂Δ_{k-1}) else compute

$$\tilde{\rho}_k := \frac{f(x_{k-1}) - f(x_k)}{m_k(x_{k-1}) - m_k(x_k)}$$

and update the trust-region radius:

$$\Delta_k \in \begin{cases} [\Delta_{k-1}, \infty) & \text{if } \tilde{\rho}_k \geq \tilde{\eta}_2\\ [\gamma_2 \Delta_{k-1}, \Delta_{k-1}) & \text{if } \tilde{\rho}_k \in [\tilde{\eta}_1, \tilde{\eta}_2) \end{cases}$$

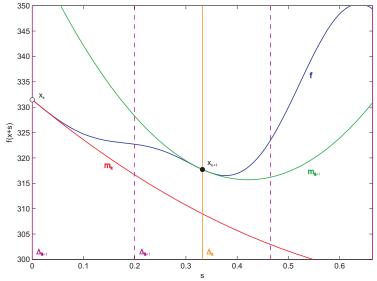
Sompute a trial point x_k + s_k decreasing the model m_k within ||s_k|| ≤ Δ_k
compute the reduction ratio ρ_k := f(x_k)-f(x_k+s_k)/m_k(x_k)-m_k(x_k+s_k)
if ρ_k ≥ η₁, accept trial point: x_{k+1} = x_k + s_k; otherwise reject trial point: x_{k+1} = x_k

with 0 $< \eta_1 <$ 1, 0 $< ilde\eta_1 \leq ilde\eta_2 <$ 1 and 0 $< \gamma_1 \leq \gamma_2 <$ 1

Retrospective Trust-Region method

Graphically...(1)

HAIRY - iteration 38



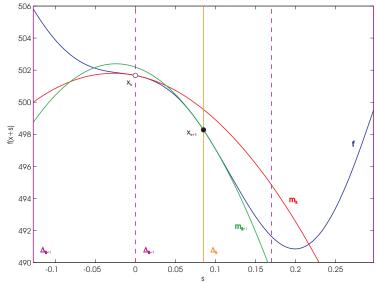
Ph. Toint (FUNDP)

June 2008 7 / 1

Retrospective Trust-Region method

Graphically...(2)

HAIRY - iteration 25



Ph. Toint (FUNDP)

June 2008 8 / 1

Convergence theory

RTR no more covered by classical theory \Rightarrow need of an adapted convergence theory

Assume:

- $\nabla_{xx} f$ and $\nabla_{xx} m_k$ uniformly bounded
- first-order coherent models: $\nabla_x f(x_k) = \nabla_x m_k(x_k)$
- sufficient decrease condition (at least a fraction of Cauchy point):

$$m_k(x_k) - m_k(x_k + s_k) \geq \gamma \|g_k\| \min(\|g_k\|/\beta_k, \Delta_k)$$

First-order convergence

Where changes occurs?

Let $\delta_k m := m(x_k) - m(x_{k+1})$ be the reduction of model m at iteration k. Then

$$|\delta_k m_k - \delta_k m_{k+1}| \le \kappa \Delta_k^2.$$

If $g_k \neq 0$ and $\Delta_k \leq \zeta ||g_k||$, then iteration k is successful and Δ_k grows.

Finally, same results:

If only finitely many successful iterations, then after some time, $x_k = x_*$ which is first-order critical.

$$\lim_{k\to\infty} \|\nabla_x f(x_k)\| = 0.$$

Ph. Toint (FUNDP)

Second-order convergence (1)

Assume moreover:

• asymptotically second-order coherent models near first-order critical points:

$$\|
abla_{xx}f(x_k)-
abla_{xx}m_k(x_k)\|
ightarrow 0$$
 when $\|g_k\|
ightarrow 0$

Where changes occurs?

Suppose that $m_{k_i}(x_{k_i}) - m_{k_i}(x_{k_i} + s_{k_i}) \ge \nu ||s_{k_i}||^2$ and that $s_{k_i} \to 0$. Then iteration k is successful and Δ_{k_i} grows. Second-order convergence (2)

Assume furthermore:

• $\nabla_{xx}m_k$ Lipschitz continuous

• if
$$au_k := \lambda_{\min}(
abla_{xx}m_k) < 0$$
, then

$$m_k(x_k) - m_k(x_k + s_k) \ge \xi |\tau_k| \min(\tau_k^2, \Delta_k^2)$$

Finally, same results:

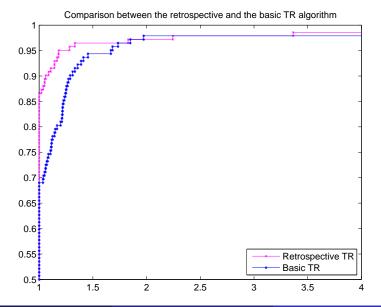
Suppose that $\{x_k\}$ remains in a compact set. Then there exists at least one limit point x_* that is second-order critical.

Suppose that $\Delta_{k+1} \in [\gamma_3 \Delta_k, \gamma_4 \Delta_k]$ whenever $\tilde{\rho}_k \geq \tilde{\eta}_2$ (with $\gamma_4 \geq \gamma_3 > 1$). Then every limit point x_* is second-order critical.

Numerical experiments

- 146 unconstrained problems from CUTEr library (Gould, Orban, Toint, 2003) with size between 2 and 500
- matlab implementation
- classical parameters for TR as advised by Conn, Gould, Toint (2000)
- exact quadratic model
- subproblem solved with More-Sorensen method
- stopping criterion: $||g_k|| \le 10^{-5}$ or more than 10^5 iterations

Performance profile



Ph. Toint (FUNDP)

June 2008 14 / 1

Conclusion and perspectives

Conclusions

- exploitation of the most recent model information
- first- and second-order convergence theory
- improved numerical performances
- no supplementary cost

Perspectives

- Stochastic programming (dynamic accuracy on the objective function computation)
- Combination with ACO methods?

Thank you for your attention!