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Introduction
The problem

Unconstrained optimization:

in £
xne]kr]" (X)

with objective function f : R” — R
@ nonlinear, twice-continuously differentiable, and bounded below

@ no convexity assumption
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Introduction Basic Trust-Region method

Basic Trust-Region method (BTR)

Until convergence:

@ choose a local model my of the objective f around x

@ compute a trial point x, + sx that decreases the model my within a trust-region ||sg|| < Ag
© compute the reduction ratio

f(xk) — f(xk + sk)
M (xk) — mg(xk + sk)

Pk =

0 if my and f agree at xx + sy, i.e. px > m
then

9@ accept trial point: x,y1 = Xk + Sk
[Ag, o0) if px > M2

@ update the trust region radius: Ay € .
* [v22k, Ak) if px € [m1,m2)

9 reject trial point: X1 = Xk
@ reduce the trust region radius: Agyq € [y1Qk, 724%)

with0<m <m<land0<y <71
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Introduction Roles of reduction ratio

Roles of reduction ratio — Main idea of new method

In BTR, the reduction ratio py plays two roles:
© acceptance of the trial point xx + sk
© control of the trust-region radius update

- distinguish these two roles, since:
© acceptance step based on how well the current model my predicts the
decrease of the function f at xx + si

© updated radius used to define where the new model my 1 is trusted
to agree with the function f around xj + sk
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Retrospective Trust-Region method

Retrospective Trust-Region method (RTR)

Until convergence:
@ choose a local model my of the objective f around x;
Q@ if former trial point was rejected
then reduce the trust-region radius: Ay € [v1Ax_1,720k_1)
else compute
B e f0%) = Fa)
my (Xk—1) — mi(xk)

and update the trust-region radius:

A [Ak_1,0) if px > 2
kK € e o N
[2lk—1, k1) if Bk € [i1, )

© compute a trial point xx + s, decreasing the model my within ||sx|| < A
f(xk) = (xk+s%)
my(xk) — my (xk+s)
© if px > m1, accept trial point: X1 = Xk + Sk
otherwise reject trial point: Xj41 = Xk

@ compute the reduction ratio py :=

with0<m <L 0<Mm<MPp<landd<y <7 <1
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Retrospective Trust-Region method

Graphically. .. (1)
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Retrospective Trust-Region method

Graphically. .. (2)
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Convergence theory
Convergence theory

RTR no more covered by classical theory
= need of an adapted convergence theory

@ V. f and V,my uniformly bounded
o first-order coherent models: V,f(xx) = V,emy(xk)

o sufficient decrease condition (at least a fraction of Cauchy point):

my(xk) — mic(xic + sk) > v]lgk || min(|| gkl / Bi, D)
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Convergence theory First-order convergence

First-order convergence

Where changes occurs?

Let dxm := m(xx) — m(xk+1) be the reduction of model m at iteration k.
Then

\5kmk — 5kmk+1\ < I@Ai.

If gx # 0 and Ag < (||gk||, then iteration k is successful and Ay grows. J

Finally, same results:

If only finitely many successful iterations,

then after some time, xx = x, which is first-order critical.
lim || Vf(x)|| = 0. J
k—o0

Ph. Toint (FUNDP) Retrospective Trust-Region June 2008 10/1



Convergence theory  Second-order convergence

Second-order convergence (1)

Assume moreover: ‘

@ asymptotically second-order coherent models near first-order critical
points:

IViof (%) = Vi (xic)|| — 0 when lgi || — 0

Where changes occurs?

Suppose that my (xk.) — Mk (Xk + Sk;) > v||sk.[|* and that s, — 0.
Then iteration k is successful and Ay, grows.
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Convergence theory  Second-order convergence

Second-order convergence (2)

‘ Assume furthermore: ‘

@ V,my Lipschitz continuous
@ if Tk := Amin(Vxmg) < 0, then

mi(xk) — mi(x 4 si) > €| min(7Z, AZ)
Finally, same results:

Suppose that {xx} remains in a compact set.
Then there exists at least one limit point x, that is second-order critical.

Suppose that Ay 1 € [y3Ak, 7aAk] whenever gy > fjp (with 74 > 73 > 1).
Then every limit point x, is second-order critical.
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Numerical experiments
Numerical experiments

@ 146 unconstrained problems from CUTEr library (Gould, Orban,
Toint, 2003) with size between 2 and 500

@ matlab implementation

@ classical parameters for TR as advised by Conn, Gould, Toint (2000)

@ exact quadratic model

@ subproblem solved with More-Sorensen method

@ stopping criterion: ||gx|| < 107> or more than 10° iterations
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Numerical experiments

Performance profile

Comparison between the retrospective and the basic TR algorithm
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Conclusions and perspectives

Conclusion and perspectives

Conclusions

@ exploitation of the most recent model information

@ first- and second-order convergence theory
@ improved numerical performances
@ no supplementary cost
v
Perspectives

@ Stochastic programming (dynamic accuracy on the objective function
computation)

@ Combination with ACO methods?

‘Thank you for your attention!
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