Towards a Regularized Funnel Algorithm for Constrained Optimization

Stefania Bellavia Coralia Cartis Nick Gould Benedetta Morini
Philippe Toint

Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

SIAM Conference on Optimization - Boston, May 2008

(日) (四) (분) (분) (분) (분)

Outline

1 A trust-funnel approach

Regularization techniques

- Cubic
- Quadratic

3 A regularized funnel method?

Conclusions

2 Regularization techniques

- Cubic
- Quadratic

3 A regularized funnel method?

4 Conclusions

Philippe Toint (Namur)

2 Regularization techniques

- Cubic
- Quadratic

3 A regularized funnel method?

4 Conclusions

2 Regularization techniques

- Cubic
- Quadratic
- 3 A regularized funnel method?

Conclusions

We consider the equality constrained nonlinear programming problem:

minimize f(x)subject to c(x) = 0

for $x \in \mathbb{R}^n$, f and c smooth.

Work in progress...

A Trust-Funnel Approach

Philippe Toint (Namur)

SIAM Conference on Optimization

Boston, May 2008 4 / 19

What is the trust-funnel approach?

An inexact SQP algorithm for equality constrained problems

- two distinct trust-regions (constraint violation, objective function)
- normal + tangential steps (separate Cauchy conditions)
- no penalty/barrier parameter, no filter
- asymptotic feasiblity (shrinking funnel)
- promising numerical performance

The complete step

Regularization Techniques

$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \ f(x) \ \text{where} \ f \in C^1 \quad (\text{maybe} \quad C^2 \)$$

Currently two main competing (but similar) methodologies

• Linesearch methods

- compute a descent direction s_k from x_k
- set $x_{k+1} = x_k + \alpha_k s_k$ to improve f

Trust-region methods

- compute a step s_k from x_k to improve a model m_k of f within the trust-region ||s|| ≤ Δ
- set $x_{k+1} = x_k + s_k$ if m_k and f "agree" at $x_k + s_k$
- otherwise set $x_{k+1} = x_k$ and reduce the radius Δ

Is there anything more to say?

Observe the following: if

• f has gradient g and globally Lipschitz continuous Hessian H with constant 21

Taylor, Cauchy-Schwarz and Lipschitz imply

$$f(x+s) = f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \int_0^1 (1-\alpha) \langle s, [H(x+\alpha s) - H(x)]s \rangle d\alpha \leq \underbrace{f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}L ||s||_2^3}_{m(s)}$$

 \implies reducing *m* from s = 0 improves *f* since m(0) = f(x).

The cubic regularization

Change from

$$\min_{s} \quad f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle \text{ s.t. } \|s\| \leq \Delta$$

to

$$\min_{s} \quad f(x) + \langle s, g(x) \rangle + \frac{1}{2} \langle s, H(x)s \rangle + \frac{1}{3}\sigma \|s\|^{3}$$

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)

The main features of adaptive cubic regularization

And the result is....

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability

Cubic

Numerical experience — small problems using Matlab

Quadratic

The quadratic regularization for NLS

Change from

$$\min_{s} \quad \frac{1}{2} \|c(x)\|^2 + \langle s, J(x)^T c(x) \rangle + \frac{1}{2} \langle s, J(x)^T J(x) s \rangle \text{ s.t. } \|s\| \leq \Delta$$

to

$$\min_{s} ||c(x) + J(x)s|| + \frac{1}{2}\sigma ||s||^{2}$$

σ is the (adaptive) regularization parameter

(idea by Nesterov)

Quadratic regularization: reformulation

Note that

I	$\min_{s} c(x) $	$+ J(x)s\ + \frac{1}{2}\sigma\ s\ ^2$
		\Leftrightarrow
	$\min_{ u,s}$	$\nu + \frac{1}{2}\sigma \ \boldsymbol{s}\ ^2$
such that	$\ c(x) -$	$\parallel J(x)s \parallel^2 = \nu^2$

exact penalty function for the problem of minimizing ||s|| subject to c(x) + J(x)s = 0.

Philippe Toint (Namur)

Boston, May 2008

14 / 19

Convergence theory for the quadratic regularization

Cauchy-point condition:

$$m(x_k) - m(x_k + s_k) \ge \frac{\|J_k^T c_k\|^2}{4\|c_k\|} \min\left[\frac{1}{\sigma_k\|c_k\|}, \frac{1}{1 + \|J_k^T J_k\|}
ight]$$

... and hence...

Global convergence to first-order critical points

(and more...)

Philippe Toint (Namur)

Computing regularization steps

Iterative techniques...

solve the problem in nested Krylov subspaces

- Lanczos \rightarrow basis of the Krylov subspace
- \rightarrow factorization of tridiagonal matrices
- different scalar secular equation (solution by Newton's method)

Approach valid for

- trust-region (GLTR),
- cubic and quadratic regularizations

(details in CGT techreport)

A Regularized Funnel Method?

Philippe Toint (Namur)

SIAM Conference on Optimization

Boston, May 2008 17 / 19

Next on the "todo" list:

• which regularization for the normal step? (cubic, quadratic)

A regularized funnel method?

$$m_c(x_k) - m_c(x_k + s_k) \ge \kappa \|J_k^T c_k\| \min\left[\frac{\|J_k^T c_k\|}{1 + \|J_k^T J_k\|}, \sqrt{\frac{\|J_k^T c_k\|}{\sigma_k^n}}\right]$$

$$m_q(x_k) - m_q(x_k + s_k) \ge \frac{\|J_k^T c_k\|}{4\|c_k\|} \min\left[\frac{\|J_k^T c_k\|}{1 + \|J_k^T J_k\|}, \frac{\|J_k^T c_k\|}{\sigma_k^n \|c_k\|}\right]$$

- \rightarrow ongoing numerical experiments (with M. Porcelli)
- coordination of the two regularization parameters
- convergence/complexity analysis
- extension to inequality constraints (e.g. see Nick's talk)
- software and extensive testing

• . . .

- Much left to do... but very interesting
- Could lead to a very untypical method
- Many issues regarding regularizations still unresolved
- ... more detail later!

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)