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The problem

We consider the equality constrained nonlinear programming problem:

minimize f (x)
subject to c(x) = 0

for x ∈ IRn, f and c smooth.

Work in progress. . .
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A trust-funnel approach
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A trust-funnel approach

What is the trust-funnel approach?

An inexact SQP algorithm for equality constrained problems

two distinct trust-regions
(constraint violation, objective function)

normal + tangential steps
(separate Cauchy conditions)

no penalty/barrier parameter, no filter

asymptotic feasiblity (shrinking funnel)

promising numerical performance
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A trust-funnel approach

The complete step

xk

ck + Jk s = 0

xk + nk

−rk

‖ck + Jk s‖2 = ϑk

−gk − Hk nk

modified Cauchy
point on mk

tk

xk + sk

c(x) = 0

Figure:
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Regularization techniques

Regularization Techniques
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Regularization techniques Cubic

Unconstrained optimization — a “mature” area?

minimize
x∈IRn

f (x) where f ∈ C 1 (maybe C 2 )

Currently two main competing (but similar) methodologies

Linesearch methods

compute a descent direction sk from xk

set xk+1 = xk + αksk to improve f

Trust-region methods

compute a step sk from xk to improve a model mk of f

within the trust-region ‖s‖ ≤ ∆
set xk+1 = xk + sk if mk and f “agree” at xk + sk
otherwise set xk+1 = xk and reduce the radius ∆
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Regularization techniques Cubic

Is there anything more to say?

Observe the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉

+
∫ 1
0 (1 − α)〈s, [H(x + αs) − H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 + 1

3
L‖s‖3

2
︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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Regularization techniques Cubic

The cubic regularization

Change from

min
s

f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

f (x) + 〈s, g(x)〉 + 1
2
〈s,H(x)s〉 + 1

3
σ‖s‖3

σ is the (adaptive) regularization parameter

(ideas from Griewank, Weiser/Deuflhard/Erdmann, Nesterov/Polyak, Cartis/Gould/T)
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Regularization techniques Cubic

The main features of adaptive cubic regularization

And the result is. . .

longer steps on ill-conditioned problems

similar (very satisfactory) convergence analysis

best known worst-case complexity for nonconvex problems

excellent performance and reliability
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Regularization techniques Cubic

Numerical experience — small problems using Matlab
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Performance Profile: iteration count − 131 CUTEr problems

 

 

ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
trust−region (8 failures)

Figure:
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Regularization techniques Quadratic

The quadratic regularization for NLS

Change from

min
s

1
2
‖c(x)‖2 + 〈s, J(x)T c(x)〉 + 1

2
〈s, J(x)T J(x)s〉 s.t. ‖s‖ ≤ ∆

to

min
s

‖c(x) + J(x)s‖ + 1
2
σ‖s‖2

σ is the (adaptive) regularization parameter

(idea by Nesterov)
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Regularization techniques Quadratic

Quadratic regularization: reformulation

Note that

min
s

‖c(x) + J(x)s‖ + 1
2
σ‖s‖2

⇔

min
ν,s

ν + 1
2
σ‖s‖2

such that
‖c(x) + J(x)s‖2 = ν

2

exact penalty function for the problem of minimizing ‖s‖ subject to
c(x) + J(x)s = 0.
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Regularization techniques Quadratic

Convergence theory for the quadratic regularization

Cauchy-point condition:

m(xk ) − m(xk + sk) ≥
‖JT

k ck‖
2

4‖ck‖
min

[
1

σk‖ck‖
,

1

1 + ‖JT
k Jk‖

]

. . . and hence. . .

Global convergence to first-order critical points

(and more. . . )
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Regularization techniques Quadratic

Computing regularization steps

Iterative techniques. . .

solve the problem in nested Krylov subspaces

Lanczos → basis of the Krylov subspace

→ factorization of tridiagonal matrices

different scalar secular equation (solution by Newton’s method)

Approach valid for

trust-region (GLTR),

cubic and quadratic regularizations

(details in CGT techreport)

Philippe Toint (Namur) SIAM Conference on Optimization Boston, May 2008 16 / 19



university-logo

A regularized funnel method?

A Regularized Funnel Method?
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A regularized funnel method?

Next on the “todo” list:

which regularization for the normal step? (cubic, quadratic)

mc(xk) − mc(xk + sk) ≥ κ‖JT
k ck‖min

[

‖JT
k ck‖

1 + ‖JT
k Jk‖

,

√

‖JT
k

ck‖

σ
n
k

]

mq(xk ) − mq(xk + sk) ≥
‖JT

k ck‖

4‖ck‖
min

[
‖JT

k ck‖

1 + ‖JT
k Jk‖

,
‖JT

k ck‖

σ
n
k‖ck‖

]

→ ongoing numerical experiments (with M. Porcelli)

coordination of the two regularization parameters

convergence/complexity analysis

extension to inequality constraints (e.g. see Nick’s talk)

software and extensive testing

. . .

Philippe Toint (Namur) SIAM Conference on Optimization Boston, May 2008 18 / 19



university-logo

Conclusions

Conclusions

Much left to do. . . but very interesting

Could lead to a very untypical method

Many issues regarding regularizations still unresolved

. . . more detail later!

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)
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