Modelling the weekly work patterns in sBelgium

Cinzia Cirillo¹ Eric Cornélis² Philippe Toint²

¹University of Maryland, USA

²Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

TRISTAN VI, Phuket, June 2007

- The Belgian synthetic population
- 2 A discrete choice model for weekly work patterns
- Some results
- Conclusions

- 1 The Belgian synthetic population
- 2 A discrete choice model for weekly work patterns
- Some results
- Conclusions

- 1 The Belgian synthetic population
- 2 A discrete choice model for weekly work patterns
- 3 Some results
- Conclusions

- The Belgian synthetic population
- 2 A discrete choice model for weekly work patterns
- Some results
- 4 Conclusions

The problem

Two postulates:

Work patterns remain a major determinant of daily mobility

The natural activity planning horizon for households is a week

Main question:

How do households organize their work activities over the week?

(daily repartition, full/half/no-time)

+ application to a realistic (synthetic) population

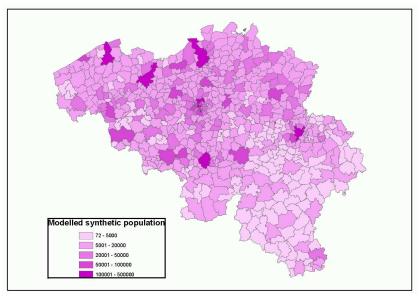
The research context

- long-term nation-wide activity-based demand modelling project
- strong privacy protection laws in Belgium
 ⇒ us of disggregate real population stats impossible

Nation-wide synthetic population

- $\bullet \approx 10$ millions synthetic individuals
- $\bullet \approx 4.5$ millions households
- in 589 municipalities

Synthetic population characteristics


Individuals:

- age (5 classes)
- activity status (inactive, student, worker)
- education level (4 classes)
- household id
- driving licence ownership

Households:

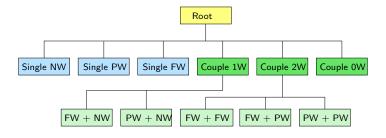
- household type (head type, number of children, number of other adults)
- NUTS-4 localisation (municipalities)
- land-use class (4 classes)

Population for sBelgium

Data sources and method

Data

- National Register (online population database)
- National Census 1991, 2001 (household types)
- federal administration of transports (driving licences)
- GEDAP (demographic aspects)
- MOBEL national travel survey (household details)


Method

 $\begin{tabular}{ll} individuals' generation \\ \hline \end{tabular} \begin{tabular}{ll} households' generation \\ \hline \end{tabular}$

data sources inconsistencies...

The nested-logit model structure

Modelled: households heads and mates

Average day:

- 44 degrees of freedom
- 7173 observations in 3 Belgian datasets (MOBEL, OVG, RW)

Estimation for the average day

Coefficients of the (linear) utilities (Amlet package):

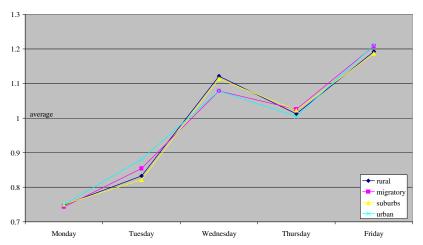
Single NW	0.787	(4.4)
primary school	-0.184	(-1.1)
secondary school	-0.253	(-3.8)
active	-0.468	(-2.7)
Single PW	-1.59	(-5.5)
primary school	-0.576	(-1.8)
secondary school	-0.310	(-3.0)
active	1.31	(4.6)
Couple FW+FW	0.342	(1.6)
no children	0.168	(3.5)
mate's age in [18-39]	1.01	(4.8)
mate's age in [40-59]	0.892	(4.4)
both active	-0.945	(-7.9)
mate is male	-0.142	(-2.5)
Couple FW+PW	0.282	(1.2)
mate's age in [18-39]	0.511	(2.3)
mate's age in [40-59]	0.448	(2.0)
mate is active	-0.738	(-5.8)
mate is male	-0.120	(-1.7)
		. ,

Couple PW+PW	-1.51	(-3.8)
both drive	0.794	(2.0)
Couple FW+NW	4.12	(13.1)
head age in [18-39]	-0.777	(-5.5)
head age in [40-59]	-0.722	(-5.2)
head is male	-0.451	(-3.8)
head drives	-0.171	(-2.6)
head active	-0.907	(-10.3)
mate is male	0.350	(2.8)
mate's education is superior	-0.201	(-4.4)
mate drives	-0.261	(-3.7)
mate is active	-1.69	(-11.5)
Couple PW+NW	2.29	(7.4)
head age in [18-39]	-0.908	(-4.9)
head age in [40-59]	-0.920	(-5.1)
household = couple	-0.210	(-2.1)
household = family	0.620	(4.2)
mate's age in [18-39]	-0.388	(-2.5)
mate's age in [40-59]	-0.231	(-1.5)
mate is male	0.611	(4.1)
mate is active	-1.79	(-10.0)

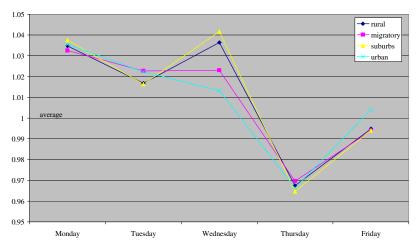
Estimation of all daily models

	Average	Monday	Tuesday	Wednesday	Thursday	Friday
Final logl	-9014.8	-1883.9	-1753.5	-1740.6	-1722.4	-1810.6
D. of F.	44	41	41	41	41	41
Obs.	7173	1507	1444	1424	1388	1410
$\rho^{2}(0)$	0.2	0.232	0.261	0.253	0.238	0.212
$\rho^2(c)$	0.0	0.067	0.076	0.070	0.069	0.068
$\theta_{\rm OVG}$	4.91 (11.7)	4.91 (*)	4.91 (*)	4.91 (*)	4.91 (*)	4.91 (*)
θ_{RW}	1.22 (12.5)	1.22 (*)	1.22 (*)	1.22 (*)	1.22 (*)	1.22 (*)
$\theta_{F/P}$	0.468 (9.8)	0.468 (*)	0.468 (*)	0.468 (*)	0.468 (*)	0.468 (*)

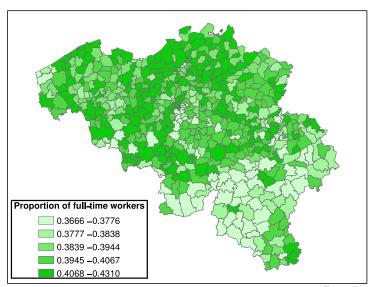
(*) = fixed at value for an average day


The weekly profile for full-time workers

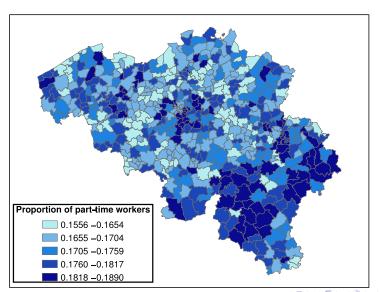
Deviation from weekly average of the number of full-time workers (averaged on all municipalities)



The weekly profile for part-time workers


Deviation from weekly average of the number of part-time workers (averaged on all municipalities)

The weekly profile for non-workers



Deviation from weekly average of the number of non-workers (averaged on all municipalities)


Full-time workers in sBelgium

Part-time workers in sBelgium

Non-workers in sBelgium

Conclusions

- results coherent with known distributions (but hard to validate explicitly)
- weekly working patterns are possible to estimate
- interesting daily variations (fraction of part-time workers)
- nice integration of synthetic populations and discrete-choice models
- refinements are planned (extend to other adults in households, collect more data [BMW])

Thank you for your attention!