Adaptive Cubic Overestimation for Unconstrained Optimization

Coralia Cartis¹ Nick Gould² Philippe Toint³

³Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

 1 University of Edimburgh, UK 2 Computer Laboratory, University of Oxford, UK

Joint EUROPT-OMS Conference, Prag, July 2007

◆□> ◆舂> ◆注> ◆注> □ 注

1 The new method

2 Convergence theory

3 Practical algorithmics

4 Conclusions

1 The new method

2 Convergence theory

3 Practical algorithmics

4 Conclusions

- 2 Convergence theory
- Practical algorithmics
 - 4 Conclusions

- 2 Convergence theory
- Practical algorithmics

Unconstrained optimization:

$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \ f(x) \ \text{where} \ f \in C^1 \quad (\text{maybe} \quad C^2 \)$$

Currently two main competing (but similar) methodologies

- Linesearch methods
 - compute a descent direction s_k from x_k
 - set $x_{k+1} = x_k + \alpha_k s_k$ to improve f
- Trust-region methods
 - compute a step s_k from x_k to improve a model m_k of f within the trust-region ||s|| ≤ Δ
 - set $x_{k+1} = x_k + s_k$ if m_k and f "agree" at $x_k + s_k$
 - otherwise set $x_{k+1} = x_k$ and reduce the radius Δ

Is there anything more to say?

Recently, Nesterov and Polyak (2006) observed the following: if

• f has gradient g and globally Lipschitz continuous Hessian H with constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

$$f(x+s) = f(x) + s^{T}g(x) + \frac{1}{2}s^{T}H(x)s + \int_{0}^{1}(1-\alpha)s^{T}[H(x+\alpha s) - H(x)]s \,d\alpha \leq \underbrace{f(x) + s^{T}g(x) + \frac{1}{2}s^{T}H(x)s + \frac{1}{3}L||s||_{2}^{3}}_{m(s)}$$

 \implies reducing *m* from s = 0 improves *f* since m(0) = f(x).

Nesterov and Polyak highlights

 $f(x+s) \le m(s) \equiv f(x) + s^T g(x) + \frac{1}{2} s^T H(x) s + \frac{1}{3} L \|s\|_2^3$

• N&P minimize *m* globally

- N.B. *m* may be non-convex!
- efficient scheme to do so if H has sparse factors
- global (ultimately rapid) convergence to a 2nd-order critical point of f
- better worst-case complexity than previously known

Obvious questions:

- can we avoid the global Lipschitz requirement?
- can we approximately minimize *m* and retain good worst-case complexity?
- does this work well in practice?

Cubic overestimation

Assume

• $f \in C^2$

- f, g and H at x_k are f_k, g_k and H_k
- symmetric approximation B_k to H_k
- B_k and H_k bounded at points of interest

Use

• cubic overestimating model at x_k

$$m_k(s) \equiv f_k + s^T g_k + \frac{1}{2} s^T B_k s + \frac{1}{3} \sigma_k ||s||_2^3$$

- σ_k is the iteration-dependent regularisation weight
- easily generalized for regularisation in M_k -norm $||s||_{M_k} = \sqrt{s^T M_k s}$ where M_k is uniformly positive definite

The new method

Adaptive Cubic Overestimation (ACO)

Given x_0 , and $\sigma_0 > 0$, for $k = 0, 1, \ldots$ until convergence,

• compute a step s_k for which $m_k(s_k) \le m_k(s_k^c)$

• Cauchy point:
$$s_k^c = -\alpha_k^c g_k \& \alpha_k^c = \arg\min_{\alpha \in \mathbf{R}_+} m_k(-\alpha g_k)$$

• compute $\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k(s_k)}$
• set $x_{k+1} = \begin{cases} x_k + s_k & \text{if } \rho_k > 0.1 \\ x_k & \text{otherwise} \end{cases}$
• given $\gamma_2 \ge \gamma_1 > 1$, set
 $\sigma_{k+1} \in \begin{cases} (0, \sigma_k] = \frac{1}{2}\sigma_k & \text{if } \rho_k > 0.9 \\ [\sigma_k, \gamma_1 \sigma_k] = \sigma_k & \text{if } 0.1 \le \rho_k \le 0.9 \\ [\gamma_1 \sigma_k, \gamma_2 \sigma_k] = 2\sigma_k & \text{otherwise} \end{cases}$ very successful
 $m_k = \frac{1}{2} \sigma_k = \frac{1}{2}$

c.f. trust-region methods

Convergence theory

Convergence to first-order critical points

•
$$f(x_k) - m_k(s_k) \ge \frac{1}{6\sqrt{2}} \|g_k\| \min\left[\frac{\|g_k\|}{1 + \|B_k\|}, \frac{1}{2}\sqrt{\frac{\|g_k\|}{\sigma_k}}\right]$$

• $\|s_k\| \le \frac{3}{\sigma_k} \max(\|B_k\|, \sqrt{\sigma_k}\|g_k\|)$
• if $\|g_k\| \ge \epsilon \quad \forall k \implies \exists L \mid \sigma_k \le \frac{L}{\epsilon} \quad \forall k$
• f bounded below and $g_\ell \ne 0 \quad \forall \ell \implies \liminf_{k \to \infty} \|g_k\| = 0$
• f bounded below and $g_\ell \ne 0 \quad \forall \ell \implies \lim_{k \to \infty} \|g_k\| = 0$

Under stronger assumptions can show that

$$\lim_{k\to\infty} Q_k^T H_k Q_k \succeq 0$$

if s_k minimizes m_k over subspace with orthogonal basis matrix Q_k

0

 $k \rightarrow \infty$

Fast convergence

For fast asymptotic convergence \Longrightarrow need to improve on Cauchy point: minimize over Krylov subspaces

- g stopping-rule: $\|\nabla_s m_k(s_k)\| \leq \min(1, \|g_k\|^{\frac{1}{2}})\|g_k\|$
- s stopping-rule: $\|
 abla_s m_k(s_k)\| \le \min(1, \|s_k\| \)\|g_k\|$

If B_k satisfies the Dennis-Moré condition

$$\|(B_k - H_k)s_k\|/\|s_k\| o 0$$
 whenever $\|g_k\| o 0$

and $x_k \rightarrow x_*$ with positive definite $H(x_*)$

 \implies Q-superlinear convergence of x_k under both the g- and s-rules

If additionally H(x) is locally Lipschitz around x_* and $\|(B_k - H_k)s_k\| = O(\|s_k\|^2)$

Q-quadratic convergence of x_k under the s-rule

Iteration complexity

How many iterations are needed to ensure that $||g_k|| \le \epsilon$?

• so long as for very successful iterations $\sigma_{k+1} \leq \gamma_3 \sigma_k$ for $\gamma_3 < 1$ \implies basic ACO algorithm requires at most

for some $\kappa_{\rm C}$ independent of ϵ

• if H is globally Lipschitz, the s-rule is applied and additionally s_k is the global (line) minimizer of $m_k(\alpha s_k)$ as a function of α \implies ACO algorithm requires at most

 $\frac{\kappa_{\rm C}}{c^2}$ iterations

 $\left|\frac{\kappa_{\rm S}}{\epsilon^{3/2}}\right|$ iterations

for some $\kappa_{\rm S}$ independent of ϵ

c.f. steepest descent

c.f. Nesterov & Polyak

Minimizing the model

$$m(s) \equiv f + s^T g + \frac{1}{2} s^T B s + \frac{1}{3} \sigma \|s\|_2^3$$

Derivatives:

• $\lambda = \sigma \| \boldsymbol{s} \|_2$

•
$$\nabla_s m(s) = g + Bs + \lambda s$$

• $\nabla_{ss} m(s) = B + \lambda I + \lambda \left(\frac{s}{\|s\|}\right) \left(\frac{s}{\|s\|}\right)^T$

Optimality: any global minimizer s_* of m satisfies

$$(B+\lambda_*I)s_*=-g$$

- $\lambda_* = \sigma \| \mathbf{s}_* \|_2$
- $B + \lambda_* I$ is positive semi-definite

The (adapted) secular equation

Require

$$(B + \lambda I)s = -g$$
 and $\lambda = \sigma \|s\|_2$

Define $s(\lambda)$:

$$(B + \lambda I)s(\lambda) = -g$$

and find scalar λ as the root of secular equations

$$\|s(\lambda)\|_2 - \frac{\lambda}{\sigma} = 0$$
 or $\frac{1}{\|s(\lambda)\|_2} - \frac{\sigma}{\lambda} = 0$ or $\frac{\lambda}{\|s(\lambda)\|_2} - \sigma = 0$

- values and derivatives of $s(\lambda)$ satisfy linear systems with symmetric positive definite $B + \lambda I$
- need to be able to factorize $B + \lambda I$

Practical algorithmics

Plots of secular functions against λ

Example:
$$g = (0.25 \ 1)^T$$
, $H = \text{diag}(-1 \ 1)$ and $\sigma = 2$

Prag 2007 13 / 17

Large problems — approximate solutions

Seek instead global minimizer of m(s) in a *j*-dimensional ($j \ll n$) subspace $S \subseteq \mathbb{R}^n$

- $g \in \mathcal{S} \Longrightarrow$ ACO algorithm globally convergent
- Q orthogonal basis for $\mathcal{S} \implies s = Qu$ where

$$u = \arg \min_{u \in \mathbb{R}^{j}} f + u^{T}(Q^{T}g) + \frac{1}{2}u^{T}(Q^{T}BQ)u + \frac{1}{3}||u||_{2}^{3}$$

 \implies use secular equation to find u

- if S is the Krylov space generated by {Bⁱg}^{j-1}_{i=0}
 ⇒ Q^TBQ = T, tridiagonal
 ⇒ can factor T + λI to solve secular equation even if j is large
- using g- or s-stopping rule \implies fast asymptotic convergence for ACO
- using s-stopping rule \Longrightarrow good iteration complexity for ACO

Practical algorithmics

Numerical experience — small problems using Matlab

Philippe Toint (Namur)

Prag 2007 15 / 17

Encouraging so far!

- promising alternative to linesearch and trust-region methods for unconstrained optimization
- globally convergent to first- (and weak second-) order critical points
- fast asymptotic rate possible
- achieves best-known worst-case iteration complexity bound
- suitable for large-scale problems
- sophisticated implementation as part of GALAHAD underway

- "obvious" extensions to simple bounds, augmented Lagrangians etc.
- other regularizations (p > 3 or p > 2) possible (any reason?)
- use of semi-norm in the presence of linear equality constraints
- not known if (e.g.) trust-region methods have as good worst-case complexity (work in progress)

Thanks for your attention