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Unconstrained optimization — a “mature” area?

Unconstrained optimization:

minimize
x∈IR

n
f (x) where f ∈ C 1 (maybe C 2 )

Currently two main competing (but similar) methodologies

Linesearch methods

compute a descent direction sk from xk

set xk+1 = xk + αksk to improve f

Trust-region methods

compute a step sk from xk to improve a model mk of f

within the trust-region ‖s‖ ≤ ∆
set xk+1 = xk + sk if mk and f “agree” at xk + sk
otherwise set xk+1 = xk and reduce the radius ∆
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The new method

Is there anything more to say?

Recently, Nesterov and Polyak (2006) observed the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + sTg(x) + 1
2
sTH(x)s

+
∫ 1
0 (1 − α)sT [H(x + αs) − H(x)]s dα

≤ f (x) + sTg(x) + 1
2
sTH(x)s + 1

3
L‖s‖3

2
︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).
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The new method

Nesterov and Polyak highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sT H(x)s + 1

3
L‖s‖3

2

N&P minimize m globally

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case complexity than previously known

Obvious questions:

can we avoid the global Lipschitz requirement?

can we approximately minimize m and retain good worst-case
complexity?

does this work well in practice?
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The new method

Cubic overestimation

Assume

f ∈ C 2

f , g and H at xk are fk , gk and Hk

symmetric approximation Bk to Hk

Bk and Hk bounded at points of interest

Use

cubic overestimating model at xk

mk (s) ≡ fk + sT gk + 1
2
sTBks + 1

3
σk‖s‖3

2

σk is the iteration-dependent regularisation weight
easily generalized for regularisation in Mk -norm ‖s‖Mk

=
√

sTMks

where Mk is uniformly positive definite
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The new method

Adaptive Cubic Overestimation (ACO)

Given x0, and σ0 > 0, for k = 0, 1, . . . until convergence,

compute a step sk for which mk(sk) ≤ mk(sC
k )

Cauchy point: sC
k = −αC

kgk & αC
k = arg min

α∈IR+

mk(−αgk)

compute ρk =
f (xk) − f (xk + sk)

f (xk ) − mk(sk )

set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

given γ2 ≥ γ1 > 1, set

σk+1 ∈







(0, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful

[γ1σk , γ2σk ] = 2σk otherwise unsuccessful

c.f. trust-region methods
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Convergence theory

Convergence to first-order critical points

f (xk ) − mk(sk ) ≥ 1
6
√

2
‖gk‖min

[

‖gk‖
1 + ‖Bk‖

, 1
2

√
‖gk‖
σk

]

‖sk‖ ≤ 3
σk

max(‖Bk‖,
√

σk‖gk‖)

if ‖gk‖ ≥ ε ∀k =⇒ ∃L | σk ≤ L
ε ∀k

f bounded below and g` 6= 0 ∀` =⇒ lim inf
k→∞

‖gk‖ = 0

f bounded below and g` 6= 0 ∀` =⇒ lim
k→∞

‖gk‖ = 0

Under stronger assumptions can show that

limk→∞ QT
k HkQk � 0

if sk minimizes mk over subspace with orthogonal basis matrix Qk
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Convergence theory

Fast convergence

For fast asymptotic convergence =⇒ need to improve on Cauchy point:
minimize over Krylov subspaces

g stopping-rule: ‖∇smk (sk)‖ ≤ min(1, ‖gk‖
1
2 )‖gk‖

s stopping-rule: ‖∇smk(sk)‖ ≤ min(1, ‖sk‖ )‖gk‖

If Bk satisfies the Dennis-Moré condition

‖(Bk − Hk )sk‖/‖sk‖ → 0 whenever ‖gk‖ → 0

and xk → x∗ with positive definite H(x∗)

=⇒ Q-superlinear convergence of xk under both the g- and s-rules

If additionally H(x) is locally Lipschitz around x∗ and

‖(Bk − Hk )sk‖ = O(‖sk‖2)

=⇒ Q-quadratic convergence of xk under the s-rule
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Convergence theory

Iteration complexity

How many iterations are needed to ensure that ‖gk‖ ≤ ε?

so long as for very successful iterations σk+1 ≤ γ3σk for γ3 < 1
=⇒ basic ACO algorithm requires at most

⌈
κC

ε2

⌉

iterations

for some κC independent of ε c.f. steepest descent

if H is globally Lipschitz, the s-rule is applied and additionally sk is
the global (line) minimizer of mk(αsk ) as a function of α
=⇒ ACO algorithm requires at most

⌈
κS

ε3/2

⌉

iterations

for some κS independent of ε c.f. Nesterov & Polyak
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Practical algorithmics

Minimizing the model

m(s) ≡ f + sT g + 1
2
sT Bs + 1

3
σ‖s‖3

2

Derivatives:

λ = σ‖s‖2

∇sm(s) = g + Bs + λs

∇ssm(s) = B + λI + λ

(

s
‖s‖

)(

s
‖s‖

)T

Optimality: any global minimizer s∗ of m satisfies

(B + λ∗I )s∗ = −g

λ∗ = σ‖s∗‖2

B + λ∗I is positive semi-definite
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Practical algorithmics

The (adapted) secular equation

Require

(B + λI )s = −g and λ = σ‖s‖2

Define s(λ):
(B + λI )s(λ) = −g

and find scalar λ as the root of secular equations

‖s(λ)‖2 − λ
σ = 0 or 1

‖s(λ)‖2
− σ

λ
= 0 or λ

‖s(λ)‖2
− σ = 0

values and derivatives of s(λ) satisfy linear systems with symmetric
positive definite B + λI

need to be able to factorize B + λI
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Practical algorithmics

Plots of secular functions against λ

Example: g = (0.25 1)T , H = diag(−1 1) and σ = 2

‖s(λ)‖2 −
λ

σ
= 0

1

‖s(λ)‖2
− σ

λ
= 0

λ

‖s(λ)‖2
− σ = 0
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Practical algorithmics

Large problems — approximate solutions

Seek instead global minimizer of m(s) in a j-dimensional (j � n) subspace
S ⊆ IRn

g ∈ S =⇒ ACO algorithm globally convergent

Q orthogonal basis for S =⇒ s = Qu where

u = arg min
u∈IRj

f + uT (QTg) + 1
2
uT (QT BQ)u + 1

3
‖u‖3

2

=⇒ use secular equation to find u

if S is the Krylov space generated by {B ig}j−1
i=0

=⇒ QTBQ = T , tridiagonal
=⇒ can factor T + λI to solve secular equation even if j is large

using g- or s-stopping rule =⇒ fast asymptotic convergence for ACO

using s-stopping rule =⇒ good iteration complexity for ACO
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Practical algorithmics

Numerical experience — small problems using Matlab
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Performance Profile: iteration count − 131 CUTEr problems

 

 

ACO − g stopping rule (3 failures)
ACO − s stopping rule (3 failures)
trust−region (8 failures)

Figure:
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Conclusions

Conclusions (1)

Encouraging so far!

promising alternative to linesearch and trust-region methods for
unconstrained optimization

globally convergent to first- (and weak second-) order critical points

fast asymptotic rate possible

achieves best-known worst-case iteration complexity bound

suitable for large-scale problems

sophisticated implementation as part of GALAHAD underway
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Conclusions

Conclusions (2)

“obvious” extensions to simple bounds, augmented Lagrangians etc.

other regularizations (p > 3 or p > 2) possible (any reason?)

use of semi-norm in the presence of linear equality constraints

not known if (e.g.) trust-region methods have as good worst-case
complexity (work in progress)

Thanks for your attention
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