Adaptive Cubic Overestimation for Unconstrained Optimization

Coralia Cartis¹ Nick Gould² Philippe Toint³

³Department of Mathematics, University of Namur, Belgium

(philippe.toint@fundp.ac.be)

¹University of Edimburgh, UK ²Computer Laboratory, University of Oxford, UK

Joint EUROPT-OMS Conference, Prag, July 2007

K ロ ▶ 《 *同 ▶* 《 경 》 《 경 》 《 경 》

- Practical [algorithmics](#page-13-0)
-

4日)

- 2 [Convergence](#page-10-0) theory
	- Practical [algorithmics](#page-13-0)
	-

4日)

- 2 [Convergence](#page-10-0) theory
- 3 Practical [algorithmics](#page-13-0)

4 0 8

- [Convergence](#page-10-0) theory
- Practical [algorithmics](#page-13-0)

4 0 8

Unconstrained optimization:

$$
\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) \text{ where } f \in C^1 \quad \text{(maybe} \quad C^2 \text{)}
$$

Currently two main competing (but similar) methodologies

- Linesearch methods \bullet
	- compute a descent direction s_k from x_k
	- set $x_{k+1} = x_k + \alpha_k s_k$ to improve f
- Trust-region methods
	- compute a step s_k from x_k to improve a model m_k of f within the trust-region $||s|| < \Delta$
	- set $x_{k+1} = x_k + s_k$ if m_k and f "agree" at $x_k + s_k$
	- otherwise set $x_{k+1} = x_k$ and reduce the radius Δ

つひひ

Is there anything more to say?

Recently, Nesterov and Polyak (2006) observed the following: if

 \bullet f has gradient g and globally Lipschitz continuous Hessian H with constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

$$
f(x+s) = f(x) + s^{T}g(x) + \frac{1}{2}s^{T}H(x)s
$$

+ $\int_{0}^{1}(1-\alpha)s^{T}[H(x+\alpha s) - H(x)]s d\alpha$

$$
\leq \underbrace{f(x) + s^{T}g(x) + \frac{1}{2}s^{T}H(x)s + \frac{1}{3}L||s||_{2}^{3}}_{m(s)}
$$

 \implies reducing m from $s = 0$ improves f since $m(0) = f(x)$.

Nesterov and Polyak highlights

 $f(x + s) \le m(s) \equiv f(x) + s^{T}g(x) + \frac{1}{2}s^{T}H(x)s + \frac{1}{3}L||s||_{2}^{3}$

• N&P minimize m globally

- N.B. *m* may be non-convex!
- \bullet efficient scheme to do so if H has sparse factors
- global (ultimately rapid) convergence to a 2nd-order critical point of f
- **•** better worst-case complexity than previously known

Obvious questions:

- can we avoid the global Lipschitz requirement?
- \bullet can we approximately minimize m and retain good worst-case complexity?
- does this work well in practice?

 QQ

Cubic overestimation

Assume

- $f \in C^2$
- f, g and H at x_k are f_k , g_k and H_k
- **•** symmetric approximation B_k to H_k
- \bullet B_k and H_k bounded at points of interest

Use

• cubic overestimating model at x_k

$$
m_k(s) \equiv f_k + s^T g_k + \frac{1}{2} s^T B_k s + \frac{1}{3} \sigma_k ||s||_2^3
$$

- \bullet σ_k is the iteration-dependent regularisation weight
- easily generalized for regularisation in M_k -norm $\|s\|_{M_k} = \sqrt{s^{\mathsf{T}} M_k s}$ where M_k is uniformly positive definite

つひひ

The new method

Adaptive Cubic Overestimation (ACO)

Given x_0 , and $\sigma_0 > 0$, for $k = 0, 1, \ldots$ until convergence,

compute a step s_k for which $\boxed{m_k(s_k) \leq m_k(s_k^{\text{C}})}$

\n- \n Cauchy point: \n
$$
s_k^C = -\alpha_k^C g_k \quad \& \alpha_k^C = \arg\min_{\alpha \in \mathbb{R}_+} m_k(-\alpha g_k)
$$
\n
\n- \n Compute \n
$$
\rho_k = \frac{f(x_k) - f(x_k + s_k)}{f(x_k) - m_k(s_k)}
$$
\n
\n- \n set \n
$$
x_{k+1} = \n \begin{cases}\n x_k + s_k & \text{if } \rho_k > 0.1 \\
 x_k & \text{otherwise}\n \end{cases}
$$
\n
\n- \n given \n
$$
\gamma_2 \geq \gamma_1 > 1, \text{ set}
$$
\n
$$
\sigma_{k+1} \in \n \begin{cases}\n (0, \sigma_k) & \text{if } \rho_k > 0.9 \\
 [\sigma_k, \gamma_1 \sigma_k] & \text{if } \sigma_k \in \mathbb{R}_+ \\
 [\gamma_1 \sigma_k, \gamma_2 \sigma_k] = 2\sigma_k & \text{otherwise}\n \end{cases}
$$
\n \n therefore \n
$$
\text{where } \alpha_k \geq 0.9 \quad \text{for } k \leq 0.9 \text{ is } \alpha_k^C \geq 0.
$$
\n \n Therefore, the result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system is:\n
$$
\text{for } k \geq 0.
$$
\n \n The result of the system

c.f. trust-region methods

 QQ

Convergence theory

Convergence to first-order critical points

\n- \n
$$
f(x_k) - m_k(s_k) \geq \frac{1}{6\sqrt{2}} \|g_k\| \min\left[\frac{\|g_k\|}{1 + \|B_k\|}, \frac{1}{2} \sqrt{\frac{\|g_k\|}{\sigma_k}}\right]
$$
\n
\n- \n
$$
\|s_k\| \leq \frac{3}{\sigma_k} \max(\|B_k\|, \sqrt{\sigma_k \|g_k\|})
$$
\n
\n- \n
$$
\text{if } \|g_k\| \geq \epsilon \quad \forall k \implies \exists L \mid \sigma_k \leq \frac{L}{\epsilon} \quad \forall k
$$
\n
\n- \n
$$
\text{of bounded below and } g_\ell \neq 0 \quad \forall \ell \implies \liminf_{k \to \infty} \|g_k\| = 0
$$
\n
\n

• f bounded below and
$$
g_{\ell} \neq 0
$$
 $\forall \ell \implies$ $\lim_{k \to \infty}$

$$
\lim_{k\to\infty}\|g_k\|=0
$$

Under stronger assumptions can show that

$$
\text{lim}_{k\to\infty}Q_k^TH_kQ_k\succeq 0
$$

if s_k minimizes m_k over subspace with orthogonal basis matrix Q_k

Fast convergence

For fast asymptotic convergence \implies need to improve on Cauchy point: minimize over Krylov subspaces

- g stopping-rule: $\|\nabla_s m_k(s_k)\| \le \min(1, \|g_k\|^{\frac{1}{2}})\|g_k\|$
- s stopping-rule: $\|\nabla_s m_k(s_k)\|$ ≤ min $(1, \|s_k\|) \|g_k\|$

If B_k satisfies the Dennis-Moré condition

$$
\|(B_k - H_k)s_k\|/\|s_k\| \to 0 \text{ whenever } \|g_k\| \to 0
$$

and $x_k \rightarrow x_*$ with positive definite $H(x_*)$

 \implies Q-superlinear convergence of x_k under both the g- and s-rules

If additionally $H(x)$ is locally Lipschitz around x_* and $||(B_k - H_k)s_k|| = O(||s_k||^2)$

$$
\quad \Longrightarrow \quad
$$

Q-q[u](#page-10-0)adratic conv[e](#page-10-0)[r](#page-13-0)gence of x_k u[nd](#page-12-0)er [t](#page-11-0)[h](#page-12-0)e [s-](#page-12-0)r[ul](#page-9-0)e

Iteration complexity

How many iterations are needed to ensure that $||g_k|| \leq \epsilon$?

• so long as for very successful iterations $\sigma_{k+1} \leq \gamma_3 \sigma_k$ for $\gamma_3 < 1$ \implies basic ACO algorithm requires at most

 $\lceil \frac{\kappa_C}{\kappa_C} \rceil$

l

 $\left\lbrack\frac{\kappa_{\mathrm{C}}}{\epsilon^2}\right\rbrack$ iterations for some $\kappa_{\rm C}$ independent of ϵ c.f. steepest descent

• if H is globally Lipschitz, the s-rule is applied and additionally s_k is the global (line) minimizer of $m_k(\alpha s_k)$ as a function of α \implies ACO algorithm requires at most

$$
\frac{\kappa_{\rm S}}{\epsilon^{3/2}}
$$
 iterations

for some $\kappa_{\rm S}$ independent of ϵ c.f. Nesterov & Polyak

つへへ

Minimizing the model

$$
m(s) \equiv f + s^T g + \frac{1}{2} s^T B s + \frac{1}{3} \sigma ||s||_2^3
$$

Derivatives:

 $\lambda = \sigma ||s||_2$

$$
\begin{aligned}\n\bullet \ \nabla_s m(s) &= g + Bs + \lambda s \\
\bullet \ \nabla_{ss} m(s) &= B + \lambda I + \lambda \left(\frac{s}{\|s\|} \right) \left(\frac{s}{\|s\|} \right)^T\n\end{aligned}
$$

Optimality: any global minimizer s_* of m satisfies

$$
(B+\lambda_*I)\mathsf{s}_*=-\mathsf{g}
$$

- $\lambda_* = \sigma \|s_*\|_2$
- \bullet B + $\lambda_* I$ is positive semi-definite

4 0 8

The (adapted) secular equation

Require

$$
(B + \lambda I)s = -g
$$
 and $\lambda = \sigma ||s||_2$

Define $s(\lambda)$:

$$
(B+\lambda I)s(\lambda)=-g
$$

and find scalar λ as the root of secular equations

$$
||s(\lambda)||_2 - \frac{\lambda}{\sigma} = 0
$$
 or $\frac{1}{||s(\lambda)||_2} - \frac{\sigma}{\lambda} = 0$ or $\frac{\lambda}{||s(\lambda)||_2} - \sigma = 0$

- values and derivatives of $s(\lambda)$ satisfy linear systems with symmetric positive definite $B + \lambda I$
- need to be able to factorize $B + \lambda I$

つへへ

Practical algorithmics

Plots of secular functions against λ

Example:
$$
g = (0.25 \ 1)^T
$$
, $H = diag(-1 \ 1)$ and $\sigma = 2$

Large problems — approximate solutions

Seek instead global minimizer of $m(s)$ in a *j*-dimensional ($j \ll n$) subspace $S \subseteq \mathbb{R}^n$

- $g \in S \Longrightarrow$ ACO algorithm globally convergent
- Q orthogonal basis for $S \implies s = Qu$ where

$$
u = \arg\min_{u \in \mathbb{R}^3} f + u^T(Q^T g) + \frac{1}{2} u^T(Q^T B Q) u + \frac{1}{3} ||u||_2^3
$$

 \implies use secular equation to find u

- if S is the Krylov space generated by $\{B^ig\}_{i=0}^{j-1}$ $i=0$ \implies Q^T BQ = T, tridiagonal \implies can factor $T + \lambda I$ to solve secular equation even if j is large
- using g- or s-stopping rule \implies fast asymptotic convergence for ACO
- using s-stopping rule \implies good iteration complexity for ACO

 QQ

Practical algorithmics

Numerical experience — small problems using Matlab

Performance Profile: iteration count − 131 CUTEr problems

 $2Q$

Encouraging so far!

- **•** promising alternative to linesearch and trust-region methods for unconstrained optimization
- globally convergent to first- (and weak second-) order critical points
- fast asymptotic rate possible
- achieves best-known worst-case iteration complexity bound
- suitable for large-scale problems
- sophisticated implementation as part of GALAHAD underway

- "obvious" extensions to simple bounds, augmented Lagrangians etc.
- other regularizations ($p > 3$ or $p > 2$) possible (any reason?)
- **•** use of semi-norm in the presence of linear equality constraints
- **•** not known if (e.g.) trust-region methods have as good worst-case complexity (work in progress)

Thanks for your attention