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Unconstrained optimization — a “mature” area?

Unconstrained optimization:

minimize f(x) where f € C* (maybe C?)

xeR"

Currently two main competing (but similar) methodologies

o |Linesearch methods |

o compute a descent direction s, from x
@ set Xx41 = Xk + xSk to improve f

° ‘Trust—region methods‘

@ compute a step s, from xi to improve a model my of f
within the trust-region ||s|| < A

@ set xx41 = Xk + Sk if mg and f “agree” at xx + s

@ otherwise set xx11 = xx and reduce the radius A
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The new method
Is there anything more to say?

Recently, Nesterov and Polyak (2006) observed the following: if

@ f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f(x+s) = f(x)+sTg(x)+1isTH(x)s

+ fol(l — a)sT[H(x + as) — H(x)]s da

f(x) 4+ s g(x) + 1sTH(x)s + LL||s|3
m(s)

IA

— reducing m from s = 0 improves f since m(0) = f(x). ‘
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Nesterov and Polyak highlights

Fx + ) < m(s) = £(x) +sTg(x) + 1sTH(x)s + 3Ls]3

@ N&P minimize m globally

@ N.B. m may be non-convex!
o efficient scheme to do so if H has sparse factors

@ global (ultimately rapid) convergence to a 2nd-order critical point of f

@ better worst-case complexity than previously known

@ can we avoid the global Lipschitz requirement?

@ can we approximately minimize m and retain good worst-case
complexity?

@ does this work well in practice?
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The new method
Cubic overestimation

@ feC?
o f, g and H at x, are fi, gk and H
@ symmetric approximation By to Hy

@ By and Hj bounded at points of interest
Use
@ cubic overestimating model at xj
_ T T 3
mi(s) = f +s' g+ 1s' Bes + Lois|5

@ 0y is the iteration-dependent regularisation weight
o easily generalized for regularisation in Mg-norm ||s||m, = \/s7 Mis
where M is uniformly positive definite
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The new method

Adaptive Cubic Overestimation (ACO)

Given xg, and og > 0, for k =0, 1,... until convergence,

@ compute a step s for which | my(sx) < my(sg)

o Cauchy point: sf = —afg, & af= arg mRin my(—agk)
aciRg
f(Xk) — f(Xk + Sk)
f(Xk) — mk(sk)

Xk + Sk if px >
X otherwise

@ compute py =

@ set xy41 = {

@ given y2 >y > 1, set

(0, 04] if px > very successful
Ok+1 € [0k, Y10k] if < pi < successful
[v10k, Y20] otherwise unsuccessful

c.f. trust-region methods‘
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Convergence theory
Convergence to first-order critical points

1 [ [l ||gk||]
Fx) — > _1_
(xk) — mi(sk) = 6\/5”ng min [1 B’ 2

o [lsill < & max(||Bul, v/orllgel)
o iflal| > Vk — 3|ox<L vk

f bounded below and gy #0 Y/ — Iikminf llgkl| =0

o f bounded below and gy #0 V/ — klim llgkll =0

Under stronger assumptions can show that
limg oo Q;Z_Hka =0

if s, minimizes my over subspace with orthogonal basis matrix Q
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Convergence theory
Fast convergence

For fast asymptotic convergence = need to improve on Cauchy point:
minimize over Krylov subspaces

) ) 1
o g stopping-rule: [[Vsmy(sk)[| < min(L, [[gx||2) gl
@ s stopping-rule: ||[Vsmi(sk)l] < min(1,||skll gkl

If By satisfies the Dennis-Moré condition

1(Bk = Hi)skl|/l|skll — 0 whenever {|g|| — 0

and xx — x, with positive definite H(x)

—> Q-superlinear convergence of x, under both the g- and s-rules

If additionally H(x) is locally Lipschitz around x, and
1Bk — Hi)skll = OClls«l?)

= Q-quadratic convergence of x, under the s-rule
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Convergence theory
Iteration complexity

How many iterations are needed to ensure that ||g|| < €?

@ so long as for very successful iterations oy, 1 < 304 for 3 <1
= basic ACO algorithm requires at most

P{gw iterations
€
for some k¢ independent of € c.f. steepest descent
o if H is globally Lipschitz, the s-rule is applied and additionally s is
the global (line) minimizer of mg(ask) as a function of «
= ACO algorithm requires at most

{"—“—‘ iterations

3/2

for some kg independent of ¢ c.f. Nesterov & Polyak
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Practical algorithmics
Minimizing the model

‘ m(s)=f+sTg+ 1s"Bs+ lofs|3 ‘

Derivatives:

o \=ols|2
@ Vim(s) =g+ Bs+ As

® Vsm(s) = B+ Al + A (ﬁ) (ﬁ) T

Optimality: | any global minimizer s, of m satisfies

(B4 M\l)s. =—g
o A= alls.lz

@ B + A,/ is positive semi-definite
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Practical algorithmics

The (adapted) secular equation

Require
(B+A)s=—g and X=o0|s|>
Define s(\):
(B+A)s(\) =—g
and find scalar X\ as the root of secular equations

1 -0 or c=0

A 1 o A
lsMll2 =5 =0 or iy, — X = Is(V)I2

@ values and derivatives of s(\) satisfy linear systems with symmetric

positive definite B + A/
@ need to be able to factorize B + A/
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Practical algorithmics

Plots of secular functions against \

Example: g = (0.25 1)7, H =diag(—1 1) and 0 =2

A

B
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Practical algorithmics

Large problems — approximate solutions

Seek instead global minimizer of m(s) in a j-dimensional (j < n) subspace
SCR"

g € S = ACO algorithm globally convergent

Q orthogonal basis for § — s = Qu where

u= argmin f+u’(Q7g)+ 1u"(QTBQ)u+ ilul3
veR’
= use secular equation to find u
. . Py i—1
e if S is the Krylov space generated by {B'g}_;
— Q'BQ =T, tridiagonal
= can factor T + A/ to solve secular equation even if j is large

using g- or s-stopping rule = fast asymptotic convergence for ACO

using s-stopping rule = good iteration complexity for ACO
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Practical algorithmics

Numerical experience — small problems using Matlab

Performance Profile: iteration count — 131 CUTEr problems

fraction of problems for which method within o of best
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Conclusions

Conclusions (1)

‘ Encouraging so far! ‘

@ promising alternative to linesearch and trust-region methods for
unconstrained optimization

globally convergent to first- (and weak second-) order critical points
fast asymptotic rate possible
achieves best-known worst-case iteration complexity bound

suitable for large-scale problems

sophisticated implementation as part of GALAHAD underway
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Conclusions

Conclusions (2)

“obvious” extensions to simple bounds, augmented Lagrangians etc.
other regularizations (p > 3 or p > 2) possible (any reason?)
use of semi-norm in the presence of linear equality constraints

not known if (e.g.) trust-region methods have as good worst-case
complexity (work in progress)

‘ Thanks for your attention
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