Multilevel limited memory BFGS with application to Data Assimilation

Serge Gratton¹ Philippe Toint²

¹CERFACS, France

²Department of Mathematics, University of Namur, Belgium (philippe.toint@fundp.ac.be)

August 2007

KORK ERKER ADAM ADA

Multilevel limited memory BFGS with application to Data Assimilation

Serge Gratton¹ Philippe Toint²

¹CERFACS, France

²Department of Mathematics, University of Namur, Belgium (philippe.toint@fundp.ac.be)

August 2007

KORK ERKER ADAM ADA

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0) [Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0)

[Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Motivation

- \triangleright PDE based optimization problems are present in a number of applications: shape optimization, Data Assimilation, control problems.
- \triangleright Recent optimization methods have been designed to cope with these problems, including multigrid algorithms.
- \triangleright These algorithms involve the computation of a hierarchy of discretization or Galerkin models, involving large algorithmic modification if the application was not originally designed for multigrid
- \blacktriangleright Idea: propose convergence improvements that take into account the grid structure and that does not imply rewriting the complete applications.

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0)

[Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

Linear systems arising from PDE

 \triangleright Partial differential equations arise in many situations of scientific engineering. In particular the Laplace operator appear in many fields. The simple situation is the heat equation

> $\int \frac{\partial u}{\partial t} - \Delta u = 0$ in Ω , +boundary conditions on $\partial\Omega$.

> > $\mathsf{sin}(n\theta_k)$ $\mathsf{sin}(n\theta_k)$ $\mathsf{sin}(n\theta_k)$ $\mathsf{sin}(n\theta_k)$ $\mathsf{sin}(n\theta_k)$

 \setminus

 $\Bigg\}$

- \blacktriangleright In 1D with Dirichlet boundary conditions the steady state describes the heat distribution along a wire of length 1.
- \triangleright Compute a finite difference discretization $Ax = b \Longleftrightarrow min_x \frac{1}{2}$ $\frac{1}{2}$ x T Ax $-$ x T b
- \blacktriangleright Set $\theta_k = \frac{k\pi}{n+1}$ $\frac{K\pi}{n+1}$. The eigenvalues of A are $\lambda_k = 2(1 - \cos \theta_k) = 4 \sin^2 \frac{\theta_k}{2}, \ \ k = 1, \cdots, n,$ In the associated eigenvectors are $v_k =$ $\sqrt{ }$ $\overline{}$ sin θ_k $sin(2\theta_k)$. . .

Shape of the eigenvectors

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Error at step k of CG

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0)

[Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Basic idea

- \triangleright Convergence of CG methods on model problems for multigrid:
	- \triangleright The high frequency error component converge fast with many traditional iterative methods.
	- \triangleright Use a coarse grid to compute the low frequency on a coarser grid.
	- \triangleright Problem : discretization or Galerkin approximation needed at all considered level. May be problematic if the application was not original designed for multigrid.
- \triangleright Use a preconditioning approach to obtain improve the smooth error components:
	- \triangleright P and R are the prolongation and restriction operators.
	- \triangleright The operator PR implements a grid-based smoothing.
	- \triangleright Consider approximate secant information contained in $PRs = PR(x_{k+1} - x_k)$, and $PRy = PR(\nabla f(x_{k+1}) - \nabla f(x_k))$.

Approximate secant equations

► Secant approach $V \sim Hs$.

SECSM Smoothed y and s : H PRs \sim PRy

- \blacktriangleright Eigenvalue approach
- EIG Use y for curvature information only: HPRs $\sim \theta_1$ s.

$$
\theta_1 = \frac{y^T PRs}{\|PRs\|_2^2}
$$

EIGSM Use smooth y for curvature information only: H PRs $\sim \theta_1$ s, $\theta_2 = \frac{(PRy)^T PRs}{\|PRs\|^2}$ $||PRs||_2^2$ 2

 \triangleright The approach is generalized to multilevel by replacing PR by $P_rP_{r-1}\ldots (P_jR_j)\ldots R_{r-1}R_r$ in the above expression.

For each secant approximation $H\tilde{s} = \tilde{y}$, we introduce the normalized error $\frac{\|H\tilde{\mathbf{s}}-\tilde{\mathbf{y}}\|}{\|H\|\|\tilde{\mathbf{s}}\|}$.

Normalized error for the model problem

▶ We consider unpreconditioned CG (or L-BFGS) on our quadratic model problem, and plot the error corresponding to the 4 strategies.

 \triangleright We include these additional information in a L-BFGS algorithm

 $2Q$

Memory management

- 1. Target problems are large scale unconstrained problems. As for L-BFGS a maximum number of vectors to be stored is set: MEM.
- 2. Two strategies are considered:
	- EQ The memory contains the most recent coarse and fine secant information, with no a priori preference.
	- PF Only the secant information related to the current step is kept

KORK ERKER ADAM ADA

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0)

[Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0) [Quadratic problems](#page-15-0)

[Data assimilation problems](#page-18-0)

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Dirichlet-to-Neumann transfer DN

It consists [Lewis, Nash, 04] in finding the function $a(x)$ defined on $[0, \pi]$, that minimizes

$$
\int_0^\pi \left(\partial_y u(x,0)-\phi(x)\right)^2 dx,
$$

where $\partial_y u$ is the partial derivative of u with respect to y,

 \triangleright and where u is the solution of the boundary value problem

$$
\begin{array}{rcl}\n\Delta u & = & 0 & \text{in } S, \\
u(x, y) & = & a(x) & \text{on } \Gamma, \\
u(x, y) & = & 0 & \text{on } \partial S \backslash \Gamma.\n\end{array}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Multigrid model problem MG

 \triangleright Consider here the two-dimensional model problem for multigrid solvers in the unit square domain $S₂$

$$
-\Delta u(x, y) = f \text{ in } S_2
$$

$$
u(x, y) = 0 \text{ on } \partial S_2,
$$

- \triangleright f is such that the analytical solution to this problem is $u(x, y) = 2y(1 - y) + 2x(1 - x).$
- \triangleright This problem is discretized using a 5-point finite-difference scheme
- \triangleright Our algorithm will be used on the variational minimization problem

$$
\min_{x \in R^{n_r}} \frac{1}{2} x^T A_r x - x^T b_r,
$$

KORKAR KERKER E VOOR

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0) [Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

The 4D-Var functional

- ► Consider a dynamical system $\dot{x} = f(t, x)$ with solution operator $x(t) = \mathcal{M}(t, x_0)$.
- \triangleright Observations y_i at time t_i modeled by $y_i = \mathcal{H}x(t_i) + \epsilon$, where ϵ is a Gaussian noise with covariance matrix $R_i.$
- In The a priori error error covariance matrix on x_0 is B.
- In data assimilation, we are looking for x_0 that minimizes

$$
\frac{1}{2}||x_0 - x_b||_{B^{-1}}^2 + \frac{1}{2}\sum_{i=0}^N ||\mathcal{HM}(t, x_0) - y_i||_{R_i^{-1}}^2,
$$

 \blacktriangleright The first term in the cost function is the background term, the second term is the observation term.

Data assimilation in the heat equation DA

In this problem, the dynamical system is the heat equation in 2D, defined by

$$
\left\{\begin{array}{c} \frac{\partial u}{\partial t} - \Delta u = 0 \text{ in } \Omega = [0, 1] \times [0, 1] \end{array}\right.
$$

- \triangleright No a priori term is considered
- \triangleright Observations: the state $x(t)$ is observed (i.e. H is a selection matrix) at every other point in spatial domain and at every time step.

KORK ERKER ADAM ADA

- \triangleright We perform twin experiments i.e. the observations are computed by
	- imposing a solution x_0^*
	- \triangleright by computing the system trajectory
	- \triangleright and adding a Gaussian noise.

The shallow water system SW

- \triangleright The shallow system is often considered as a good approximation of the dynamical systems used in ocean modeling.
- \blacktriangleright It is based on the Shallow Water equations

$$
\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} - fv + g \frac{\partial z}{\partial x} = \lambda \Delta u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu + g \frac{\partial z}{\partial y} = \lambda \Delta v \\ \frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} + z \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \lambda \Delta z \end{cases}
$$

- \triangleright Observations of the state exist at everything 5 points in the physical domain and every 5 time steps
- \triangleright The a priori term is modeled using a diffusion operator as suggested in [Weaver, Courtier, 2001]
- \blacktriangleright The system is time integrated using a leapfrog scheme.
- **►** The damping in $\lambda\Delta$ is implemented to improve the **smoothness of the solution in the spatial domain**
The state state state in the solution of the state state in the state state state state state state state state

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0)

[Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

Algorithmic parameters

We use linear interpolation for P and $R=\sigma P^{\mathcal{T}}$, with $\sigma=1/\Vert P\Vert,$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Problem DN

Kロトメ部トメミトメミト ミニのQC

Problem MG

Kロトメ部トメミトメミト ミニのQC

Data assimilation in the heat equation DA

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

The shallow water system SW

K ロ X (日) X (日)

[Introduction](#page-3-0)

[Model problem](#page-5-0)

[Algorithmic variants](#page-9-0)

[Tests problems](#page-14-0)

[Quadratic problems](#page-15-0) [Data assimilation problems](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

[Numerical results](#page-22-0)

[Conclusion](#page-28-0)

Conclusion

- \triangleright For problems where multigrid is expected to perform well (elliptic PDE based optimization), exploit the underlying structure.
- \triangleright Use of smoothed approximate secant equations.
- \blacktriangleright Multiple variant with different memory costs.
- \blacktriangleright Encouraging results on models problems and on a more realistic data assimilation problem involving Shallow Water system of equations.

KORK ERKER ADAM ADA