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Motivation

I PDE based optimization problems are present in a number
of applications: shape optimization, Data Assimilation,
control problems.

I Recent optimization methods have been designed to cope
with these problems, including multigrid algorithms.

I These algorithms involve the computation of a hierarchy of
discretization or Galerkin models, involving large
algorithmic modification if the application was not originally
designed for multigrid

I Idea: propose convergence improvements that take into
account the grid structure and that does not imply rewriting
the complete applications.
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Linear systems arising from PDE
I Partial differential equations arise in many situations of

scientific engineering. In particular the Laplace operator
appear in many fields. The simple situation is the heat
equation {

∂u
∂t −∆u = 0 in Ω,
+boundary conditions on∂Ω.

I In 1D with Dirichlet boundary conditions the steady state
describes the heat distribution along a wire of length 1.

I Compute a finite difference discretization
Ax = b ⇐⇒ minx

1
2xT Ax − xT b

I Set θk = kπ
n+1 . The eigenvalues of A are

λk = 2(1− cos θk ) = 4 sin2 θk
2 , k = 1, · · · , n,

I the associated eigenvectors are vk =


sinθk

sin(2θk )
...

sin(nθk )

 .



Shape of the eigenvectors



Error at step k of CG

k = 0 k = 2 k = 4

k = 6 k = 8 k = 10
Slow convergence of the smooth modes
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Basic idea

I Convergence of CG methods on model problems for
multigrid:

I The high frequency error component converge fast with
many traditional iterative methods.

I Use a coarse grid to compute the low frequency on a
coarser grid.

I Problem : discretization or Galerkin approximation needed
at all considered level. May be problematic if the application
was not original designed for multigrid.

I Use a preconditioning approach to obtain improve the
smooth error components:

I P and R are the prolongation and restriction operators.
I The operator PR implements a grid-based smoothing.
I Consider approximate secant information contained in

PRs = PR(xk+1 − xk ), and PRy = PR(∇f (xk+1)−∇f (xk )).



Approximate secant equations

I Secant approach y ∼ Hs.
SECSM Smoothed y and s : H PRs ∼ PRy

I Eigenvalue approach
EIG Use y for curvature information only: H PRs ∼ θ1s,

θ1 = yT PRs
‖PRs‖2

2

EIGSM Use smooth y for curvature information only: H PRs ∼ θ1s,

θ2 = (PRy)T PRs
‖PRs‖2

2

I The approach is generalized to multilevel by replacing PR
by Pr Pr−1 . . . (PjRj) . . . Rr−1Rr in the above expression.

For each secant approximation Hs̃ = ỹ , we introduce the
normalized error ‖Hs̃−ỹ‖

‖H‖‖s̃‖ .



Normalized error for the model problem
I We consider unpreconditioned CG (or L-BFGS) on our

quadratic model problem, and plot the error corresponding
to the 4 strategies.

I We include these additional information in a L-BFGS
algorithm

I Linesarch based on algorithm UNCMIN of
[Denis,Schnabel]



Memory management

1. Target problems are large scale unconstrained problems.
As for L-BFGS a maximum number of vectors to be stored
is set: MEM.

2. Two strategies are considered:
EQ The memory contains the most recent coarse and fine

secant information, with no a priori preference.
PF Only the secant information related to the current step is

kept
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Dirichlet-to-Neumann transfer DN

I It consists [Lewis,Nash,04] in finding the function a(x)
defined on [0, π], that minimizes∫ π

0

(
∂yu(x , 0)− φ(x)

)2 dx ,

where ∂yu is the partial derivative of u with respect to y ,
I and where u is the solution of the boundary value problem

∆u = 0 in S,
u(x , y) = a(x) on Γ,
u(x , y) = 0 on ∂S\Γ.



Multigrid model problem MG

I Consider here the two-dimensional model problem for
multigrid solvers in the unit square domain S2

−∆u(x , y) = f in S2

u(x , y) = 0 on ∂S2,

I f is such that the analytical solution to this problem is
u(x , y) = 2y(1− y) + 2x(1− x).

I This problem is discretized using a 5-point finite-difference
scheme

I Our algorithm will be used on the variational minimization
problem

min
x∈Rnr

1
2

xT Ar x − xT br ,
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The 4D-Var functional

I Consider a dynamical system ẋ = f (t , x) with solution
operator x(t) = M(t , x0).

I Observations yi at time ti modeled by yi = Hx(ti) + ε,
where ε is a Gaussian noise with covariance matrix Ri .

I The a priori error error covariance matrix on x0 is B.
I In data assimilation, we are looking for x0 that minimizes

1
2
‖x0 − xb‖2

B−1 +
1
2

N∑
i=0

‖HM(t , x0)− yi‖2
R−1

i
,

I The first term in the cost function is the background term,
the second term is the observation term.



Data assimilation in the heat equation DA

I In this problem, the dynamical system is the heat equation
in 2D, defined by{

∂u
∂t −∆u = 0 in Ω = [0, 1]× [0, 1]

I No a priori term is considered
I Observations: the state x(t) is observed (i.e. H is a

selection matrix) at every other point in spatial domain and
at every time step.

I We perform twin experiments i.e. the observations are
computed by

I imposing a solution x?
0

I by computing the system trajectory
I and adding a Gaussian noise.



The shallow water system SW
I The shallow system is often considered as a good

approximation of the dynamical systems used in ocean
modeling.

I It is based on the Shallow Water equations
∂u
∂t + u ∂u

∂x + v ∂v
∂y − fv + g ∂z

∂x = λ∆u
∂v
∂t + u ∂v

∂x + v ∂v
∂y + fu + g ∂z

∂y = λ∆v
∂z
∂t + u ∂z

∂x + v ∂z
∂y + z

(
∂u
∂x + ∂v

∂y

)
= λ∆z

I Observations of the state exist at everything 5 points in the
physical domain and every 5 time steps

I The a priori term is modeled using a diffusion operator as
suggested in [Weaver, Courtier, 2001]

I The system is time integrated using a leapfrog scheme.
I The damping in λ∆ is implemented to improve the

smoothness of the solution in the spatial domain
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Algorithmic parameters

Pb size LMEM conv.tol. nblevels
DN 251 10 10−5 7
MG 632 8 10−5 5
DA 632 8 10−5 5
SW 312 15 10−5 3

We use linear interpolation for P and R = σPT , with σ = 1/‖P‖,



Problem DN

cost grad it
LBFS − 353 177 176
EQ SECSM 536 268 267
EQ EIG 243 107 106
EQ EIGSM 303 148 146
PF SECSM 309 155 154
PF EIG 137 67 66
PF EIGSM 151 75 73



Problem MG

cost grad it
LBFS − 222 128 127
EQ SECSM 189 96 95
EQ EIG 146 75 74
EQ EIGSM 177 98 97
PF SECSM 135 77 76
PF EIG 166 89 88
PF EIGSM 121 69 68



Data assimilation in the heat equation DA

cost grad it
LBFS − 14564 2751 2706
EQ SECSM 3622 703 655
EQ EIG 2972 581 532
EQ EIGSM 2804 548 503
PF SECSM 3267 631 598
PF EIG 5599 1080 1034
PF EIGSM 5796 1112 1071



The shallow water system SW

cost grad it
LBFS − 101 51 50
EQ SECSM 107 54 53
EQ EIG 109 55 54
EQ EIGSM 111 56 55
PF SECSM 101 51 50
PF EIG 87 44 43
PF EIGSM 89 45 44
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Conclusion

I For problems where multigrid is expected to perform well
(elliptic PDE based optimization), exploit the underlying
structure.

I Use of smoothed approximate secant equations.
I Multiple variant with different memory costs.
I Encouraging results on models problems and on a more

realistic data assimilation problem involving Shallow Water
system of equations.
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