Multilevel optimization using trust-region and linesearch approaches

S. $\mathsf{Gratton^1}$ M. $\mathsf{Mouffe^1}$ Ph. $\mathsf{Toint^2}$ D. $\mathsf{Tomanos^2}$ M. $\mathsf{Weber}\text{-}\mathsf{Mendonça^2}$

¹CERFACS and CNES, Toulouse, France

²Department of Mathematics, University of Namur, Belgium (philippe.toint@fundp.ac.be)

Bad Honeff, October 2007

Multilevel optimization using trust-region and linesearch approaches

S. $\mathsf{Gratton^1}$ M. $\mathsf{Mouffe^1}$ Ph. $\mathsf{Toint^2}$ D. $\mathsf{Tomanos^2}$ M. $\mathsf{Weber}\text{-}\mathsf{Mendonça^2}$

¹CERFACS and CNES, Toulouse, France

²Department of Mathematics, University of Namur, Belgium (philippe.toint@fundp.ac.be)

Bad Honeff, October 2007

Introduction

2 Recursive trust-region methods

Multigrid limited memory BFGS

Outline

Introduction

Recursive trust-region methods

Multigrid limited memory BFGS

Motivation

- optimization of continuous problems occurs in a many applications: shape optimization, data assimilation, control problems, ...
- Recent optimization methods have been designed to cope with these problems, including multilevel/multigrid algorithms.
- These algorithms involve the computation of a hierarchy of problem descriptions, linked by known operators.

Our purpose: review some trust-region and linesearch recent proposals for unconstrained/ bound-constrained optimization:

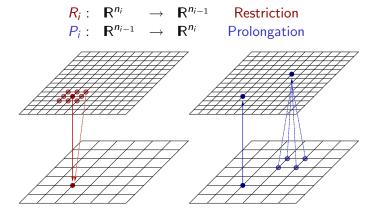
$$\min_{(x \ge 0)} f(x)$$

Hierarchy of problem descriptions

Can we use a structure of the form:

```
Finest problem description
 Restriction \downarrow R
                                     P \uparrow Prolongation
Fine problem description
 Restriction \downarrow R
                                     P \uparrow Prolongation
 Restriction \perp R
                                     P \uparrow Prolongation
Coarse problem description
 Restriction \perp R
                                     P \uparrow Prolongation
Coarsest problem description
```

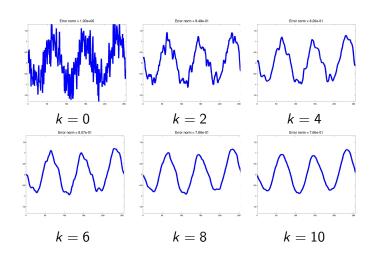
Grid transfer operators



Three keys to multigrid algorithms

- oscillatory components of the error are representable on fine grids, but not on coarse grids
- iterative methods reduce oscillatory components much faster than smooth ones
- smooth on fine grids → oscillatory on coarse ones

Error at step k of CG



Fast convergence of the oscillatory modes

How to exploit these keys

Annihilate oscillatory error level by level:

Note: P and R are not othogonal projectors!

A very efficient method for some linear systems (when $A(smooth modes) \in smooth modes$)

Past developments

- Fisher (1998), Nash (2000), Frese-Bouman-Sauer (1999), Nash-Lewis (2002), Oh-Milstein-Bouman-Webb (2003) (linesearch, no explicit smoothing, convergence?)
- Gratton-Sartenaer-T (2004), Gratton-Mouffe-T-Weber (2007) (trust-region, explicit-smoothing, convergence 1rst + 2nd order, worst-case complexity)
- Wen-Goldfarb (2007)
 (linesearch, explicit smoothing, convergence on convex problems)
- Gratton-T (2007)
 (linesearch, implicit smoothing, convergence?)

Outline

Introduction

2 Recursive trust-region methods

Multigrid limited memory BFGS

Recursive multilevel trust region

At each iteration at the fine level:

consider a coarser description model with a trust region

```
compute fine g (and H) step and trial point

Restriction \downarrow R P \uparrow Prolongation

minimize the coarse model within the fine TR
```

- \odot evaluate f at the trial point
- if achieved decrease \approx predicted decrease:
 - accept the trial point
 - (possibly) enlarge the trust region
- else:
 - keep current point
 - shrink the trust region

RMTR

Until convergence:

- Choose either a Taylor or recursive model
 - Taylor model: compute a Taylor step
 - Recursive: apply the Algo recursively
- Evaluate change in the objective function
- If achieved reduction \approx predicted reduction,
 - accept trial point as new iterate
 - (possibly) enlarge the trust region

else

- reject the trial point
- shrink the trust region
- Impose: current TR ⊂ upper level TR

RMTR - Criticality Measure

• We only use recursion if:

$$\|g_{\mathsf{low}}\| \stackrel{\mathrm{def}}{=} \|Rg_{\mathsf{up}}\| \ge \kappa_{\mathsf{g}} \|g_{\mathsf{up}}\| \quad \mathsf{and} \quad \|g_{\mathsf{low}}\| > \epsilon^{\mathsf{g}}$$

• We have found a solution to the current level i if

$$\|g_i\| < \epsilon_i^g$$

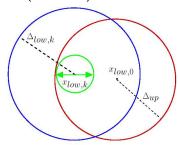
 BUT: we must stop before we reach the border, or the inner trust region becomes too small

$$\|x_{\mathrm{low}}^+ - x_{\mathrm{low}}^0\|_{\mathrm{low}} = \|P(x_{\mathrm{low}}^+ - x_{\mathrm{low}}^0)\|_{\mathrm{up}} > (1 - \epsilon_\Delta)\Delta_{\mathrm{up}}$$

Why Change?

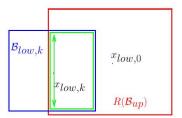
RMTR

- 2-norm TR and criticality measure
- good results, but trust region scaling problem (recursion)



RMTR-∞

- ∞-norm (bound constraints)
- new criticality measure
- new possibilities for step length



∞ -norm in trust regions

- Possibility for asymmetric trust regions (more freedom)
- In lower levels: a bound constrained subproblem
- We will impose that the lower level steps must remain inside the restriction of the upper level trust region: If

$$\mathcal{B}_{\mathsf{up}} = \{ x \, | \, I_{\mathsf{up}} \le x \le u_{\mathsf{up}} \}$$

then

$$\mathcal{B}_{low} = R\mathcal{B}_{up} = \{x \mid RI_{up} \le x \le Ru_{up}\}$$

• The resulting upper level step $s_{up} = Ps_{low}$ will not necessarily be inside the upper level trust region! But: If $\Delta_{up} = radius(\mathcal{B}_{up})$, then

$$||s_{\mathsf{up}}||_{\infty} \leq ||P||_{\infty} ||R||_{\infty} \Delta_{\mathsf{up}}.$$

New Criticality Measure

- Each lower level subproblem is constrained by the restriction of the upper level trust region; we can consider the lower level subproblem as a bound constrained optimization problem.
- Instead of evaluating g_{low} to check criticality, we will look at

$$\chi(x_{\mathsf{low}}) = |\min_{\substack{d \in R\mathcal{B}_{\mathsf{up}} \\ \|d\| \le 1}} \langle g_{\mathsf{low}}, d \rangle|.$$

• We only use recursion if:

$$\chi_{\text{low}} \geq \kappa_{\chi} \chi_{\text{up}}$$

• We have found a solution to the current level i if

$$\chi < \epsilon_i^{\chi}$$
.

Model Reduction

 Taylor iterations in the 2-norm version satisfy the sufficient decrease condition

$$m_i(x) - m_i(x+s) \ge \kappa_{red}g(x) \min \left[\frac{g(x)}{\beta}, \Delta\right].$$

Taylor iterations in the ∞-norm are constrained; they satisfy

$$h_i(x) - h_i(x+s) \ge \kappa_{red}\chi_i(x) \min \left[1, \frac{\chi_i(x)}{\beta}, \Delta\right].$$

RMTR-∞

Until convergence:

- Choose either a Taylor or recursive model
 - Taylor model: compute a Taylor step (∞-norm)
 - Recursive: apply the Algo recursively
- Evaluate change in the objective function
- If achieved reduction \approx predicted reduction,
 - accept trial point as new iterate
 - (possibly) enlarge the trust region

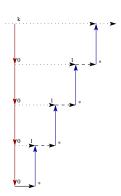
else

- reject the trial point
- shrink the trust region
- Impose: current TR CRestricted upper level TR

Mesh refinement, as different from...

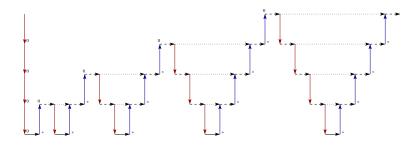
Computing good starting points:

- Solve the problem on the coarsest level
 ⇒ Good starting point for the next fine level
- Do the same on each level
 ⇒ Good starting point for the finest level
- Finally solve the problem on the finest level



... V-cycles and Full Multigrid (FMG)

• FMG : Combination of mesh refinement and V-cycles



A first test case: the minimum surface problem (MS)

Consider the minimum surface problem

$$\min_{v \in K} \int_0^1 \int_0^1 \left(1 + (\partial_x v)^2 + (\partial_y v)^2 \right)^{\frac{1}{2}} dx dy,$$

where $K = \left\{ v \in H^1(S_2) \mid v(x,y) = v_0(x,y) \text{ on } \partial S_2 \right\}$ with

$$v_0(x,y) = \begin{cases} f(x), & y = 0, & 0 \le x \le 1, \\ 0, & x = 0, & 0 \le y \le 1, \\ f(x), & y = 1, & 0 \le x \le 1, \\ 0, & x = 1, & 0 \le y \le 1, \end{cases}$$

where f(x) = x(1 - x).

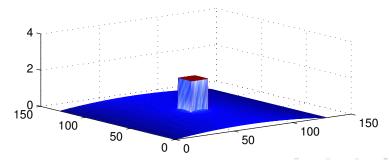
Finite element basis (P1 on triangles) \rightarrow convex problem.

Some typical results on MS ($n = 127^2$, 6 levels)

unconstrained

bound-constrained

	Mesh ref.	RMTR ₂	$RMTR_\infty$	Mesh ref.	$RMTR_\infty$
nit	1057	23	10	2768	214
nf	23	38	15	649	240
ng	16	28	14	640	236
nΗ	17	20	6	32	101



RMTR- ∞ in practice

- Excellent numerical experience!
- Adaptable to bound-constrained problems
- Fully supported by (simpler?) theory
- Fortan code in the polishing stages (→ GALAHAD)

Outline

Introduction

Recursive trust-region methods

Multigrid limited memory BFGS

Linesearch quasi-Newton method

Until convergence:

- Compute a search direction d = -Hg
- Perform a linesearch along d, yieding

$$f(x^+) \le f(x) + \alpha \langle g, d \rangle$$
 and $\langle g^+, d \rangle \ge \beta \langle g, d \rangle$

Update the Hessian approximation to satisfy

$$H^+(g^+ - g) = x^+ - x$$
 (secant equation)

BFGS update:

$$H^{+} = \left(I - \frac{ys^{T}}{y^{T}s}\right) H \left(I - \frac{ys^{T}}{y^{T}s}\right) + \frac{ss^{T}}{y^{T}s}$$

with

$$y = g^+ - g$$
 and $s = x^+ - x$

Generating new secant equations

The fundamental secant equation: $H^+y = s$ Motivation:

$$G^{-1}y = s$$
 where $G = \int_0^1 \nabla_{xx} f(x + ts) dt$

Assume:

- known invariants subspaces $\{S_i\}_{i=1}^p$ of G.
- known orthogonal projectors onto S_i

$$G^{-1}S_iy = S_iG^{-1}y = S_is$$

 \Rightarrow new secant equation: $H^+y_i=s_i$ with $s_i=S_is$ and $y_i=S_iy$

(Limited-memory) multi-secant variant

Until convergence:

- Compute a search direction d = -Hg
- Perform a linesearch along d, yieding

$$f(x^+) \le f(x) + \alpha \langle g, d \rangle$$
 and $\langle g^+, d \rangle \ge \beta \langle g, d \rangle$

Update the Hessian approximation to satisfy

$$H^+y=s$$
 and $H^+y_i=s_i$ $(i=1,\ldots,p)$

Natural setting: limited-memory (BFGS) algorithm

 \Rightarrow apply L-BFGS with secant pairs $(s_1, y_1), \dots, (s_p, y_p), (s, y)$

Multigrid and invariant subspaces

Are they reasonable settings where the S_i are known?

Idea: Grid levels may provide invariant subspace information!

```
Less fine grid: all but the most oscillatory modes

Coarser grid: relatively smooth modes

Coarsest grid: smoothest modes
```

 P^iR^i provides a (cheap) approximate S_i operator!

Multigrid multi-secant LBFGS...questions

How to order the secant pairs?

Update for lower grid levels (smooth modes) first or last?

How exact are the secant equations derived from the grid levels?

Measure by a the norm of the perturbation to true Hessian G for the secant equation to hold exactly:

$$\frac{\|E\|}{\|G\|} \le \frac{\|Gs_i - y_i\|}{\|s_i\| \|G\|}$$

Should we control collinearity?

remember nested structure of the S_i subspaces... test cosines of angles between s and s_i ?

What information should we remember?

a memory-less BFGS method is possible!

Many possible choices!

A second test case: Dirichlet-to-Neumann transfer (DN)

• It consists [Lewis,Nash,04] in finding the function a(x) defined on $[0,\pi]$, that minimizes

$$\int_0^{\pi} (\partial_y u(x,0) - \phi(x))^2 dx,$$

where $\partial_y u$ is the partial derivative of u with respect to y,

• and where *u* is the solution of the boundary value problem

$$\begin{array}{rcl} \Delta u & = & 0 & \text{in } S, \\ u(x,y) & = & a(x) & \text{on } \Gamma, \\ u(x,y) & = & 0 & \text{on } \partial S \backslash \Gamma. \end{array}$$

A third test case: the multigrid model problem (MG)

• Consider here the two-dimensional model problem for multigrid solvers in the unit square domain S_2

$$-\Delta u(x,y) = f \text{ in } S_2$$

$$u(x,y) = 0 \text{ on } \partial S_2,$$

- f such that the analytical solution is u(x, y) = 2y(1 y) + 2x(1 x).
- 5-point finite-difference discretization
- Consider the variational formulation

$$\min_{x \in R^{n_r}} \frac{1}{2} x^T A_r x - x^T b_r,$$

Data assimilation: the 4D-Var functional

- Consider a dynamical system $\dot{x} = f(t, x)$ with solution operator $x(t) = \mathcal{M}(t, x_0)$.
- Observations b_i at time t_i modeled by $b_i = \mathcal{H}x(t_i) + \epsilon$, where ϵ is a Gaussian noise with covariance matrix R_i .
- The a priori error error covariance matrix on x_0 is B.
- We wish to find x_0 which minimizes

$$\frac{1}{2}\|x_0-x_b\|_{B^{-1}}^2+\frac{1}{2}\sum_{i=0}^N\|\mathcal{HM}(t_i,x_0)-b_i\|_{R_i^{-1}}^2,$$

• The first term in the cost function is the background term, the second term is the observation term.

A fourth test case: the shallow water system (SW)

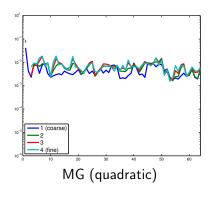
- The shallow system is often considered as a good approximation of the dynamical systems used in ocean modeling.
- It is based on the Shallow Water equations

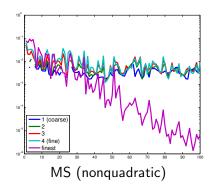
$$\left\{ \begin{array}{l} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} - fv + g \frac{\partial z}{\partial x} = \lambda \Delta u \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu + g \frac{\partial z}{\partial y} = \lambda \Delta v \\ \frac{\partial z}{\partial t} + u \frac{\partial z}{\partial x} + v \frac{\partial z}{\partial y} + z \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \lambda \Delta z \end{array} \right.$$

- Observations: every 5 points in the physical domain at every 5 time steps
- The a priori term is modeled using a diffusion operator [Weaver, Courtier, 2001]
- The system is time integrated using a leapfrog scheme.
- The damping in $\lambda\Delta$ improves spatial solution smoothness

Relative accuracy of the multigrid secant equations

Plot ||E||/||G|| against k





 \Rightarrow size of perturbation marginal

Testing a few variants

In our tests:

- old approximate secant pairs are discarded
- the LM updates are started with $\frac{\langle y,s\rangle}{\|y\|^2}$ times the identity
- L-BFGS + 8 algorithmic variants:

	collinearity control (0.999)				
	no		yes		
Update order	mem	nomem	mem	nomem	
Coarse first	CNM	CNN	CYM	CYN	
Fine first	FNM	FNN	FYM	FYN	

Memory management:

- *M: past "exact" secant pairs are used (mem)
- *N: past "exact" secant pairs are not used (nomem)

The results

Algo	DN $(n = 255)$	MG $(n = 127^2)$	SW $(n = 63^2)$	MS $(n = 127^2)$
levels/mem	7/10	6/9	3/5	4/5
L-BFGS	330/319	308/299	64/61	387/378
CNM	94/84	137/122	83/81	224/192
CNN	125/100	174/134	57/55	408/338
CYM	110/92	123/104	83/81	196/170
CYN	113/89	138/107	57/55	338/267
FNM	120/100	172/144	63/57	241/208
FNN	137/89	151/120	65/62	280/221
FYM	90/76	149/128	63/57	211/176
FYN	140/107	153/120	65/62	283/216

(NF/NIT)

Further developments (not covered in this talk)

Observations:

- L-BFGS acts as a smoother
- the step is asymptotically very smooth
- the eigenvalues associated with the smooth subspace are (relatively)
 close to each other
- the step is asymptotically an approximate eigenvector
- an equation of the form

$$Hs_i = \frac{\langle y_i, s_i \rangle}{\|y_i\|^2} s_i$$

can also be included...

⇒ more (efficient) algorithmic variants!

Conclusions

Multilevel/multigrid optimization useful and interesting

Much remains to be explored

Recursive trust-region methods often very effective

Invariant subspace information useful for some problems

Multilevel quasi-Newton information exploitable

Perspectives

- More complicated constraints
- Better understanding of approximate secant/eigen information
- Invariant subspaces without grids?
- Multilevel L-BFGS in RMTR?
- Combination with ACO methods?
- More test problems?

Thank you for your attention!