Mobilité des personnes, enquêtes comportementales et modèles désagrégés

```
Philippe Toint<sup>1</sup> Cinzia Cirillo<sup>2</sup> Eric Cornélis<sup>1</sup>

<sup>1</sup>Department of Mathematics, University of Namur, Belgium

( philippe.toint@fundp.ac.be )

<sup>2</sup>University of Maryland, USA
```

Octobre 2006

Outline

- Contexte
 - Impacts
 - Histoire
- 2 Enquêtes
 - L'outil
 - Quelques résultats
- Modèles
 - Schémas, chaînes et tours
 - Eléments de modélisation
 - Structure d'un modéle complet
- Populations synthétiques
 - Pourquoi?
 - Eléments de modélisation
- Conclusions

Pourquoi étudier la demande de transports?

- Pour tous les individus dans tous les ménages...
- ... les trajets quotidiens impliquent beaucoup de décisions mineures...
- ... mais leur effet combiné est énorme

⇒ sujet d'actualité permanente

Les impacts sur la société

- planification et maintenance du système de transport
- part significative des dépenses publiques
- partie des politiques sociales et de bien-être
- politiques d'aménagement du territoire (étalement urbain, . . .)
- stratégies de santé publique et de sécurité

Les impacts sur la société (2)

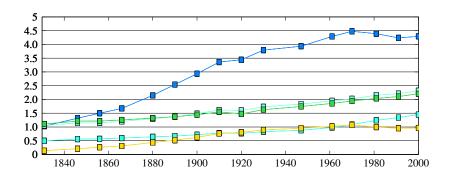
- nombreuses questions environmentales :
 - pollution par les gaz d'échappement (effet de serre)
 - effet majeur sur la gestion du ruissellement en milieu urbain
 - conservation des paysages
- questions légales et éthiques (responsabilités, droit à la mobilité)
- ...

Qu'entendre par "mobilité quotidienne"?

Notre postulat fondamental:

les déplacements sont causés par le désir des individus de participer à des activités situées dans des lieux différents

Ce qui nous intéresse :

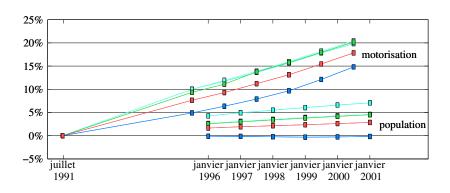

l'organisation (succession, timing) des activités des individus et les détails de ses déplacements vers les lieux de ces activités (chaînes d'activités)

Les objectifs

- comprendre les comportements
- analyser leurs déterminants
- tester des hypothèses (scénarios)
- prévoir la demande de déplacement et le trafic (mode, timing, distances, ...)

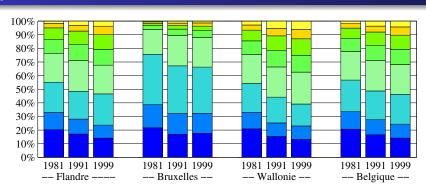
support aux décisions publiques et privées

Population et résidence



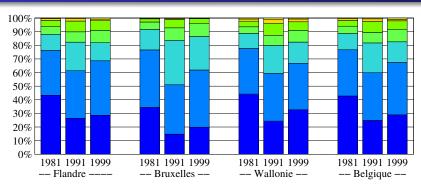
Evolution de la population belge depuis 1831 selon le type de résidence en 1991 (source INS)

Population et motorisation



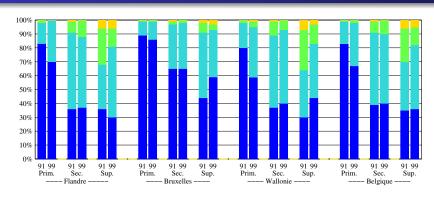
Evolution de la population et de la motorisation selon le type de résidence (source DIV, INS)

Quelle distance au travail?



Evolution des distances au travail selon la région de résidence

Durée du déplacement vers le travail



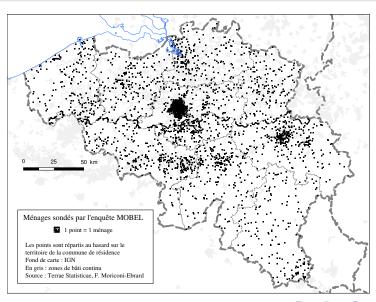
Evolution des durées de déplacement vers le travail selon la région de résidence

ex: MOBEL 2000

Quelle distance à l'école?

Evolution de la distance à l'école entre 1991 et 2001

< 5 km5-20 km 20-50 km

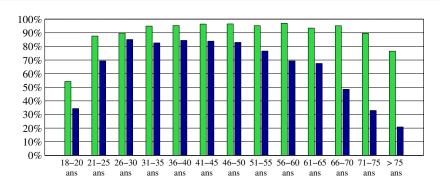

Les enquêtes de mobilité en Belgique

Outil 1:

les enquêtes sur les comportements de mobilité

- récent en Belgique!!! (mais depuis 30 ans chez nos voisins)
- aujourd'hui démarrée :
 - Belgique: MOBEL (1999)
 - RW: CREMOR (2000), ERMM (2001, ...)
 - VL : OVG (2000, ...)
 - Bxl: ???

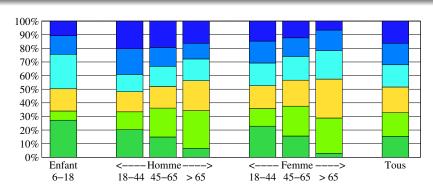
L'échantillon MOBEL


Apports et limitations des enquêtes de mobilité

- état des lieux statique des comportements
- vision descriptive
- forte agrégation spatiale
 (due à l'échantillonnage)
 suppose des comportements homogènes dans des zones géographiques
 étendues (provinces)
- approche qualitativepas de prédiction

Outil limité mais indispensable

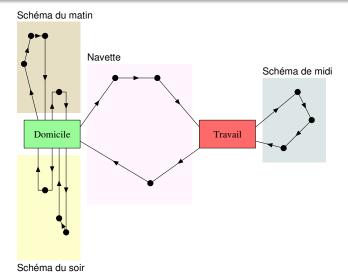
Les effets de la démographie



Proportion des détenteurs d'un permis de conduire par âge et sexe

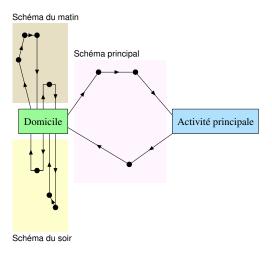
Qui souffre des pointes de circulation?

Temps passé en déplacement par âge et sexe (JO)



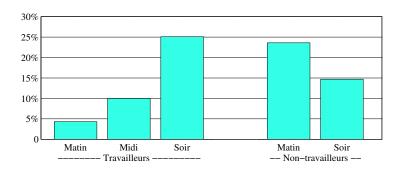
Modélisation des comportements

Classiquement : les modèles agrégés

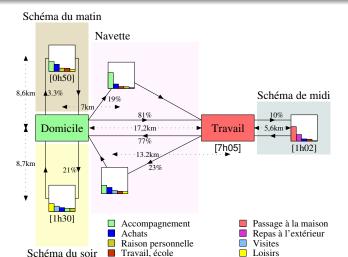

- conceptuellement simples (+)
- mise en œuvre (relativement) facile (+)
- supporte facilement une désagrégation spatiale élevée (+)
- population peu différenciée (-)
- déplacement comme unité (-)
- peu adaptés au choix modal (− −)

Cependant, pour les actifs...

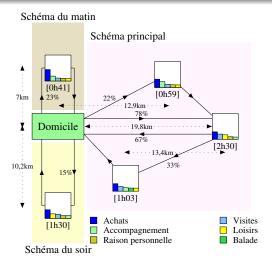
Structure spatiale des déplacements quotidiens pour les actifs


... et les inactifs

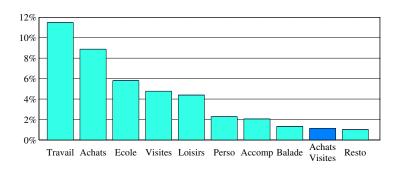
Structure spatiale des déplacements quotidiens pour les inactifs


Combien de tours?

Part des individus effectuant au moins un tour par schéma de déplacement (à l'exclusion du schéma principal)

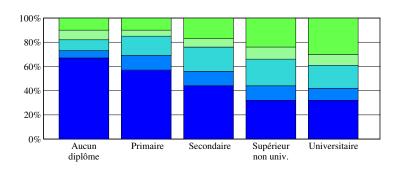


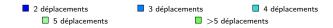
En pratique, pour les actifs...


Organisation des activités et déplacements quotidiens pour les actifs

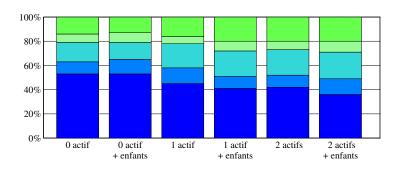
... et les inactifs!

Organisation des activités et déplacements quotidiens pour les inactifs

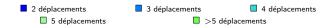

Diversité des comportements


Fréquences relatives des chaînes de déplacements quotidiens les plus populaires

Comportements et éducation



Complexité de la chaîne des déplacements quotidiens selon le diplôme



Comportements et structure du ménage

Complexité de la chaîne des déplacements quotidiens selon la structure du ménage

Modèles désaggrégés (1)

Une alternative :

considérer les comportements de déplacement au niveau de l'individu

- individu comme unité (+)
- population différenciée (+)
- ullet bien adaptés au choix modal $(+\)$
- conceptuellement plus complexes (-)
- plus difficiles à mettre en œuvre

Modèles désaggrégés (2)

Idée :

simuler explicitement les choix individuels

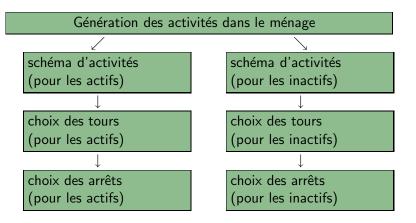
Outil 2 : la théorie de l'utilité aléatoire ⇒ un individu *i* associe à une alternative *j* une "utilité"

$$U_{ij} = [$$
 paramètres \times facteurs explicatifs $] + [$ erreur aléatoire $]$

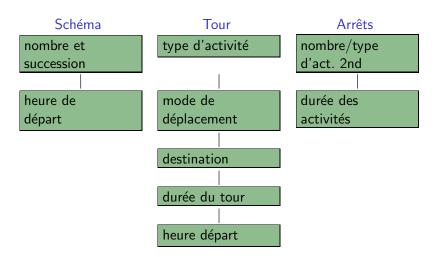
Illustration:

 $U_{bus} = {\sf distance} - 1.2 imes {\sf prix} \; {\sf du} \; {\sf billet} - 2.1 imes {\sf retard} \; {\sf par} \; {\sf rapport} \; {\sf à} \; {\sf la} \; {\sf voiture} + \epsilon$

Modèles désaggrégés (3)


Probabilité que l'individu i choisisse l'alternative j plutôt que l'alternative k donnée par

prob
$$(U_{ij} \geq U_{ik} \quad \forall k)$$


- calibration des paramètres à partir des enquêtes de mobilité! ⇒ optimisation mathématique complexe :
 - choix des méthodes (algorithmes)
 - réalisation informatiques (logiciels)

Hiérarchie des choix (1)

Hiérarchie des choix (2)

Et tout cela pour quels individus/ménages?

A considérer :

- représentativité spatiale (anciennes communes)
- classes socio-économiques (âge, sexe, diplôme, permis de conduire, activité)

Outil 2 : les populations synthétiques

Mais:

- BEAUCOUP de classes
- ⇒ maths sophistiquées...

Quelles populations synthétiques?

Trois approches:

- par clonage des individus des enquêtes de mobilité (TRANSIMS,...)
- par réduction d'une population indifférenciée (SAMBA)
- par reconstruction des ménages par tirage dans les distributions empiriques

mais aussi :

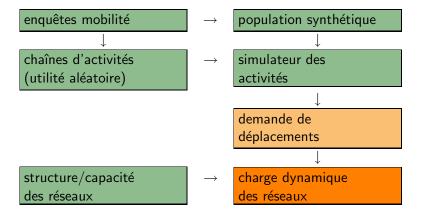
- dynamique démographique
- effets de cohortes

Quelles données?

- structure locale de la population (registre national)
 - 589 communes belges
 - ménages (taille, structure)
 - classes d'âge et sexe
- niveau d'éducation (GEDAP)
- statut socio-professionnel (INS)
- permis de conduire (DIV)
- données comportementales (MOBEL)

inconsitences!!

Les difficultés


- cohérence entre données ménages et individus
- taille très variables des communes belges
- données assez incertaines (bébés...)
- incohérence temporelle
- mise à jour (démographie, données)

mais

4 millions de ménages et 10 millions d'individus synthétiques

Le grand dessein...

Conclusions et perspectives

- Les questions de transports deviennent plus cruciales et plus compliquées que jamais.
- Les modèles deviennent donc plus complexes ...
- ... mais restent la seule alternative à la technique coûteuse des essais et erreurs!

Nos voisins se lancent ... allons nous rester au balcon?

Merci de votre attention!

Pour plus de détails...

Presses Universitaires de Namur, 2002.

