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Introduction to filter methods The monotonicity issue

Introduction to filter methods

Constrained optimization

The general nonlinear programming problem:

minimize f (x)
subject to cE(x) = 0

cI(x) ≥ 0,

for x ∈ IRn, f and c smooth.

Solution algorithms are

iterative ({xk})

based on Newton’s method (or variant)

⇒ global convergence issues
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Introduction to filter methods The monotonicity issue

Monotonicity (1)

Most often, global convergence is theoretically ensured by

some global measure . . .

unconstrained : f (xk )
constrained : merit function at xk

. . . with strong monotonic behaviour

(Lyapunov function)

Also practically enforced by

algorithmic safeguards around Newton method
(linesearches , trust regions )
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Introduction to filter methods The monotonicity issue

Monotonicity (2)

However

the classical safeguards limit algorithmic efficiency!

Question of interest :

design less obstructive safeguards

while

ensuring better numerical performance
( ⇒ the Newton Liberation Front !)

continuing to guarantee global convergence properties
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Introduction to filter methods The monotonicity issue

Non-monotone methods

Typically:

abandon strict monotonicity of usual measures

but insist on average behaviour

linesearch:

Chamberlain, Powell, Lemarechal, Pedersen (1982)
Grippo, Lampariello, Lucidi, Facchinei (1986, 1989,
1991, 1992,. . . )
Panier, Tits, Bonnans, Zhou (1991, 1992), T. (1996),
. . .

trust region:

Deng, Xiao, Zhou (1992, 1993, 1994, 1995)
T. (1994, 1997), Conn, Gould, T. (2000)
Ke, Han, Liu (1995, 1996), Burke, Weigmann (1997),
Yuan (1999), . . .
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Introduction to filter methods The monotonicity issue

Non-monotone trust-regions

The main idea:

f (xk+1) < f (xk) replaced by f (xk+1) < fr(k)

with

fr(k) < fr(k−1)

Further issues:

suitably define r(k)

adapt the trust-region algorithm:
also compare achieved and predicted reductions since reference
iteration

Philippe Toint (Namur) Filter methods - LAUSANNE 2006 4th Joint OR Days 7 / 46



university-logo

Introduction to filter methods The monotonicity issue

An unconstrained example
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Introduction to filter methods The filter in constrained optimization

Introducing the filter

Constrained optimization :

use the Sequential Quadratic Programming step sk from xk

Ideally

reduce the objective function f (x)

reduce the constraint violation θ(x)

, two potentially conflicting aims /

I Filter method
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Introduction to filter methods The filter in constrained optimization

Accepting a new iterate

Idea of Fletcher and Leyffer

Replace the question

What is a better point ?

by

What is a worse point ?

Of course, y is “worse” than x if it is dominated by x , i.e., when

f (x) ≤ f (y) and θ(x) ≤ θ(y)

Accept or reject a trial point ?
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Introduction to filter methods The filter in constrained optimization

View of a standard filter

PSfrag replacements

f (x)

0 θ(x)
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Introduction to filter methods The filter in constrained optimization

View of a standard filter

PSfrag replacements

f (x)

0 theta(x)
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Introduction to filter methods The filter in constrained optimization

Filling up the standard filter
Note: filter area is bounded in the (f , θ) space!

6

0

f (x)

-
θ(x)

q

θk(1 − γ)θk

f (xk )

f (xk ) − γθk

⇒ filter area (non)-monotonically decreasing
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Feasibility and least-squares problems The multidimensional filter

Handling many objectives

Gould, Leyffer and T.

Feasibility

Find x such that
cE (x) = 0 and cI(x) ≥ 0

Least-squares

Find x such that
min
x∈IRn

∑

i∈E∪I

θi(x)2

I More dimensions in the filter space . . .
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Feasibility and least-squares problems The multidimensional filter

The obvious picture

6

0

θ1(x)

-
θ2(x)

q

q

q

q

(full dimension vs. grouping)
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Feasibility and least-squares problems The multidimensional filter

Context for the multidimensional filter

In a real algorithm, additionally

possibly consider unsigned filter entries

use TR algorithm when

trial point unacceptable
convergence to non-zero solution

(⇒ “internal” restoration)

sound convergence theory
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Feasibility and least-squares problems Numerical experience with FILTRANE

Numerical experience: FILTRANE

The FILTRANE package

standard Fortran 95

large scale problems (CUTEr interface)

includes several variants of the method

signed/unsigned filters
Gauss-Newton, Newton or adaptive models
pure trust-region option
uses preconditioned conjugate-gradients + Lanczos for subproblem
solution

part of the GALAHAD library
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Feasibility and least-squares problems Numerical experience with FILTRANE

Main features

From a large body of numerical experiments, two main advantages:

we do not require that ‖sk‖ ≤ ∆k at every iteration

only restrict steps when unrestricted ones are not acceptable

we do not impose monotonicity

see “around corners”
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Feasibility and least-squares problems Numerical experience with FILTRANE

Numerical experience (1)
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Feasibility and least-squares problems Numerical experience with FILTRANE

Numerical experience (2)
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Feasibility and least-squares problems Numerical experience with FILTRANE

Numerical experience (3)
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Unconstrained optimization A filter for unconstrained optimization

The other extreme case

Gould, Sainvitu and T.

Unconstrained optimization

min
x∈IRn

f (x)

Simple-bound constrained optimization

min f (x)
s.t. l ≤ x ≤ u

Combined methods:

Trust-region + filter + projected gradient

I Multidimensional filter
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Unconstrained optimization A filter for unconstrained optimization

Unconstrained trust-region methods

min
x∈IRn

f (x)

Newton’s method → mins f (xk) + ∇x f (xk)T s + 1
2sTHks

Trust-region method

Filter technique

Idea: encourage convergence to first-order critical points by driving every
component of the objective’s gradient

∇x f (x)
def
= g(x) = (g1(x), . . . , gn(x))T

to zero.

I Multidimensional Filter
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Unconstrained optimization A filter for unconstrained optimization

A gradient multidimensional filter

Accept x+
k more often

A point x dominates a point y whenever

|gi (x)| ≤ |gi (y)| ∀ i = 1, . . . , n

Remember non-dominated points ⇒ FILTER

Accept a new iterate ?

if it is not dominated by any other iterate in the filter
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Unconstrained optimization A filter for unconstrained optimization

Haven’t we seen this before?

PSfrag replacements

g2(x)

0 g1(x)
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Unconstrained optimization A filter for unconstrained optimization

A few complications. . .

But . . .

g(x) = 0 not sufficient for nonconvex problems!

When negative curvature found:

reset filter

set upper bound on acceptable f (x)

reasonable convergence theory
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Unconstrained optimization Numerical experience

Numerical experience (1)
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Unconstrained optimization Numerical experience

Numerical experience: HEART6
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Unconstrained optimization Numerical experience

Numerical experience: EXTROSNB
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Unconstrained optimization Numerical experience

Numerical experience: LOBSTERZ
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Unconstrained optimization Approximate derivatives

Filter and approximate derivatives: a problem?

filter-trust-region algorithm requires knowledge of first and second
derivatives

derivatives calculated analytically and supplied by the user

unavailable or computationally expensive

The question

Is the behaviour of the algorithm directly related to the use of exact
derivatives ?
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Unconstrained optimization Approximate derivatives

The role of derivatives derivatives

Where ?

definition of the model of the objective-function

mk(s) = f (xk ) + gk
T s +

1

2
sTHk s

I computation of the next trial point

Gradient

definition of the filter
filter test acceptance mechanism
stopping criteria

Hessian

decision to use the filter technique or not
restricted steps
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Unconstrained optimization Approximate derivatives

Which approximate derivatives?

Two different ways to approximate
∇x f (x) and ∇xx f (x)

↙ ↘

finite-difference approximations quasi-Newton approximations

to the gradient to the Hessian

and/or the Hessian (BFGS, SR1 updates)
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Unconstrained optimization Approximate derivatives

Quasi Newton approximations

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Bk+1 = Bk −
BksksT

k
Bk

sT
k

Bk sk
+

yky
T
k

yT
k

sk

Symmetric rank-one (SR1)

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)T sk

where sk = xk+1 − xk and yk = ∇x f (xk+1) −∇x f (xk )

I different initial Hessian approximations B0
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Unconstrained optimization Approximate derivatives

Numerical results : finite-difference H - analytic g

Iterations performance profile
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Unconstrained optimization Approximate derivatives

Numerical results : finite-difference H and g

Iterations performance profile
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Unconstrained optimization Approximate derivatives

Numerical results : BFGS update

Iterations performance profile
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Unconstrained optimization Approximate derivatives

Numerical results : SR1 update

Iterations performance profile
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Unconstrained optimization Approximate derivatives

Comparison of quasi-Newton updates

Combined performance
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Unconstrained optimization Approximate derivatives

Numerical results : STRATEC (nested logit model)
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Bound constrained problems

Bound constraints

minimize f (x)
subject to x ≥ 0,

(Also applies to convex constraints )

Two approaches:

projection methods

interior-point (barrier) methods
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Bound constrained problems A filter projection method

A projection method

Consider the bound constrained problem:

minimize f (x)
s.t. l ≤ x ≤ u

A combined algorithm:

Trust region + filter + projected gradient

Simple idea : Replace the gradient components of the multidimensional
filter for unconstrained optimization by the components of

g(x)
def
= x − P[x −∇x f (x), l , u]

where P is the projection onto the feasible domain.

I drive these components to zero!
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Bound constrained problems A filter projection method

Numerical results

Iterations
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Bound constrained problems A filter barrier method

Another option

minimize f (x) − µ log(x)

for a sequence of µ ↘ 0.

Question:
Does filter improve the sequence of unconstrained subproblems?

Issues:

specific nonlinearity

(very) approximate solutions

A package (still being developed): FUSION
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Bound constrained problems A filter barrier method

Preliminary results (1)
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Bound constrained problems A filter barrier method

Preliminary results (2)
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Bound constrained problems A filter barrier method

Conclusion

Not discussed:

filter and pattern search

filter and the central path

In the works (as far as I know):

filter and singular problems

filter and the complementarity problem

filter and equality constrained optimization

filter and negative curvature

Thank you for your attention !

(see http://perso.fundp.ac.be/~phtoint/publications.html for references)
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