Recognizing Underlying Sparsity in Optimization

Sunyoung Kim¹ Masakazu Kojima² Philippe Toint³

¹ Ewha Woman's University, Seoul, Korea

²Tokyo Institute of Technology, Japan

³University of Namur, Belgium

Sparse Days, Cerfacs, June 2006

 Ω

 \leftarrow \leftarrow \leftarrow

4 D.K.

2 [A method for recognizing underlying sparsity](#page-7-0)

 Ω

4 0 8

4 同 下

B

Structure and efficiency

In scientific computations:

Problem structure	Sparse linearization	\Rightarrow	Efficient computation
-------------------	----------------------	---------------	------------------------------

Example:

 $local$ variables + local interaction $→$ sparsity pattern $→$ efficient factorizations

This talk's objective: explore the \Longrightarrow implication in the context of optimization

 299

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Sparsity and optimization

Where is sparsity useful in nonlinear optimization?

O unconstrained: Newton's method:

$$
H_k \Delta x_k = -\nabla_x f(x_k)
$$

with $H_k \approx \nabla_{xx} f(x_k)$;

O constrained: KKT system

$$
\left(\begin{array}{cc} H_k & A_k^T \\ A_k & 0 \end{array}\right) \left(\begin{array}{c} \Delta x_k \\ \Delta \lambda_k \end{array}\right) = -\left(\begin{array}{c} g(x_k) \\ 0 \end{array}\right)
$$

4 0 8 1

with $H_k \approx \nabla_{xx} L(x_k, \lambda_k)$.

 \bullet our motivation: (sparse) semi-definite relaxations for polynomial problems

 298

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow$

Partially invariance. . .

A common structure: partial invariance

 $f(x)$ is partially invariant ⇐⇒ $f(x) = \overline{f}(u)$ with $u = Ax$ and *A* has low rank

 298

メロメメ 御きメ 重き メ唐 メー 重

... and useful consequences

If $f(x)$ is partially invariant:

- **O** range(*A*) is a subspace \Rightarrow geometric concept (basis invariant)
- \bullet Hessian structure

$$
\nabla_{xx}f(x) = A^T \nabla_{uu} \overline{f}(u) A
$$

invariant subspace: \bullet

$$
Inv(f) = \{ w \in \mathbb{R}^n \mid f(x + w) = f(x) \quad \forall x \in \mathbb{R}^n \} = Null(A)
$$

 \bullet induced (Cartesian) sparsity:

$$
e_{\ell} \in Inv(f) \Longrightarrow [\nabla_{xx} f(x)]_{ij} = 0
$$
 for $i = \ell$ or $j = \ell$

(in this case, $A = \Box$

Define

$$
K(f) = \{ \ell \mid e_{\ell} \in Inv(f)
$$

the sparsity index of *f*

Kim, Kojima, Toint (Seoul, Tokyo, Namur) [Recognizing Underlying Sparsity](#page-0-0) Sparse Days 2006 6/16

4 0 8

4 同 下

 299

医单位 医单

Griewank and T. (1981):

f(*x*) smooth and $\nabla_{xx} f(x)$ sparse $\implies f(x)$ partially separable

The question is to recognize the underlying sparsity:

Given $\{f_{\ell}(x)\}_{\ell \in M}$ a collection of partially invariant functions, is there a basis in which each $\nabla_{xx} f_{\ell}(x)$ has few nonzero rows and columns?

More specifically (for sparse SDP relaxations):

Can we choose a basis such that $\nabla_{xx} \left[\sum_{\ell \in M} f_{\ell}(x) \right]$ admits a sparse Cholesky factorization?

 Ω

イロト イ押 トイラト イラト

4 0 8

 -1

Sparsity and the basis

The tool of the trade

$$
z \rightarrow x = Pz
$$
 where $P = (p_1, \dots, p_n)$ is nonsingular

We then consider the transformed functions

$$
g_{\ell}(z) = f_{\ell}(P z)
$$

and the invariant spaces are preserved:

$$
Inv(g_{\ell}) = P^{-1}Inv(f_{\ell})
$$

and

$$
K(g_{\ell}) = \{j \mid e_j \in Inv(g_{\ell})\} = \{j \mid P^{-1}p_j \in Inv(g_{\ell})\} = \{j \mid p_j \in Inv(f_{\ell})\}
$$

Thus,

sparsity can be increased by choosing p_j in (as many as possible) invariant subspaces

university-logo and

 QQ

An example

Consider

$$
\min_{x} \sum_{\ell=1}^{n} \left[x_{\ell}^{2} - x_{\ell} \right] + \left[\sum_{i=1}^{n} x_{i} \right]^{4}
$$

then

$$
\text{Inv}(f_j) = e_j^{\perp} \quad (\ell = 1, \dots, n) \text{ and } \text{Inv}(f_{n+1}) = e^{\perp}
$$

$$
K(f_\ell) = \{1, \dots, n\} \setminus \{\ell\} \quad (\ell = 1, \dots, n) \text{ and } K(f_{n+1}) = \emptyset
$$

Now choose

$$
p_j = e_j - e_{j+1}
$$
 $(j = 1, ..., n-1)$ and $p_n = e_n$

and the problem becomes

$$
\min_{z} \sum_{\ell=1}^{n} \left[(z_{\ell} - z_{\ell-1})^2 - (z_{\ell} - z_{\ell-1}) \right] + [z_n]^4
$$

Then

 $K(g_\ell) = \{1, \ldots, n\} \setminus \{\ell - 1, \ell\} \quad (\ell = 1, \ldots, n) \text{ and } K(g_{n+1}) = \{1, \ldots, n-1\}$

the size of $K(g_\ell)$ are large evenly

Kim, Kojima, Toint (Seoul, Tokyo, Namur) [Recognizing Underlying Sparsity](#page-0-0) Sparse Days 2006 9/16

E

 299

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

 299

The idea (1)

For $S \subseteq \{1, \ldots, m\}$ and let

 $Inv[S] = \bigcap_{\ell \in S} Inv(f_{\ell})$

Our objective: choose $p_j \in Inv[S_j]$ for S_j as large as possible $(j = 1, \ldots, n)$.

Let

 $L_{\ell}(\mathcal{S}) = \{j \mid \ell \in S_j\}$ (the set of p_j that are invariant for $f_{\ell})$

Reformulate again:

Can we choose p_1, \ldots, p_n such that the size of the $\{L_\ell(S)\}_{\ell=1}^m$ are large evenly?

The idea (2)

Finally (!), for $S = (S_1, \ldots, S_n)$, define

 $\sigma(S) =$ the vector $(\#L_1(S), \ldots, \#L_m(S))$ sorted by increasing values

General idea:

lexicographically maximize $\sigma(S)$

subject to the existence of p_1, \ldots, p_n with $S_i = \{ \ell \mid p_i \in \text{Inv}(f_\ell) \}$

- \bullet maximization makes the $L_{\ell}(\mathcal{S})$ large
- \bullet the lexicographic maximization make them evenly large

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ │ ヨ │ め 9,0

A sketch of the method

How do we solve that combinatorial problem?

- approximate solution only!
- use a greedy approach:
	- **•** progressively increase the size of the problem (external loop)
	- **•** progressively increase the size of the S_i (internal loop)
- \bullet ensure (almost certain) feasibility in two steps:
	- "weak" feasibility by a (cheap) probabilistic test
	- real feasibility by the structure of the greedy approach

Complicated, but numerically tractable!

 QQ

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

POPs over the unit simplex

Does it work?

Example 1: SDP relaxations of simple POPs over the unit simplex

(before transformation/after transformation)

Þ

 299

4 (D) 3 (F) 3 (F) 3 (F)

Concave quadratics

Example 2: SDP relaxations of concave quadratics with transportation constraints

unknown: $a_m \times k$ matrix

B

Indefinite quadratics

Example 2: SDP relaxations of rank 4 indefinite quadratics in the unit cube

Þ

 299

イロト イ押ト イヨト イヨ

Conclusions

- 0 transformation useful, allowing the solution of previously unsolvable problems
- \bullet applications to other areas than SDP relaxation. . .
- **O** many remaining questions:
	- **•** basis conditioning
	- o other measures of sparsity
	- alternative algorithms
	- (efficiency of sparse SDP relaxations)

. . . but this is a first encouraging step!

Thank you for your attention

 QQ

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow$

4 0 8