# Recognizing Underlying Sparsity in Optimization

Sunyoung Kim<sup>1</sup> Masakazu Kojima<sup>2</sup> Philippe Toint<sup>3</sup>

<sup>1</sup>Ewha Woman's University, Seoul, Korea

<sup>2</sup>Tokyo Institute of Technology, Japan

<sup>3</sup>University of Namur, Belgium

Sparse Days, Cerfacs, June 2006



2 A method for recognizing underlying sparsity



< /□ > < 三

#### Structure and sparsity

### Structure and efficiency

In scientific computations:

Problem structure
$$\Rightarrow$$
Sparse linearization $\Rightarrow$ Efficient computation

Example:

local variables + local interaction  $\rightarrow$  sparsity pattern  $\rightarrow$  efficient factorizations

This talk's objective: explore the  $\implies$  implication in the context of optimization

## Sparsity and optimization

Where is sparsity useful in nonlinear optimization?

unconstrained: Newton's method:

$$H_k \Delta x_k = -\nabla_x f(x_k)$$

with  $H_k \approx \nabla_{xx} f(x_k)$ ;

constrained: KKT system

$$\left(\begin{array}{cc} H_k & A_k^T \\ A_k & 0 \end{array}\right) \left(\begin{array}{c} \Delta x_k \\ \Delta \lambda_k \end{array}\right) = - \left(\begin{array}{c} g(x_k) \\ 0 \end{array}\right)$$

with  $H_k \approx \nabla_{xx} L(x_k, \lambda_k)$ .

• our motivation: (sparse) semi-definite relaxations for polynomial problems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

## Partially invariance...

### A common structure: partial invariance

$$f(x)$$
 is partially invariant  
 $\overleftarrow{f(x)} = \overline{f}(u)$  with  $u = Ax$  and  $A$  has low rank

$$f(x) \text{ is partially separable} \\ \overleftarrow{\qquad\qquad} \\ f(x) = \sum_{\ell=1}^m f_\ell(x) \text{ where each } f_\ell(x) \text{ is partially invariant}$$

イロト イヨト イヨト イヨ

### ... and useful consequences

If f(x) is partially invariant:

- In range(A) is a subspace ⇒ geometric concept (basis invariant)
- Hessian structure

$$\nabla_{xx}f(x) = A^T \nabla_{uu} \overline{f}(u) A$$

invariant subspace:

$$Inv(f) = \{ w \in \mathbb{R}^n \mid f(x+w) = f(x) \quad \forall x \in \mathbb{R}^n \} = Null(A)$$

induced (Cartesian) sparsity:

$$e_{\ell} \in \operatorname{Inv}(f) \Longrightarrow [\nabla_{xx} f(x)]_{ij} = 0 \text{ for } i = \ell \text{ or } j = \ell$$

(in this case,  $A = \square$ )

Define

$$K(f) = \{\ell \mid e_\ell \in \mathrm{Inv}(f)\}$$

the sparsity index of f

Kim, Kojima, Toint (Seoul, Tokyo, Namur)

< ロ > < 同 > < 回 > < 回 >

Griewank and T. (1981):

f(x) smooth and  $\nabla_{xx}f(x)$  sparse  $\Longrightarrow f(x)$  partially separable

The question is to recognize the underlying sparsity:

Given  $\{f_\ell(x)\}_{\ell \in M}$  a collection of partially invariant functions, is there a basis in which each  $\nabla_{xx} f_\ell(x)$  has few nonzero rows and columns?

More specifically (for sparse SDP relaxations):

Can we choose a basis such that  $\nabla_{xx}\left[\sum_{\ell\in M}f_\ell(x)\right]$  admits a sparse Cholesky factorization?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Sparsity and the basis

The tool of the trade

$$z \rightarrow x = Pz$$
 where  $P = (p_1, \ldots, p_n)$  is nonsingular

We then consider the transformed functions

$$g_\ell(z) = f_\ell(Pz)$$

and the invariant spaces are preserved:

$$\operatorname{Inv}(g_{\ell}) = P^{-1}\operatorname{Inv}(f_{\ell})$$

and

$$K(g_{\ell}) = \{j \mid e_j \in \text{Inv}(g_{\ell})\} = \{j \mid P^{-1}p_j \in \text{Inv}(g_{\ell})\} = \{j \mid p_j \in \text{Inv}(f_{\ell})\}\$$

Thus,

sparsity can be increased by choosing  $p_j$  in (as many as possible) invariant subspaces

< (□) < 三 > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□) > (□)

## An example

Consider

$$\min_{x} \sum_{\ell=1}^{n} \left[ x_{\ell}^2 - x_{\ell} \right] + \left[ \sum_{i=1}^{n} x_i \right]^4$$

then

$$Inv(f_{j}) = e_{j}^{\perp} \quad (\ell = 1, ..., n) \text{ and } Inv(f_{n+1}) = e^{\perp}$$
$$K(f_{\ell}) = \{1, ..., n\} \setminus \{\ell\} \quad (\ell = 1, ..., n) \text{ and } K(f_{n+1}) = \emptyset$$

Now choose

$$p_j = e_j - e_{j+1}$$
  $(j = 1, ..., n-1)$  and  $p_n = e_n$ 

and the problem becomes

$$\min_{z} \sum_{\ell=1}^{n} \left[ (z_{\ell} - z_{\ell-1})^2 - (z_{\ell} - z_{\ell-1}) \right] + [z_n]^4$$

Then

 $K(g_{\ell}) = \{1, \dots, n\} \setminus \{\ell - 1, \ell\} \quad (\ell = 1, \dots, n) \text{ and } K(g_{n+1}) = \{1, \dots, n-1\}$ 

the size of  $K(g_{\ell})$  are large evenly

Kim, Kojima, Toint (Seoul, Tokyo, Namur)

Recognizing Underlying Sparsity

### For $S \subseteq \{1, \ldots, m\}$ and let

The idea (1)

 $\operatorname{Inv}[S] = \bigcap_{\ell \in S} \operatorname{Inv}(f_{\ell})$ 

Our objective: choose  $p_j \in Inv[S_j]$  for  $S_j$  as large as possible (j = 1, ..., n).

Let

 $L_{\ell}(S) = \{j \mid \ell \in S_j\}$  (the set of  $p_j$  that are invariant for  $f_{\ell}$ )

Reformulate again:

Can we choose  $p_1, \ldots, p_n$  such that the size of the  $\{L_\ell(S)\}_{\ell=1}^m$  are large evenly?

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

# The idea (2)

Finally (!), for  $S = (S_1, \ldots, S_n)$ , define

 $\sigma(\mathcal{S}) =$  the vector  $(\#L_1(\mathcal{S}), \dots, \#L_m(\mathcal{S}))$  sorted by increasing values

General idea:

lexicographically maximize  $\sigma(\mathcal{S})$ 

subject to the existence of  $p_1, \ldots, p_n$  with  $S_j = \{\ell \mid p_j \in \text{Inv}(f_\ell)\}$ 

- maximization makes the  $L_{\ell}(S)$  large
- the lexicographic maximization make them evenly large

# A sketch of the method

How do we solve that combinatorial problem?

- approximate solution only!
- use a greedy approach:
  - progressively increase the size of the problem (external loop)
  - progressively increase the size of the S<sub>j</sub> (internal loop)
- ensure (almost certain) feasibility in two steps:
  - "weak" feasibility by a (cheap) probabilistic test
  - real feasibility by the structure of the greedy approach

Complicated, but numerically tractable!

A (10) A (10) A (10)

A method for recognizing underlying sparsity

Some experience

## POPs over the unit simplex

Does it work?

Example 1: SDP relaxations of simple POPs over the unit simplex

| Problem                           | n = 4                       |                                     | n = 12                        |                                           | n = 200                                   |                                    |
|-----------------------------------|-----------------------------|-------------------------------------|-------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------|
|                                   | nnzL                        | cpu                                 | nnzL                          | cpu                                       | nnzL                                      | cpu                                |
| Rosenbrock<br>Broyden 3D<br>Woods | 10 / 9<br>10 / 9<br>10 / 10 | 0.3 / 0.2<br>0.3 / 0.2<br>0.2 / 0.3 | 78 / 43<br>78 / 45<br>78 / 50 | 111.9 / 1.4<br>152.1 / 8.6<br>233.6 / 3.2 | 21100 / 606<br>21100 / 819<br>21100 / 936 | ∞ / 21.7<br>∞ / 111.1<br>∞ / 104.1 |

(before transformation/after transformation)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### **Concave quadratics**

Example 2: SDP relaxations of concave quadratics with transportation constraints

#### unknown: a $m \times k$ matrix

|     | m = 5, k = 10nnzL cpu |           | m = 5, k = 20<br>nnzL cpu |           | m = 9, k = 9<br>nnzL cpu |              | m = 9, k = 9<br>nnzL cpu |           |
|-----|-----------------------|-----------|---------------------------|-----------|--------------------------|--------------|--------------------------|-----------|
| 228 | / 136                 | 4.7 / 2.0 | 380 / 757                 | ∞ / 160.7 | 687 / 388                | 832.6 / 21.6 | 1897 / 855               | ∞ / 917.9 |





Recognizing Underlying Sparsity

### Indefinite quadratics

### Example 2: SDP relaxations of rank 4 indefinite quadratics in the unit cube

| n = 10  |           | n         | = 30         | n = 100    |          |
|---------|-----------|-----------|--------------|------------|----------|
| nnzL    | cpu       | nnzL      | cpu          | nnzL       | cpu      |
| 55 / 46 | 1.0 / 0.9 | 465 / 194 | 3261.9 / 7.3 | 5050 / 539 | ∞ / 55.3 |

## Conclusions

- transformation useful, allowing the solution of previously unsolvable problems
- applications to other areas than SDP relaxation...
- many remaining questions:
  - basis conditioning
  - other measures of sparsity
  - alternative algorithms
  - (efficiency of sparse SDP relaxations)
- ... but this is a first encouraging step!

Thank you for your attention

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))