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Introduction Structure and sparsity

Structure and efficiency

In scientific computations:

Problem structure =⇒ Sparse linearization =⇒ Efficient computation

Example:

local variables + local interaction → sparsity pattern → efficient factorizations

This talk’s objective: explore the =⇒ implication in the context of optimization
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Introduction Structure and sparsity

Sparsity and optimization

Where is sparsity useful in nonlinear optimization?

unconstrained: Newton’s method:

Hk∆xk = −∇xf (xk)

with Hk ≈ ∇xxf (xk);

constrained: KKT system„
Hk AT

k
Ak 0

« „
∆xk
∆λk

«
= −

„
g(xk)

0

«
with Hk ≈ ∇xxL(xk, λk).

our motivation: (sparse) semi-definite relaxations for polynomial problems
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Introduction Partial invariance/separability

Partially invariance. . .

A common structure: partial invariance

f (x) is partially invariant
⇐⇒

f (x) = f (u) with u = Ax and A has low rank

f (x) is partially separable
⇐⇒

f (x) =
Pm

`=1 f`(x) where each f`(x) is partially invariant
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Introduction Partial invariance/separability

. . . and useful consequences

If f (x) is partially invariant:

range(A) is a subspace ⇒ geometric concept (basis invariant)

Hessian structure
∇xxf (x) = AT∇uuf (u)A

invariant subspace:

Inv(f ) = {w ∈ IRn | f (x + w) = f (x) ∀x ∈ IRn} = Null(A)

induced (Cartesian) sparsity:

è ∈ Inv(f ) =⇒ [∇xxf (x)]ij = 0 for i = ` or j = `

(in this case, A = )

Define

K(f ) = {` | è ∈ Inv(f )

the sparsity index of f
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Introduction Partial invariance/separability

The question

Griewank and T. (1981):

f (x) smooth and ∇xxf (x) sparse =⇒ f (x) partially separable

The question is to recognize the underlying sparsity:

Given {f`(x)}`∈M a collection of partially invariant functions, is there a basis in
which each ∇xxf`(x) has few nonzero rows and columns?

More specifically (for sparse SDP relaxations):

Can we choose a basis such that ∇xx
ˆP

`∈M f`(x)
˜

admits a sparse Cholesky
factorization?
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A method for recognizing underlying sparsity Linear transformations of problem space

Sparsity and the basis

The tool of the trade

z→ x = Pz where P = (p1, . . . , pn) is nonsingular

We then consider the transformed functions

g`(z) = f`(Pz)

and the invariant spaces are preserved:

Inv(g`) = P−1Inv(f`)

and
K(g`) = {j | ej ∈ Inv(g`)} = {j | P−1pj ∈ Inv(g`)} = {j | pj ∈ Inv(f`)}

Thus,

sparsity can be increased by choosing pj in (as many as possible) invariant subspaces
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A method for recognizing underlying sparsity Linear transformations of problem space

An example
Consider

min
x

nX
`=1

h
x2
` − x`

i
+

"
nX

i=1

xi

#4

then
Inv(fj) = e⊥j (` = 1, . . . , n) and Inv(fn+1) = e⊥

K(f`) = {1, . . . , n} \ {`} (` = 1, . . . , n) and K(fn+1) = ∅

Now choose
pj = ej − ej+1 (j = 1, . . . , n− 1) and pn = en

and the problem becomes

min
z

nX
`=1

h
(z̀ − z̀ −1)

2 − (z̀ − z̀ −1)
i

+ [zn]
4

Then

K(g`) = {1, . . . , n} \ {`− 1, `} (` = 1, . . . , n) and K(gn+1) = {1, . . . , n− 1}

the size of K(g`) are large evenly
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A method for recognizing underlying sparsity An algorithm for improving sparsity

The idea (1)

For S⊆ {1, . . . , m} and let

Inv[S] =
T

`∈S Inv(f`)

Our objective: choose pj ∈ Inv[Sj ] for Sj as large as possible (j = 1, . . . , n).

Let

L`(S) = {j | ` ∈ Sj} (the set of pj that are invariant for f`)

Reformulate again:

Can we choose p1, . . . , pn such that the size of the {L`(S)}m
`=1 are large evenly?
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A method for recognizing underlying sparsity An algorithm for improving sparsity

The idea (2)

Finally (!), for S = (S1, . . . , Sn), define

σ(S) = the vector (#L1(S), . . . , #Lm(S)) sorted by increasing values

General idea:

lexicographically maximize σ(S)

subject to the existence of p1, . . . , pn with Sj = {` | pj ∈ Inv(f`)}

maximization makes the L`(S) large

the lexicographic maximization make them evenly large
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A method for recognizing underlying sparsity An algorithm for improving sparsity

A sketch of the method

How do we solve that combinatorial problem?

approximate solution only!

use a greedy approach:

progressively increase the size of the problem (external loop)
progressively increase the size of the Sj (internal loop)

ensure (almost certain) feasibility in two steps:

“weak” feasibility by a (cheap) probabilistic test

real feasibility by the structure of the greedy approach

=⇒ Complicated, but numerically tractable!
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A method for recognizing underlying sparsity Some experience

POPs over the unit simplex

Does it work?

Example 1: SDP relaxations of simple POPs over the unit simplex

Problem n = 4 n = 12 n = 200
nnzL cpu nnzL cpu nnzL cpu

Rosenbrock 10 / 9 0.3 / 0.2 78 / 43 111.9 / 1.4 21100 / 606 ∞ / 21.7
Broyden 3D 10 / 9 0.3 / 0.2 78 / 45 152.1 / 8.6 21100 / 819 ∞ / 111.1
Woods 10 / 10 0.2 / 0.3 78 / 50 233.6 / 3.2 21100 / 936 ∞ / 104.1

(before transformation/after transformation)
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A method for recognizing underlying sparsity Some experience

Concave quadratics

Example 2: SDP relaxations of concave quadratics with transportation constraints

unknown: a m× k matrix

m = 5, k = 10 m = 5, k = 20 m = 9, k = 9 m = 9, k = 9
nnzL cpu nnzL cpu nnzL cpu nnzL cpu

228 / 136 4.7 / 2.0 380 / 757 ∞ / 160.7 687 / 388 832.6 / 21.6 1897 / 855 ∞ / 917.9
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A method for recognizing underlying sparsity Some experience

Indefinite quadratics

Example 2: SDP relaxations of rank 4 indefinite quadratics in the unit cube

n = 10 n = 30 n = 100
nnzL cpu nnzL cpu nnzL cpu

55 / 46 1.0 / 0.9 465 / 194 3261.9 / 7.3 5050 / 539 ∞ / 55.3
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Conclusions and perspectives

Conclusions

transformation useful, allowing the solution of previously unsolvable problems

applications to other areas than SDP relaxation. . .

many remaining questions:
basis conditioning
other measures of sparsity
alternative algorithms
(efficiency of sparse SDP relaxations)

. . . but this is a first encouraging step!

Thank you for your attention
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