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@ Unconstrained optimization
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The unconstrained nonlinear programming
problem:

\ minimize f (x)
| - for z € R", f smooth.

e TR radius

“.to | Main applications:

e Accuracy thresh.
® A test problem

e Some results ® SU rfaCe deSig n

® Perspectives

e nonlinear least-squares
(parameter estimation)
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Hierarchy of problem descriptions
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Can we use a structure of the form:

- Finest problem description
.~ Restriction ] R P 1 Prolongation
| Fine problem description
S Restriction | R P 1 Prolongation
+Pospacnes Restriction | R P 1 Prolongation
Coarse problem description
Restriction | R P 1 Prolongation

Coarsest problem description
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@ Sources for such problems
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e parameter estimation in

— e discretized ODEs
o Algorithm e discretized PDEs

o ter. s e optimal control problems

: rcitci:ilrzgyilntthresh. o S u rface d eS i g n

® A test problem

o Sorme esuts (optics, shape optimization)

® Perspectives

e weather prediction
(level of physics in the model)

e Proper Orthogonal Decomposition
(snapshots) (Sachs et al.)
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@ Basic trust-region algorithm

e Until convergence:
e Choose a local model of the objective f

« iroducion o Compute a that decreases this
model within the
|

e Evaluate change in the objective function

o If achieved reduction ~ predicted reduction,
e Some results accept trial point as new iterate

B (possibly) enlarge the trust region
else

reject the trial point
shrink the trust region
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: Model and objective comparison
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Objective function

e lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

® Some results

® Perspectives

3.5
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“/'7: Model and objective comparison
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Model

e lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

e Some results

® Perspectives

3.5
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Trust-Region methods

M

Example (Conn, Gould, Toint 2000):

| min —102% + 10y* + 4sin(zy) — 2z + z*

\ x,y

e Taylor iterations
@ lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

® Some results

® Perspectives

The

University
ot Namur

www.fundp.ac.be



") 7% Trust-Region methods
Example (Conn, Gould, Toint 2000):
Pln

| min —102% + 10y* + 4sin(zy) — 2z + z*

| Z,Y

Trust-region method

e lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

® Some results

® Perspectives
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Trust-region method

e lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

® Some results

® Perspectives

The

University _ . | | | | |
o Namur * : * 1 ?

www.fundp.ac.be



\QQ,S No

") 7% Trust-Region methods
Example (Conn, Gould, Toint 2000):
Pln

| min —102% + 10y* + 4sin(zy) — 2z + z*

| Z,Y

Trust-region method

e lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

® Some results

® Perspectives
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“/'77 Trust-Region methods
Example (Conn, Gould, Toint 2000):

| min —102% + 10y* + 4sin(zy) — 2z + z*

| Z,Y

Trust-region method

e lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

® Some results

® Perspectives
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Example (Conn, Gould, Toint 2000):

| min —102% + 10y* + 4sin(zy) — 2z + z*

| Z,Y

Trust-region method

e lter. structure
e TR radius : _ :
e Initial point a : \ ; é ; |
e Accuracy thresh. : :

® A test problem

® Some results

® Perspectives
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/77 Trust-Region methods

Example (Conn, Gould, Toint 2000):

| min —102% + 10y* + 4sin(zy) — 2z + z*

| Z,Y

Trust-region method

e lter. structure
e TR radius : _ :
e Initial point a : \ ; é ; |
e Accuracy thresh. : :

® A test problem

® Some results

® Perspectives
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e |nitial point

e Accuracy thresh.
® A test problem

e Some results

® Perspectives
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Advantages of the BTR algorithm
(A probably biased view)

e robust, reliable and efficient
e ensures globalization
» allows fast convergence
e good implementations

e very adaptable:
e free choice of the model
o flexible algorithmic variants

e well understood:
e sound convergence theory
e finite and infinite dimensional versions
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e Accuracy thresh.
® A test problem

e Some results

® Perspectives
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- Conditions on the model

Requirements on model choice:
e smoothness

e (asymptotic) |first-order coherence | with the
objective function (second-order better)

e bounded curvature

Subproblem: find step s and trial point z+s from:

min model(z + s)
lsl<A
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¢ Structured model choice

e Gonsider minimizing at topmost (finest) level.
At each iteration, choose the model as

e a local Taylor expansion (classical)
— Taylor iteration

|

|

|

- o the iImmediately coarser problem description
— recursive iteration:

(WIES Ulegg,
&

e Accuracy thresh.

® A test problem

[ Somo resue compute fine g (and H)| |step and trial point
Restriction | R P 1 Prolongation
minimize the coarse model within the fine TR
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e TR radius

e |nitial point

e Accuracy thresh.
® A test problem

e Some results

® Perspectives
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@ Performing the recursion

Pi(zi—1,x — Rizi k) = 85k

:E,i,k ..... > T
R '
|
\ 6 |
hi—1 zi—1,0 = Riz; > Ti—1,%
(1,—]_,0) ..... (1,—]_,3) ..... (1,—]_,6)

Additional ingredients:

o only useful if [||Rigisll = &llgix]

e first-order coherence (see below)
e [R constraint preservation
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: Lower level TR radius update

&

RN

o TR radius — ;0]
e |nitial point

e Accuracy thresh.
® A test problem

® Some results

® Perspectives

Trust-region radius update:

: +
Ai,k—l—l — Inin {Ai k> Aiy1 — ||£Uz',k+1 — $zo||z]
University ’
o Namur

www.fundp.ac.be



® Perspectives
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A recursive multi-scale algorithm

Until convergence:
e Choose either a Taylor or recursive model

Taylor model: compute a Taylor step
Recursive: apply the Algo recursively

e Evaluate change in the objective function

e If achieved reduction ~ predicted reduction,
accept trial point as new Iiterate

(possibly) enlarge the trust region
else

reject the trial point
shrink the trust region

e Impose: current TR C upper level TR




@ Still unspecified. ..
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The main design questions:

« niroducton e what information to “pass down”
at lower recursion levels?
|

e s o what Taylor iteration should we use?
S (must enforce sufficient model decrease

e Accuracy thresh.

® A test problem COndlthn)

® Some results
® Perspectives

e trust-region radius management

e what structure for recursive iterations?

o computation of the initial point z,

Ve e dynamic accuracy threshold management

of Namur

www.fundp.ac.be



&QS No

/7% Linear Model coherence
At level ¢, model fo level 7 + 1:
il hi(z) = fi(z) + (vi, & — i)

‘ with Ti0 — Ri+1xi,k and
e [nitial point

et i v; = Rit1Vihivi(Tivik) — Vi fi(2ip)
® Perspectives

Hence

Vxhz'(wz',o) — Rz‘+1vxhz‘+1($z‘+1,k)

(required by the first-order convergence theory)
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@ Quadratic model coherence (1)

At level 1,
* Aqor hi(z) = fi(x)+ (v, x —xi0) + Hax—2i0, Wi(T—240))

with (additionally)

e Accuracy thresh.

LS Wi = Rix1Vachis1(Tiv1 x) Riy — Ve fi(Ti0)

® Perspectives

Hence

vxhz’(xi,O) = R 11V, hi—l—l(xi—l—l k)
va:a:hi(xi,ﬂ) — Rz—l—lvxxhz—l—l(xz—l—l k)RH_l

The

University
o Namur

www.fundp.ac.be




Q\Q,S No

@ Quadratic model coherence (2)

" Notes on the quadratic case:
e also covered by the theory:

@C“gés UNNG_‘/‘)S/}
%,

A

iy hz(:zz) = [fz(:zz) + %(IB — L0, Wz(fU — 33i,0)>]
+(vi, T — xip)

e Initial point
e Accuracy thresh.

e quadratic model coherence implies

® Some results

second-order convergence properties ?
(currently under study)

e ...but additional cost of computing and using
the correction matrix W;!

University e CAdn use f@(fv) — (!
o Namur
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@ (Simple) Taylor iterations
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Which solver for the (approximate) solution of the
(same level) trust-region subproblem?

Simple answer:

T ® for low(est) level(s) (small dimension).
the exact Moré-Sorensen method

® Some results

& . for higher levels (high dimension):
a truncated conjugate gradient
(Steihaug-Toint or GLTR)

But. ..
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@ Multigrid technology...

EZ1N\

“\jés UNNG_‘R
pC 5//7

RS

Multigrid techniques for PDE problems indicates:

# nccucton o the high-frequency components of residual
- only visible in fine mesh (high levels)
e need two different methods:

« Aoouraoy hresh e reduce high frequency components on the

® A test problem

® Some results fl ne meSh

® Perspectives

Smoothing

e reduce low frequency components on the
coarse mesh

Un/versn‘y D am p | N g
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@ ...adapted to optimization
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In unconstrained optimization,
« Inoducton residual — gradient

e gradient smoothing:
SITERE o TCG not very efficient!

e Accuracy thresh.
® A test problem

» adapt Gauss-Seidel smoothing
— |cyclic coordinate search
(on Taylor's model)

e low frequency damping:
full solution (MS) in low dimension
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@ Cyclic coordinate search (CCS)
Fromso =0andfori=1,...,n, solve:

~ Ao $; <= minm(s;_1 — ae;)

| «

e Initial point

e Accuracy thresh.
® A test problem

® Some results

= Cost: 1 cycle = 1 matrix-vector product

Two difficulties:
e need to require sufficient decrease?
e how to impose the trust-region constraint?

The ) .
University
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The dogleg CCS (1)
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e compute sy by coordinate search
< TromiEon along the largest gradient component

| e while inside the TR and at most p times,
| update the step with 1 full CCS cycle

» Accuracy th e If s lies outside the TR:

if s is gradient-related ({g, s) < —«||s]| ||g||)
then backtrack,

else compute dogleg step along the
piecewise curve |0, sg, s

Un/versn‘y
o Namur
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@ The dogleg CCS (2)
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e efficient gradient smoothing:
as Gauss-Seidel in multigrid for PDE systems

IEREIT e ensures sufficient decrease
(the modified Cauchy condition of CGT 2000)

“{ .. e reasonable arithmetic cost:

® A test problem

+Somo e ~ p matrix-vector products
(or less if less than p cycles leads outside the TR)

In practice: dogleg extremely rare

The ) .
University
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An alternative: the shifted CCS (1)
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e compute sy by coordinate search
< TromiEon along the largest gradient component

| o iteratively
| select a (larger) value of A > 0

starting from sy, compute s by p full CCS
cycles on the shifted model

(9, 8) + 38, (H + Al)s)

until s lies inside the TR

Un/versn‘y
o Namur
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The shifted CCS (2)
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e reasonably efficient gradient smoothing:

* Intodicton as Gauss-Seidel in multigrid for PDE systems
S e ensures sufficient decrease ?7?7?

\ (use TCG as fall-back strategy)

e Initial point

e Accuracy thresh. ® arith m etiC COSt :

oo ~ Ip maltrix-vector prOdUC’[S
(¢ = number of successive shifts used)

In practice: most often ¢ ~ 3
(hence typically 3 x more costly than dogleg CCS)

The ) .
University
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e |nitial point

e Accuracy thresh.
® A test problem

e Some results

® Perspectives

Un/versn‘y
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Structure of the recursive iterations

Decision to stop solving the lower-level
subproblem based on

e subproblem criticality — free form
(gradient accuracy + TR constraint activity)

e fixed form cycles (possibly truncated)
o \V cycles
o W cycles
o Wq cycles (¢ > 2)

At least one successful iteration per level
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¢ Free form iterations (1)
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The “iteration view” for an example of free form
-~ recursion (5 levels, all iterations successful):

fa(= f)Level 4

e TR radius

e Initial point f3 Level 3
e Accuracy thresh.

® A test problem

® Some results
® Perspectives f2 Level 2

f1 Level 1

fo Level 0

The

Universit
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“J 7% Free form iterations (2)

The “iterates view” for the same example:

k
— Iter. structure |8 10 S P >
e TR radius ()
e |nitial point
e Accuracy thresh.
® A test prob|em VQ .................... ))]\‘ )2 )3 ................................ )}4\ )5 > *
® Some results
® Perspectives
o 1 . ... »2 L I* o1 2 G »*

o . E AT A

W 1 2 3 |« W0 1 Jx 0 1 2 3 |«

Prolongation  Restriction Damping Smoothing
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¢ Vcycles
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The “iterates view” for a V cycle recursion
- (5 levels, all iterations successful):

| ~ fu(= fleveld Kk k41

........................ >
— Iter. structure

e TR radius

e |nitial point f3 Level 3 O 1 o )2 *

e Accuracy thresh. A

® A test problem
® Some results

e Perspectives f 2 Level 2 vo_ 1 ... .. 2 *

f1 Level 1 012 |«
fO Level O vO K
The
University _ o | |
of Namur Prolongation  Restriction Damping Smoothing

www.fundp.ac.be
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An example of W cycle recursion
- (5 levels, all iterations successful):

—> Iter. structure
e TR radius

e Initial point 0 1

o Accuracy thresh. TR IR )
® A test problem
® Some results

e Perspectives vO 1 2 3 4 x O 1 2

The
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Trust-region radius management
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Scaling could differ between h;(z) and h;_1(x). ..
Use the same TR radius 7?77

~ |Use a different radius for Taylor iterations

and recursive iterations

e Accuracy thresh.

gl o exploits theoretical freedom

® Some results

» Prspacives (bounded rescaling admitted)

e (maybe) not meaningful when f;(z) =0

In practice: radii ratio < 5

The ) .
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e Accuracy thresh.
® A test problem

e Some results

® Perspectives

The
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Computing the initial point

Need z, o (starting point at topmost level):
— use a mesh refinement technique.

For:=0,...,r —1,
e apply the recursive algorithm to solve

min f;(z)

(with increasing accuracy)
e apply the prolongation to obtain

the initial point at next level

e reminiscent of the full multigrid scheme
e approach of the solution at coarse levels
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@ The accuracy thresholds
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Need to define accuracy thresholds for

_— e initial point computation

< oo (step by a factor = n;/n;_;)

e gradient accuracy at lower level

ey e (very loose, iteration structure dependent)

e A test problem

e TCG solver (at Taylor iterations):
gradient and maximum number of iterations

(not critical, because seldom used)
e TR constraint (not critical)
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“/7: A minimum surface problem
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e Accuracy thresh.
— A test problem

e Some results
® Perspectives

140
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0.0‘05

‘ ‘ -0.01

-0.015
5

e lter. structure

e TR radius

e |nitial point

e Accuracy thresh.
— A test problem soton atovela coutonstovels
® Some results

® Perspectives 2

n=23"=9 n =72 = 49 n = 15% = 225

solution at level 5

-15 : % A

: W0

I‘pw l
%Y
‘K""’l
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@ Further problem details
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e structured level transfer operators

ToNGan o P = full weighting interpolation operator
<Aoot o R = normalized P*
.Tmadius |« handling the boundary condition

e » boundary condition not forced

— A test problem

o Some resuls o additional smoothing “just inside”

® Perspectives

e random starting point (at coarsest level)
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Y rief demo
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o Model coherence
e Taylor iterations
e lter. structure

e TR radius

e [nitial point

e Accuracy thresh.
® A test problem
— Some results
® Perspectives
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@ An typical run
et \ style, pure quadratic recursion,
2 smoothing cycles, gradient accuracy: 1e-07

67/
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level 3 7 15 31 63 127 255

- Tayl. its 20 3 0 0 0 0 O

| | smoothcyc 0 62 154 271 372 361 145
0O 8 16 30 37 41 15

o Atest problem restric 0O 19 36 66 84 102 78

o backirs 0O 0 O 0 0 0 6
5
6

prolong

e |nitial point

e Accuracy thresh.

evals f 5 9 17 19 37 85

evals g 6 10 18 20 38 80

evals H 4 3 3 6 5 9 15
University 9.9 Gflops (linear algebra), 3,306 (MATLAB) secs

www.fundp.ac.be
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-J7: Impact of problem size
2 X
%4& § 4 I I I I I I
KZN0
3 - -
2 - -
e lter. structure 1 ]
e TR radius —
e |nitial point o
e Accuracy thresh. ok |
® A test problem
— Some results
® Perspectives
1+ .
-2r === |0g10( fine Hessians evals ) |
=== |0g10( fine Hessians evals ) for MR
=== |0g10( Gflops)
=== |0g10( Gflops) for MR
-3 | | | | |
The 2 2.5 3.5 4 4.5 5

University
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log10( problem size )

5.5
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@ Current conclusions
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e more efficient than mesh refinement for large
iInstances

« Algoritm e dogleg CCS better than shifted CCS
e pure quadratic recursion ( f; = 0) very efficient

® TR radius
7| e Vcycles or free structure most efficient
o

® Perspectives

The ) .
University
of Namur

www.fundp.ac.be



\Q\Q,S No

67/

A

. /Y,4M “%.

e |nitial point

e Accuracy thresh.
® A test problem

e Some results
— Perspectives
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@ Perspectives

Encouraging (so far)

more numerical experiments!
second-order convergence theory
multigrid-type developments:

(semi-coarsening, algebraic multilevel, ...

constrained problems
(bounds, equalities, general)

non-monotone (filter) techniques
...and much more!

Thank you for your attention
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