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Unconstrained optimization
The unconstrained nonlinear programming
problem:

minimize

� � �
for � � IR �

, smooth.

Main applications:

� surface design

� nonlinear least-squares
(parameter estimation)
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Hierarchy of problem descriptions

Can we use a structure of the form:
Finest problem description

Restriction Prolongation
Fine problem description

Restriction Prolongation
. . .

Restriction Prolongation
Coarse problem description

Restriction Prolongation
Coarsest problem description
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Sources for such problems

� parameter estimation in� discretized ODEs� discretized PDEs

� optimal control problems

� surface design
(optics, shape optimization)

� weather prediction
(level of physics in the model)

� Proper Orthogonal Decomposition
(snapshots) (Sachs et al.)

� . . .
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Basic trust-region algorithm
Until convergence:� Choose a local model of the objective

� Compute a trial point that decreases this
model within the trust region

� Evaluate change in the objective function

� If achieved reduction � predicted reduction,� accept trial point as new iterate� (possibly) enlarge the trust region
else� reject the trial point� shrink the trust region



The

University
of Namur

www.fundp.ac.be

Plan� Introduction� Problem�

Algorithm� Model coherence� Taylor iterations� Iter. structure� TR radius� Initial point� Accuracy thresh.� A test problem� Some results� Perspectives

Model and objective comparison

Objective function
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Model and objective comparison

Model function
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Trust-Region methods

Example (Conn, Gould, Toint 2000):

	 
��
�� � � �� � � � �� � � � ��� 
�� � � � � � � � � � �
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Advantages of the BTR algorithm
(A probably biased view)

� robust, reliable and efficient� ensures globalization� allows fast convergence� good implementations

� very adaptable:� free choice of the model� flexible algorithmic variants

� well understood:� sound convergence theory� finite and infinite dimensional versions
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Conditions on the model

Requirements on model choice:

� smoothness

� (asymptotic) first-order coherence with the
objective function (second-order better)

� bounded curvature

Subproblem: find step � and trial point � � from:

�  "!#%$ #'& ( model

� � � �
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Structured model choice
Consider minimizing at topmost (finest) level.
At each iteration, choose the model as

� a local Taylor expansion (classical)
Taylor iteration

� the immediately coarser problem description
recursive iteration:

compute fine ) (and ) step and trial point
Restriction Prolongation

minimize the coarse model within the fine TR
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Performing the recursion

*+ � , -.0/ 
/21 3
4

.0/65 7 
/65 71 8 9 :/ 
/21 3

4


/65 71 ;

</ * 
/65 71 ; = :/ 
/1 3 - 9 > /1 3

? @ � A � B C*+ = @ � ? - *+ = @ � A - *+ = @ � C -

Additional ingredients:

� only useful if
D 4 ) 4FE G D H D ) 4FE G D

� first-order coherence (see below)

� TR constraint preservation
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Lower level TR radius update

I /J 7 
/1 8LK K
IJ /1 3


/1 3J 7 I /J 7 = M 
/1 3J 7 = 
/1 8 M /

Trust-region radius update:

4FE G'N O P �  "! Q N 4FE GSR 4 N O T D � 4E G'N O T � 4FE U D 4 V
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A recursive multi-scale algorithm
Until convergence:� Choose either a Taylor or recursive model� Taylor model: compute a Taylor step� Recursive: apply the Algo recursively

� Evaluate change in the objective function

� If achieved reduction � predicted reduction,� accept trial point as new iterate� (possibly) enlarge the trust region
else� reject the trial point� shrink the trust region

� Impose: current TR upper level TR
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Still unspecified. . .

The main design questions:

� what information to “pass down”
at lower recursion levels?

� what Taylor iteration should we use?
(must enforce sufficient model decrease
condition)

� trust-region radius management

� what structure for recursive iterations?

� computation of the initial point �XW E U

� dynamic accuracy threshold management
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Linear Model coherence

At level

[

, model fo level

[ \

:

] 4 � � � P 4 � � � ^_ 4 R � T � 4FE U `

with � 4FE U P 4 N O � 4FE G and

_ 4 P 4N O a ] 4 N O � � 4 N O E G � T a 4 � � 4FE U �

Hence

a ] 4 � � 4E U � P 4 N O a ] 4N O � � 4N O E G �

(required by the first-order convergence theory)
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Quadratic model coherence (1)

At level

[

,

] 4 � � � P 4 � � � ^_ 4 R � T � 4E U ` bc ^ � T � 4FE UdR 4 � � T � 4FE U � `

with (additionally)

4 P 4 N O a a ] 4 N O � � 4N O E G � e4 N O T a a 4 � � 4FE U �

Hence

a ] 4 � � 4E U � P 4 N O a ] 4N O � � 4N O E G �

a a ] 4 � � 4FE U � P 4 N O a a ] 4 N O � � 4 N O E G � e4 N O
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Quadratic model coherence (2)
Notes on the quadratic case:

� also covered by the theory:

] 4 � � � P f 4 � � � bc ^ � T � 4E UgR 4 � � T � 4FE U � `h

^_ 4 R � T � 4FE U `

� quadratic model coherence implies
second-order convergence properties ?
(currently under study)

� . . . but additional cost of computing and using
the correction matrix 4!

� can use 4 � � � P i

!
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(Simple) Taylor iterations

Which solver for the (approximate) solution of the
(same level) trust-region subproblem?

Simple answer:

� for low(est) level(s) (small dimension):
the exact Moré-Sorensen method

� for higher levels (high dimension):
a truncated conjugate gradient
(Steihaug-Toint or GLTR)

But. . .
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Multigrid technology. . .

Multigrid techniques for PDE problems indicates:

� the high-frequency components of residual
only visible in fine mesh (high levels)

� need two different methods:� reduce high frequency components on the
fine mesh

Smoothing

� reduce low frequency components on the
coarse mesh

Damping
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. . . adapted to optimization

In unconstrained optimization,
residual gradient

� gradient smoothing:� TCG not very efficient!� adapt Gauss-Seidel smoothing
cyclic coordinate search

(on Taylor’s model)

� low frequency damping:
full solution (MS) in low dimension
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Cyclic coordinate search (CCS)

From � U P i

and for

[ P \ Rl l l R m, solve:

� 4 �  "!n o � � 4qp O T rs 4 �

Cost: 1 cycle � 1 matrix-vector product

Two difficulties:

� need to require sufficient decrease?

� how to impose the trust-region constraint?
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The dogleg CCS (1)

� compute � U by coordinate search
along the largest gradient component

� while inside the TR and at most t times,
update the step with 1 full CCS cycle

� if � lies outside the TR:

� if � is gradient-related (

^ )R � ` T H D � D D ) D

)
then backtrack,� else compute dogleg step along the
piecewise curve

f iR � U R �h
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The dogleg CCS (2)

� efficient gradient smoothing:
as Gauss-Seidel in multigrid for PDE systems

� ensures sufficient decrease
(the modified Cauchy condition of CGT 2000)

� reasonable arithmetic cost:� t matrix-vector products
(or less if less than u cycles leads outside the TR)

In practice: dogleg extremely rare
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An alternative: the shifted CCS (1)

� compute � U by coordinate search
along the largest gradient component

� iteratively� select a (larger) value of

v i

� starting from � U, compute � by t full CCS
cycles on the shifted model

^ )R � ` bc ^ �R � vw � � `

until � lies inside the TR
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The shifted CCS (2)

� reasonably efficient gradient smoothing:
as Gauss-Seidel in multigrid for PDE systems

� ensures sufficient decrease ???
(use TCG as fall-back strategy)

� arithmetic cost:� x t matrix-vector products
(

x P number of successive shifts used)

In practice: most often

x � y

(hence typically 3 z more costly than dogleg CCS)
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Structure of the recursive iterations

Decision to stop solving the lower-level
subproblem based on

� subproblem criticality free form
(gradient accuracy + TR constraint activity)

� fixed form cycles (possibly truncated)� V cycles� W cycles� W { cycles ( { | }
)

At least one successful iteration per level
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Free form iterations (1)

The “iteration view” for an example of free form
recursion (5 levels, all iterations successful):

G~q� ��� ~ �

Level

�
? @ � A~�� Level

�

? @ � A � B~ c Level

�

? @ � ? @ � A �~ b Level

O

? @ � A ? @ ? @ � A~�� Level

U
Prolongation Restriction Damping Smoothing
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Free form iterations (2)

The “iterates view” for the same example:

G
? @ � A �

? @ � A � B �

? @ � � ? @ � A � �

? @ � A � ? @ � ? @ � A �

Prolongation Restriction Damping Smoothing
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V cycles

The “iterates view” for a V cycle recursion
(5 levels, all iterations successful):

G G N O~q� ��� ~ �

Level

�
? @ � �~�� Level

�

? @ � �~ c Level

�

? @ � �~ b Level

O

? �~�� Level

U
Prolongation Restriction Damping Smoothing
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W cycles

An example of W cycle recursion
(5 levels, all iterations successful):

G

etc.

? @

� A

? @ � A � � ? @ �

? @ � A � � ? @ � A � � ? @ � A � �

? � ? � ? � ? � ? � ? �

Prolongation Restriction Damping Smoothing
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Trust-region radius management

Scaling could differ between

] 4 � � � and
] 4qp O � � � . . .

Use the same TR radius ???

Use a different radius for Taylor iterations
and recursive iterations

� exploits theoretical freedom
(bounded rescaling admitted)

� (maybe) not meaningful when 4 � � � P i

In practice: radii ratio

�
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Computing the initial point
Need � W E U (starting point at topmost level):

use a mesh refinement technique.

For

[ P iRl l l R � T \

,� apply the recursive algorithm to solve

�  "!a 4 � � �

(with increasing accuracy)� apply the prolongation to obtain
the initial point at next level

� reminiscent of the full multigrid scheme

� approach of the solution at coarse levels
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The accuracy thresholds

Need to define accuracy thresholds for

� initial point computation
(step by a factor P m 4 � m 4qp O)

� gradient accuracy at lower level
(very loose, iteration structure dependent)

� TCG solver (at Taylor iterations):
gradient and maximum number of iterations
(not critical, because seldom used)

� TR constraint (not critical)
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A minimum surface problem
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The level structure
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Further problem details

� structured level transfer operators� P full weighting interpolation operator� P normalized

e

� handling the boundary condition� boundary condition not forced� additional smoothing “just inside”

� random starting point (at coarsest level)
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A brief demo
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An typical run
V style, pure quadratic recursion,
2 smoothing cycles, gradient accuracy: 1e-07

level 3 7 15 31 63 127 255

Tayl. its 20 3 0 0 0 0 0

smooth cyc 0 62 154 271 372 361 145

prolong 0 8 16 30 37 41 15

restric 0 19 36 66 84 102 78

backtrs 0 0 0 0 0 0 6

evals f 5 5 9 17 19 37 85

evals g 6 6 10 18 20 38 80

evals H 4 3 3 6 5 9 15

9.9 Gflops (linear algebra), 3,306 (MATLAB) secs
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Impact of problem size

2 2.5 3 3.5 4 4.5 5 5.5
−3

−2

−1

0

1

2

3

4

log10( problem size )

log10( fine Hessians evals )
log10( fine Hessians evals ) for MR
log10( Gflops )
log10( Gflops) for MR



The

University
of Namur

www.fundp.ac.be

Plan� Introduction� Problem� Algorithm� Model coherence� Taylor iterations� Iter. structure� TR radius� Initial point� Accuracy thresh.� A test problem� Some results� Perspectives

Current conclusions

� more efficient than mesh refinement for large
instances

� dogleg CCS better than shifted CCS

� pure quadratic recursion ( 4 P i

) very efficient

� V cycles or free structure most efficient
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Perspectives
Encouraging (so far)

� more numerical experiments!

� second-order convergence theory

� multigrid-type developments:
(semi-coarsening, algebraic multilevel, . . . )

� constrained problems
(bounds, equalities, general)

� non-monotone (filter) techniques

� . . . and much more!

Thank you for your attention
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