

A numerical exploration of recursive multiscale unconstrained optimization

Philippe Toint (philippe.toint@fundp.ac.be)

(with S. Gratton and A. Sartenaer)

Department of Mathematics, University of Namur, Namur

- ightarrow Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Unconstrained optimization

The unconstrained nonlinear programming problem:

minimize f(x)

for $x \in \mathbb{IR}^n$, f smooth.

Main applications:

- surface design
- nonlinear least-squares (parameter estimation)

University of Namur www.fundp.ac.be

Hierarchy of problem descriptions

Can we use a structure of the form:

Plan

- ightarrow Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

	Finest problem description						
Re	striction $\downarrow R$	$P \uparrow Prolongation$	วท				
	Fine problem descrip	otion					
Re	striction $\downarrow R$	$P \uparrow Prolongation$	วท				
Re	striction $\downarrow R$	$P \uparrow Prolongation$	on				
	Coarse problem des	cription					
Re	striction $\downarrow R$	$P \uparrow Prolongation$	วท				
	Coarsest problem description						

- Introduction
 → *Problem*
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

Sources for such problems

- parameter estimation in
 - discretized ODEs
 - discretized PDEs
- optimal control problems
- surface design (optics, shape optimization)
- weather prediction (level of physics in the model)
- Proper Orthogonal Decomposition (snapshots) (Sachs *et al.*)

- Introduction
- Problem
- → Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Basic trust-region algorithm

Until convergence:

- Choose a local model of the objective f
- Compute a trial point that decreases this model within the trust region
- Evaluate change in the objective function
- If achieved reduction \approx predicted reduction,
 - accept trial point as new iterate
 - (possibly) enlarge the trust region else
 - reject the trial point
 - shrink the trust region

Model and objective comparison

Plan

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

Model and objective comparison

Plan

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Example (Conn, Gould, Toint 2000):

Plan

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

 $\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$

Example (Conn, Gould, Toint 2000):

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

Example (Conn, Gould, Toint 2000):

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

$$\min_{x,y} -10x^2 + 10y^2 + 4\sin(xy) - 2x + x^4$$

- Plan
- Introduction
- Problem
- ightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

Advantages of the BTR algorithm

- (A probably biased view)
 - robust, reliable and efficient
 - ensures globalization
 - allows fast convergence
 - good implementations
 - very adaptable:
 - free choice of the model
 - flexible algorithmic variants
 - well understood:
 - sound convergence theory
 - finite and infinite dimensional versions

IntroductionProblem

 \rightarrow Algorithm

Iter. structureTR radiusInitial point

Test problemsSome resultsPerspectives

Model coherence
 <u>Taylor iterations</u>

Conditions on the model

Requirements on model choice:

- smoothness
- (asymptotic) first-order coherence with the objective function (second-order better)
- bounded curvature

Subproblem: find step *s* and trial point x+s from: $\min_{\|s\|\leq\Delta} \operatorname{model}(x+s)$

- Introduction
- Problem
- ightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Structured model choice

Consider minimizing at topmost (finest) level. At each iteration, choose the model as

- a local Taylor expansion (classical) \rightarrow Taylor iteration
- the immediately coarser problem description
 → recursive iteration:

compute fine g (and H)step and trial pointRestriction $\downarrow R$ $P \uparrow$ Prolongationminimize the coarse model within the fine TR

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some resultsPerspectives

Additional ingredients:

• only useful if $||R_ig_{i,k}|| \ge \kappa ||g_{i,k}||$

Performing the recursion

- first-order coherence (see below)
- TR constraint preservation

University of Namur www.fundp.ac.be

Lower level TR radius update

Plan

- Introduction
- Problem
- \rightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Trust-region radius update:

$$\Delta_{i,k+1} = \min\left[\Delta_{i,k}^{+}, \, \Delta_{i+1} - \|x_{i,k+1} - x_{i,0}\|_{i}\right]$$

University of Namur www.fundp.ac.be

- Introduction
- Problem
- → Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

A recursive multi-scale algorithm

Until convergence:

- Choose either a Taylor or recursive model
 - Taylor model: compute a Taylor step
 - Recursive: apply the Algo recursively
- Evaluate change in the objective function
- If achieved reduction \approx predicted reduction,
 - accept trial point as new iterate
 - (possibly) enlarge the trust region else
 - reject the trial point
 - shrink the trust region
 - Impose: current TR \subseteq upper level TR

Still unspecified...

Plan

- Introduction
- Problem
- ightarrow Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

The main design questions:

- what information to "pass down" at lower recursion levels?
- what Taylor iteration should we use? (must enforce sufficient model decrease condition)
- trust-region radius management
- what structure for recursive iterations?
- computation of the initial point $x_{r,0}$

University ^{of} Namur www.fundp.ac.be • dynamic accuracy threshold management

Linear Model coherence

At level i, model fo level i + 1:

$$h_i(x) = f_i(x) + \langle v_i, x - x_{i,0} \rangle$$

with $x_{i,0} = R_{i+1}x_{i,k}$ and
 $v_i = R_{i+1}\nabla_x h_{i+1}(x_{i+1,k}) - \nabla_x f_i(x_{i,0})$

Hence

$$\nabla_x h_i(x_{i,0}) = R_{i+1} \nabla_x h_{i+1}(x_{i+1,k})$$

(required by the first-order convergence theory)

University ^{of} Namur www.fundp.ac.be

- Introduction
- Problem
- Algorithm
- ightarrow Model coherence
- Taylor iteration
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Quadratic model coherence (1)

At level *i*,

- Algorithm
- ightarrow Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

 $h_i(x) = f_i(x) + \langle v_i, x - x_{i,0} \rangle + \frac{1}{2} \langle x - x_{i,0}, W_i(x - x_{i,0}) \rangle$ with (additionally)

$$W_{i} = R_{i+1} \nabla_{xx} h_{i+1}(x_{i+1,k}) R_{i+1}^{T} - \nabla_{xx} f_{i}(x_{i,0})$$

Hence

$$\nabla_x h_i(x_{i,0}) = R_{i+1} \nabla_x h_{i+1}(x_{i+1,k})$$
$$\nabla_{xx} h_i(x_{i,0}) = R_{i+1} \nabla_{xx} h_{i+1}(x_{i+1,k}) R_{i+1}^T$$

- Introduction
- Problem
- Algorithm
- → Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

Quadratic model coherence (2)

Notes on the quadratic case:

• also covered by the theory:

$$h_{i}(x) = [f_{i}(x) + \frac{1}{2}\langle x - x_{i,0}, W_{i}(x - x_{i,0})\rangle] \\ + \langle v_{i}, x - x_{i,0}\rangle$$

- quadratic model coherence implies second-order convergence properties ? (currently under study)
- ... but additional cost of computing and using the correction matrix W_i !
- can use $f_i(x) = 0!$

(Simple) Taylor iterations

Plan

- IntroductionProblem
- Algorithm
- Model coherence
- ightarrow Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Which solver for the (approximate) solution of the (same level) trust-region subproblem?

Simple answer:

- for low(est) level(s) (small dimension): the exact Moré-Sorensen method
- for higher levels (high dimension): a truncated conjugate gradient (Steihaug-Toint or GLTR)

Multigrid technology...

Multigrid techniques for PDE problems indicates:

- the high-frequency components of residual only visible in fine mesh (high levels)
 - need two different methods:
 - reduce high frequency components on the fine mesh

Smoothing

 reduce low frequency components on the coarse mesh

● Introduction

- Problem
- Algorithm
- Model coherence
- ightarrow Taylor iterations
- Iter. structure
- TR radiusInitial point
- Test problems
- Some results
- Perspectives

... adapted to optimization

In unconstrained optimization,

residual \rightarrow gradient

- gradient smoothing:
 - TCG not very efficient!
 - adapt Gauss-Seidel smoothing

→ cyclic coordinate search

(on Taylor's model)

 low frequency damping: full solution (MS) in low dimension

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- ightarrow Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

Cyclic coordinate search (CCS)

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- ightarrow Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

From $s_0 = 0$ and for $i = 1, \ldots, n$, solve:

$$s_i \Leftarrow \min_{\alpha} m(s_{i-1} - \alpha e_i)$$

Cost: 1 cycle \approx 1 matrix-vector product

Two difficulties:

- need to require sufficient decrease?
- how to impose the trust-region constraint?

IntroductionProblemAlgorithm

Model coherence
 Taylor iterations

Iter. structureTR radiusInitial point

Test problems
Some results
Perspectives

The dogleg CCS (1)

- compute s₀ by coordinate search along the largest gradient component
- while inside the TR and at most p times, update the step with 1 full CCS cycle
- if *s* lies outside the TR:
 - if s is gradient-related ($\langle g, s \rangle \leq -\kappa \|s\| \|g\|$) then backtrack,
 - else compute dogleg step along the piecewise curve $[0, s_0, s]$

Plan
● Introduction

- Problem
- Algorithm
- Model coherence
- ightarrow Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

The dogleg CCS (2)

- efficient gradient smoothing: as Gauss-Seidel in multigrid for PDE systems
- ensures sufficient decrease (the modified Cauchy condition of CGT 2000)
 - reasonable arithmetic cost:
 - $\approx p$ matrix-vector products (or less if less than p cycles leads outside the TR)

In practice: dogleg extremely rare

University of Namur www.fundp.ac.be

Structure of the recursive iterations

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- → Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Decision to stop solving the lower-level subproblem based on

- subproblem criticality → free form (gradient accuracy + TR constraint activity)
- fixed form cycles (possibly truncated)
 - V cycles
 - W cycles
 - Wq cycles (q > 2)

At least one successful iteration per level

Free form iterations (1)

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- ightarrow Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

The "iteration view" for an example of free form recursion (5 levels, all iterations successful):

Smoothing

Free form iterations (2)

The "iterates view" for the same example:

www.fundp.ac.be

V cycles

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- ightarrow Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

University ^{of} Namur www.fundp.ac.be

The "iterates view" for a V cycle recursion (5 levels, all iterations successful):

Damping

Smoothing

W cycles

2 3

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- ightarrow lter. structure
- TR radius
- Initial point
- Test problems
- Some results
- Perspectives

An example of W cycle recursion (5 levels, all iterations successful):

University of Namur www.fundp.ac.be

Prolongation Restriction

Damping

Smoothing

Trust-region radius management

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- ightarrow TR radius
- Initial point
- Test problems
- Some results
- Perspectives

Scaling could differ between $h_i(x)$ and $h_{i-1}(x)$... Use the same TR radius ???

Use a different radius for Taylor iterations and recursive iterations

- exploits theoretical freedom (bounded rescaling admitted)
- (maybe) not meaningful when $f_i(x) = 0$

In practice: radii ratio ≤ 5

University of Namur www.fundp.ac.be

Computing the initial point

Need $x_{r,0}$ (starting point at topmost level): \rightarrow use a mesh refinement technique.

Plan

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- ightarrow Initial point
- Test problems
- Some results
- Perspectives

For $i = 0, \ldots, r - 1$, • apply the recursive algorithm to solve

 $\min_x f_i(x)$

(with increasing accuracy)apply the prolongation to obtain

the initial point at next level

University of Namur www.fundp.ac.be

- reminiscent of the full multigrid scheme
- approach of the solution at coarse levels

A minimum surface problem

solution at level 5

- Introductio
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- ightarrow Test problems
- Some results
- Perspectives

The level structure

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- ightarrow Test problems
- Some results
- Perspectives

 $n = 31^2 = 961$

 $n = 7^2 = 49$

0.5

-0.5

-1

-1.5

 $n = 15^2 = 225$

 $n = 63^2 = 3969$

solution at level 5

 $n = 127^2 = 16129$

- Plan
 Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- \rightarrow Test problems
- Some results
- Perspectives

Further problem details

- structured level transfer operators
 - P = full weighting interpolation operator
 - $R = \text{normalized } P^T$
- handling the boundary condition
 - boundary condition not forced
 - additional smoothing "just inside"
- random starting point (at coarsest level)

Contact me for a live demo . . .

- Plan
- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- \rightarrow Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

Other test problems (1)

2D Laplacian (check) problem (5 points FD pencil, unit square)

$$\min -\frac{1}{2}x^T \Delta x - f^T x$$

$$f = \sin[x_1 * (1 - x_1)] * \sin[x_2 * (1 - x_2)]$$

 2D nonconvex quartic nonlinear least-squares (5 points FD pencil, unit square)

$$\min \int (u-f)^2 + 10^{-2} \int (\gamma - f)^2 + \int (-\Delta u + u\gamma - g)^2$$

$$g = -\Delta f + f^2$$

- Plan
- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- \rightarrow Test problems
- Some results
- Perspectives

University of Namur www.fundp.ac.be

Other test problems (2)

• Lewis and Nash Dirichlet to Neumann transfer problem:

$$\min_{a : [0,\pi] \to \mathbb{R}} \int_0^\pi \left(\frac{\partial u}{\partial x_2}(x_1,0) - \phi(x_1) \right)^2 dx_1$$

with $S = \{(x_1, x_2), 0 \le x_1 \le \pi, 0 \le x_2 \le \pi\}$ $\Gamma = \{(x_1, x_2), 0 \le x_1 \le \pi, x_2 = 0\}.$ $\phi(x) = \sum_{i=1}^{15} \sin(ix) + \sin(40x)$ subject to the boundary value problem

$$\Delta u = 0$$

$$u(x, y) = a(x_1) \text{ on } \Gamma, \quad u(x, y) = 0 \text{ on } \partial S \setminus \Gamma$$

A typical run

V style, pure quadratic recursion,

2 smoothing cycles, gradient accuracy: 1e-07

on	level	3	7	15	31	63	127	255
	Tayl. its	26	0	0	0	0	0	0
erence ations	smooth cyc	0	214	285	286	223	141	83
t	prolong	0	20	36	36	31	23	11
ems e sults	restric	0	41	72	73	63	48	25
765	evals f	12	8	12	13	19	36	66
	evals g	6	8	12	13	19	29	37
	evals H	6	3	4	4	6	8	17

Introduction

Problem

Plan

- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- → Some resu
 Perspectives

- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- \rightarrow Some results
- Perspectives

University ^{of} Namur www.fundp.ac.be

Problem size and CPU

- Introductio
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- → Some results
 Perspectives

University ^{of} Namur www.fundp.ac.be

Problem size and linear algebra

- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- \rightarrow Some results
- Perspectives

Interpolation and fill-in

10¹

15

31

63

127

255

511

- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- \rightarrow Some results
- Perspectives

Current conclusions

- more efficient than mesh refinement for large instances
- pure quadratic recursion ($f_i = 0$, Galerkin) very efficient
- interpolation degree crucial
- V cycles most efficient

Perspectives

Encouraging (so far)

- Plan
- Introduction
- Problem
- Algorithm
- Model coherence
- Taylor iterations
- Iter. structure
- TR radius
- Initial point
- Test problems
- Some results
- ightarrow Perspectives

- more numerical experiments!
- second-order convergence theory
- multigrid-type developments: (semi-coarsening, algebraic multilevel, ...)
- constrained problems (bounds, equalities, general)
- non-monotone (filter) techniques
 - ... and much more!

Thank you for your attention