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@ Nonlinear optimization
" The general nonlinear programming problem:

minimize f(x)

subjectto cg(z) =0
CI(:E) Z 07

for x € R", f and ¢ smooth.

Solution algorithms are

e iterative ({x})
e based on Newton’'s method (or variant)

= global convergence issues
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@ Monotonicity (1)
" Global convergence theoretically ensured by

e some global measure ...

e unconstrained : f(xy)

e constrained : merit function at z;
e ...with strong monotonic behaviour

(Lyapunov function)

Also practically enforced by
e algorithmic safeguards around Newton

method
(linesearches, trust regions)
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@ Monotonicity (2)

™ But

classical safeguards limit efficiency!

Question :

design less obstructive safeguards

while

e ensuring better numerical performance
(the Newton Liberation Front !)

e continuing to guarantee
global convergence properties
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. Non-monotone methods

Typically:
e abandon strict monotonicity of usual
measures

The
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" Namur o Ke, Han, Liu (1995, 1996), Burke, Weigmann (1997), Yuan (1999), ...

e but insist on average behaviour

linesearch:
e Chamberlain, Powell, Lemarechal, Pedersen (1982)
e Grippo, Lampariello, Lucidi, Facchinei (1986, 1989, 1991, 1992,.

e Panier, Tits, Bonnans, Zhou (1991, 1992), T. (1996), ...

trust region:
e Deng, Xiao, Zhou (1992, 1993, 1994, 1995)

o T. (1994, 1997), Conn, Gould, T. (2000)
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@ Non-monotone trust-regions

™ |dea:
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f(zr+1) < f(zg) replaced by f(zxi1) < fr)

with

fr(k) < fr(k—l)

Further issues:
e suitably define (k)

e adapt the trust-region algorithm:
also compare achieved and predicted

reductions since reference iteration
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@ An unconstrained example
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Monotone and non-monotone TR
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Introducing the filter
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A fruitful alternative: [filter methods

Constrained optimization :

using the SQP step, at the same time:
e reduce the objective function f(z)

e reduce constraint violation 6(z)
= CONFLICT
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The filter point of view

Fletcher and Leyffer replace question:
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What is a better point?

by:

What is a worse point?
Of course, y is worse than x when

f(z) < f(y) and 6(z) < 0(y)

(y Is dominated by )
When is z;, + s, acceptable?
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The standard filter

ldea: accept non-dominated points

no monotonicity of merit function implied
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@ Filling up the standard filter
5U Note: filter area is bounded in the (f,0) space!

f(x)
® Monotonicity
| f(zg) ——
| f(zg) — 70k
(1-— ’y)ek .9’“ .

The U | | er(w)
University . - I
 Namur = filter area monotonically decreasing
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=/ 7: Another idea...
“m  Measure «ay, the area contributed by
b (@)
@ Monotonicity frzl:gx +e Lo Ie ______________________________________ -
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@ Accepting the trial point?

X

e An (areawise) monotone acceptance rule:
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A non-monotone acceptance rule:

k I k |
> opptar>F > 6+ (6
j=r(k)+1,5eU | j=r(k)+1,5€U

r(k) : reference iteration, p(j) : predecessor of j
U : the iterations where the filter is updated
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“/'7¢ The (unconst.) feasibility problem
- Find z such that
c(x) >0
e(r) =0

for general smooth ¢ and e.

Find z such that
Jﬁiversity min Z 922
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A multidimensional filter (1)
(Simple) idea: more dimensions in filter space
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J;?IVGI’SIty . . "
LU (full dimension vs. grouping)
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@ A multidimensional filter (2)

Additionally
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e possibly consider unsigned filter entries

e use TR algorithm when
e trial point unacceptable
e convergence to non-zero solution

(= “internal” restoration)

sound convergence theory
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Numerical experience: FILTRANE
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e Fortran 95 package
e large scale problems (CUTEr interface)

e Includes several variants of the method

¢ signed/unsigned filters
o Gauss-Newton, Newton
or adaptive models

e pure trust-region option
e uses preconditioned conjugate-gradients
+ Lanczos for subproblem solution

e part of the GALAHAD library
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-/ 7: Numerical experience (1)
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“/'7: Numerical experience (2)
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¢ Numerical experience (3)

-

— Filter

-— LANCELOT
I I

!
5

!
6

!
7

8 9 10

Filter vs. LANCELOT B (CPU time)



@ Numerical experience (4)
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@ Filter for unconstrained opt.
ENEA Again simple idea: use g; instead of 6,
g1(x)

0
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A few complications...
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But ...

\ g(x) = 0 not sufficient for nonconvex problems!

When negative curvature found:

e reset filter
e set upper bound on acceptable f(z)

reasonable convergence theory
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. Numerical experience (1)
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@ Numerical experience: HEART6

log of residual
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Filter vs. trust-region and LANCELOT B
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@ Numerlcal experlence° EXTROSNB
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log of residual
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Filter vs. trust-region and LANCELOT B
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@ Numerlcal experlence° LOBSTERZ
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@ Conclusions

non-monotonicity definitely helpful

Newton’s behaviour unexplained

Thank you for your attention
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