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Nonlinear optimization
The general nonlinear programming problem:

minimize

� � �
subject to ��� � � � � 	

��
 � � � 	�

for �  IR

�

, and � smooth.

Solution algorithms are

� iterative (
� ��� �

)

� based on Newton’s method (or variant)

global convergence issues
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Monotonicity (1)
Global convergence theoretically ensured by

� some global measure . . .

� unconstrained :

� � � �

� constrained : merit function at � �

� . . . with strong monotonic behaviour

(Lyapunov function)

Also practically enforced by

� algorithmic safeguards around Newton
method
(linesearches, trust regions)
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Monotonicity (2)
But

classical safeguards limit efficiency!

Question :

design less obstructive safeguards
while

� ensuring better numerical performance
(the Newton Liberation Front !)

� continuing to guarantee
global convergence properties
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Non-monotone methods
Typically:

� abandon strict monotonicity of usual
measures

� but insist on average behaviour

linesearch:

� Chamberlain, Powell, Lemarechal, Pedersen (1982)� Grippo, Lampariello, Lucidi, Facchinei (1986, 1989, 1991, 1992,. . . )� Panier, Tits, Bonnans, Zhou (1991, 1992), T. (1996), . . .

trust region:

� Deng, Xiao, Zhou (1992, 1993, 1994, 1995)� T. (1994, 1997), Conn, Gould, T. (2000)� Ke, Han, Liu (1995, 1996), Burke, Weigmann (1997), Yuan (1999), . . .
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Non-monotone trust-regions
Idea:

� ��� � � � � � �� �

replaced by
� � � � � � � � �� �

with

� �� � � � �� � � �

Further issues:

� suitably define � �� �

� adapt the trust-region algorithm:
also compare achieved and predicted
reductions since reference iteration
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An unconstrained example
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Introducing the filter

A fruitful alternative: filter methods

Constrained optimization :

using the SQP step, at the same time:

� reduce the objective function

� � �

� reduce constraint violation

 � � �

CONFLICT
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The filter point of view

Fletcher and Leyffer replace question:
What is a better point?

by:
What is a worse point?

Of course, ! is worse than � when

� � � � ! �
and

 � � �  � ! �

( ! is dominated by �)
When is � � " � acceptable?
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The standard filter
Idea: accept non-dominated points

no monotonicity of merit function implied

#
0

$ %'& (

)+* %& (

,
,

,

,
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Filling up the standard filter
Note: filter area is bounded in the

� �  �
space!

#
0

$ %'& (

)+* %& (

,
*.-%/ 0 1 ( *-

$ %'& - (
$ %'& - ( 0 1 *2-

filter area monotonically decreasing
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Another idea. . .
Measure 3� , the area contributed by � ��

#

)

% * 4-5 $ 4- (6
#

7
8

% * 4- 5 $ 4- (6
)9 8

% * 4-5 $ 4- ( 6
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Accepting the trial point?
An (areawise) monotone acceptance rule:

3� G�H �  �� � I
A non-monotone acceptance rule:

�
JLK � �� � � �NM JPO Q

3SR � J � 3� GTH

�
JLK � �� � � �NM JPO Q

 IJ �  �� � I

� �� �

: reference iteration, U �WV �

: predecessor of

V

: the iterations where the filter is updated

sufficient area reduction since reference iteration
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The (unconst.) feasibility problem
Feasibility

Find � such that

� � � � 	

Z � � � � 	

for general smooth � and Z.

Least-squares

Find � such that

[ \^]  I_
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A multidimensional filter (1)
(Simple) idea: more dimensions in filter space

#
0

*a` %'& (

)*2b %& (

6
6

6

6

(full dimension vs. grouping)
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A multidimensional filter (2)

Additionally

� possibly consider unsigned filter entries

� use TR algorithm when

� trial point unacceptable

� convergence to non-zero solution
( “internal” restoration)

sound convergence theory
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Numerical experience: FILTRANE

� Fortran 95 package

� large scale problems (CUTEr interface)

� includes several variants of the method

� signed/unsigned filters

� Gauss-Newton, Newton
or adaptive models

� pure trust-region option

� uses preconditioned conjugate-gradients
+ Lanczos for subproblem solution

� part of the GALAHAD library
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Numerical experience (1)
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Numerical experience (2)
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Numerical experience (3)
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Numerical experience (4)
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Filter for unconstrained opt.
Again simple idea: use c _ instead of

 _

#
0

d ` %'& (

)d b %& (

6
6

6

6

(full dimension vs. grouping)
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A few complications. . .

But . . .

c � � � � 	

not sufficient for nonconvex problems!

When negative curvature found:

� reset filter

� set upper bound on acceptable

� � �

reasonable convergence theory
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Numerical experience (1)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

Default 
Pure trust region 
LANB 

Filter vs. trust-region and LANCELOT B
(iterations)



The

University
of Namur

www.fundp.ac.be

PlanX MonotonicityX Constrained opt.Y

Unconstrained opt.

Numerical experience: HEART6
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Numerical experience: EXTROSNB
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Numerical experience: LOBSTERZ
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Conclusions

non-monotonicity definitely helpful

Newton’s behaviour unexplained

. . . more research needed?

Thank you for your attention


	Nonlinear optimization
	Monotonicity (1)
	Monotonicity (2)
	Non-monotone methods
	Non-monotone trust-regions
	An unconstrained example
	Introducing the filter
	The filter point of view
	The standard filter
	Filling up the standard filter
	Another idealdots 
	Accepting the trial point?
	The (unconst.)
feasibility problem
	A multidimensional filter (1)
	A multidimensional filter (2)
	Numerical experience: {sf FILTRANE}
	Numerical experience (1)
	Numerical experience (2)
	Numerical experience (3)
	Numerical experience (4)
	Filter for unconstrained opt.
	A few complicationsldots 
	Numerical experience (1)
	Numerical experience: HEART6
	Numerical experience: EXTROSNB
	Numerical experience: LOBSTERZ
	Conclusions

