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Abstract

An adaptive regularization algorithm (AR1pGN) for unconstrained nonlinear minimiza-
tion is considered, which uses a model consisting of a Taylor expansion of arbitrary degree
and regularization term involving a possibly non-smooth norm. It is shown that the non-

smoothness of the norm does not affect the O(ε
−(p+1)/p
1 ) upper bound on evaluation

complexity for finding first-order ε1-approximate minimizers using p derivatives, and that
this result does not hinge on the equivalence of norms in IRn. It is also shown that, if
p = 2, the bound of O(ε−3

2 ) evaluations for finding second-order ε2-approximate minimiz-
ers still holds for a variant of AR1pGN named AR2GN, despite the possibly non-smooth
nature of the regularization term. Moreover, the adaptation of the existing theory for
handling the non-smoothness results in an interesting modification of the subproblem ter-
mination rules, leading to an even more compact complexity analysis. In particular, it is
shown when the Newton’s step is acceptable for an adaptive regularization method. The
approximate minimization of quadratic polynomials regularized with non-smooth norms
is then discussed, and a new approximate second-order necessary optimality condition
is derived for this case. An specialized algorithm is then proposed to enforce first- and
second-order conditions that are strong enough to ensure the existence of a suitable step
in AR1pGN (when p = 2) and in AR2GN, and its iteration complexity is analyzed. A fi-
nal section discusses how practical approximate curvature measures may lead to weaker
second-order optimality guarantees.

Keywords: nonlinear optimization, adaptive regularization, evaluation complexity, non-smooth

norms, second-order minimizers.

1 Introduction

This paper is concerned with the derivation of upper bounds on the evaluation complexity of
adaptive regularization algorithms for the solution of the smooth unconstrained nonconvex
optimization problem

min
x∈IRn

f(x). (1.1)

This research area has been remarkably active in recent years (see, for instance, [27, 34, 8,
10, 12, 4, 22, 5, 6, 31, 23, 3, 2, 15]). Adaptive regularization algorithms, the class of methods
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considered here, compute steps from one iterate to the next by building and (often approx-
imately) minimizing a model consisting of a truncated Taylor expansion of f , which is then
“regularized” by adding a suitable power of the norm of the putative step. Several authors
have considered various smooth norms for this regularization term [34, 10, 20, 6, 18, 17],
showing that, under suitable assumptions, the resulting adaptive regularization method must
find a first-order ε1-approximate minimizer for problem (1.1) (that is an iterate xk such

‖∇1
xf(xk)‖ ≤ ε1) in at most O(ε

−(p+1)/p
1 ) evaluations of the objective function and its deriva-

tives. In addition, second-order variants of this algorithm are bound to find a second-order
ε2-approximate minimizer (that is an iterate xk such the smallest eigenvalue of ∇2

xf(xk) ex-

ceeds −ε2) in at most O(ε
−(p+1)/(p−1)
2 ) such evaluations. The detailed algorithms considered

in these contributions all depend on the central tenet that the regularized model (whose ap-
proximate minimization yields the step from one iterate to the next) is smooth, and thus that
this approximate minimization can be carried out using algorithms for smooth functions and
can be terminated using approximate optimality conditions for smooth problems. We show in
this paper that the same evaluation complexity bounds still holds for first-order approximate
minimizers in the case where non-smooth norms (such as `1 or `∞) are considered, provided
the algorithm is suitably modified. We also show that, when p = 2, the evaluation complexity
bound in O(ε−32 ) is also maintained in the same context for a variant of the algorithm. Unsur-
prisingly, both results require redefining the termination conditions for model minimization,
which makes them more flexible. As it turns out, the resulting modifications of the standard
adaptive regularization method are extremely simple and their use in the complexity theory
results in a remarlably compact formulation. They also shed a new light on the acceptability
of the Newton step within adaptive regularization methods.

One may argue that, since all norms are equivalent in finite dimensional spaces, the stated
complexity bound can be derived for any norm from known results in Euclidean norm [6, 14].
While this is true if one focuses on the order in ε1 and ε2 only, this ignores the influence
of the norm equivalence constants, whose size can be significant when n, the dimension
of the problem, grows. For instance the equivalence constant between the Euclidean and
infinity norm is proportional to the square root of the problem’s dimension. Thus obtaining
a given accuracy on the gradient norm in the infinity norm by simply applying the norm
equivalence principle may require n(p+1)/2p times more evaluations of the objective function
and its derivatives than in the Euclidean one. The approach presented here attempts to avoid
this potentially problematic increase in cost.

Of course, for the new algorithms to be practical, one needs to show that the model
minimization subproblems are solvable by implementable methods. Focusing again on the
case where p = 2 and the model is a regularized quadratic, we derive a specialized second-
order necessary optimality condition for the approximate minimization of such non-smooth
functions. We then propose a new algorithm which is able to achieve first- and second-order
approximate optimality for this problem and evaluate its iteration complexity. We finally
discuss relaxed variants of the new algorithms that are sufficient for solving the subproblems
of interest in algorithms for general functions, as well as their iteration complexity.

It is interesting to note that several authors [11, 16, 25] have proposed algorithms and
associated complexity theory for the problem of minimizing a composite function of the form
f(x) +h(c(x)), where f and c are smooth but h is potentially non-smooth. These approaches
differ from our present objective in that, although the objective function may be non-smooth,
the regularization term remains smooth. Moreover, the definition of the acceptable approxi-
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mate minimizers circumvents the model’s non-smoothness by using the unmodified function h
and, at variance with the approach described here, makes no attempt to exploit its generalized
derivatives. We also note the contribution [1], where a first-order trust-region method (using
a general norm) is proposed for the composite problem with weak assumptions on h (allowing
non-smoothness and non-convexity), and for which an O(ε−21 ) evaluation complexity bound is
shown. This bound is consistent with standard complexity bounds for trust-region methods
(see [24] for a first proof on smooth problems). The use of models of degree exceeding one
is considered, but, as is typically the case for trust-region methods, does not improve the
complexity bound.

Our exposition is organized as follows. We present the problem and the first-order al-
gorithm in Section 2 and derive its evaluation complexity theory in Section 3. Section 4
discusses the new approximate second-order necessary condition for global minimizers and
establishes the upper bound on evaluation complexity for an adapted variant of the algo-
rithm. A method for approximately minimizing regularized quadratics (enough for solving
the subproblems arising in Sections 2 and 4) is then presented and analyzed in Section 5.
A discussion of alternatives for the measure of curvature, a key ingredient in second-order
conditions, is proposed in Section 6. Finally, some brief conclusions are outlined in Section 7.

2 An first-order adaptive regularization in general norms

We consider the unconstrained nonlinear optimization problem (1.1) where f is a (potentially
nonconvex) p times continuoulsy differentiable function from IRn to IR, for some integer p ≥ 1.
We define

Tf,p(x, s)
def
= f(x) +

p∑
`=1

1

`!
∇`xf(x)[s]`,

the p-th order Taylor expansion of f at x, where the notation ∇`xf(x)[s]` denotes the sym-
metric `-dimensional tensor ∇`xf(x) applied on ` copies of the vector s.

As outlined in the introduction, adaptive regularization methods are iterative schemes that
compute a step form an iterate xk by constructing a regularized model mk(s) of f(xk + s) as

mk(s)
def
= Tf,p(xk, s) +

σk
(p+ 1)!

‖s‖p+1
r , (2.1)

where the p-th order Taylor series is “regularized” by adding the term σk‖s‖p+1
r /(p+ 1)! (σk

is known as the “regularization parameter”) and where we allow ‖ ·‖r to be a general possibly
non-smooth norm. This implies that ‖ · ‖r is convex and Lipschitz continuous with global
Lipschitz constant equal to one. Given the ‖ · ‖r norm and defining

‖Sj‖r,j = max
‖s‖r=1

|Sj [s]j | (2.2)

to be the norm of the j-dimensional symmetric (for j > 1) tensor Sj induced by ‖ · ‖r, we
are now interested in finding, for some prespecified accuracy requirement ε1 ∈ (0, 1], an ε1-
approximate first-order critical point, that is a point xε1 such that ‖∇1

xf(xε)‖r,1 ≤ ε1. Note
that, because of (2.2), ‖ · ‖r,1 is the dual norm of ‖ · ‖r.)

The “regularization term” in (2.1) guarantees that mk(s) is bounded below and thus
makes the procedure of finding a step sk by (approximately) minimizing mk(s) well-defined.
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However, at variance with the usual setting for adaptive regularization methods, the model
mk(s) may no longer be smooth. Once the step is computed, the value of the objective
function at the trial point xk + sk is then computed. If the decrease in f from xk to xk + sk
is comparable to that predicted by the second-order Taylor series, the trial point is accepted
as the new iterate and the regularization parameter is (possibly) reduced. If this is not the
case, the trial point is rejected and the regularization parameter increased. The resulting
algorithm is formally stated as the AR1pGN.

Algorithm 2.1: First-Order Adaptive Regularization with General Norm
(AR1pGN)

Step 0: Initialization. An initial point x0 ∈ IRn, a regularization parameter σ0 and
a desired final gradient accuracy ε1 ∈ (0, 1] are given. The constants η1, η2, γ1, γ2,
γ3, θ1 and σmin are also given such that

σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1, θ1 > 1 and 0 < γ1 < 1 < γ2 < γ3. (2.3)

Compute f(x0) and set k = 0.

Step 1: Check for termination. Terminate with xε1 = xk if

‖∇1
xf(xk)‖r,1 ≤ ε1. (2.4)

Step 2: Step calculation. Compute a step sk which sufficiently reduces the model
mk in the sense that

mk(sk) ≤ mk(0) (2.5)

and
‖∇1

sTf,p(xk, sk)‖r,1 ≤ θ1
σk
p!
‖s‖pr . (2.6)

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tf,p(xk, 0)− Tf,p(xk, sk)
. (2.7)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.8)

Increment k by one and go to Step 1.

While the AR1pGN algorithm follows the main lines of existing adaptive regularization meth-
ods (see [10, 6] for example), we immediately note that the test (2.6) differs from the test
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‖∇1
sms(sk)‖2 ≤ θ1‖sk‖p2 which is used so far in the literature. Indeed, our framework no longer

guarantees that ∇1
sms(s) exists, due to the possible lack of smoothness of the regularization

term. Note however that, if ‖ · ‖r is differentiable everywhere except at the origin, then

∇1
sTf,p(xk, sk) +

σk
p!
‖s‖pr ∇1

s‖s‖r = 0

at a nonzero first-order point of mk(s), and (2.6) holds at such a point since ‖s‖r is Lipschitz
continuous with unit Lipschitz constant, and thus ‖∇1

s‖s‖r‖ ≤ 1. The condition (2.6) is
therefore weaker than a more standard condition of the form ‖∇1

smk(sk)‖ ≤ θ1‖sk‖p. This
therefore suggests that the standard termination test may lead to subproblem oversolving, an
important issue for numerical performance.

In particular, and at variance with other adaptive regularization methods, the AR1pGN

algorithm allows the Newton step sk = −∇2
xf(xk)

−1∇1
xf(xk) when p = 2 and the Hessian

∇2
xf(xk) is positive definite, provided the regularized model has not increased, that is provided

(2.5) holds. Indeed this step automatically ensures (2.6) since then ∇1
sTf,2(xk, sk) = 0. The

condition (2.5) however avoids situations where the model decrease mk(0) −mk(sk) is tiny
but ‖sk‖r is large, which is exactly what happens in the example [13] showing convergence of
Newton’s method to a first-order ε1-approximate minimizer in O(ε−21 ) evaluations.

We also note that we could use an iteration-dependent θ1,k in (2.6), provided it is strictly
bounded below by one and bounded above by a constant. We have ignored this possibility
for the sake of simplicity.

Having modified the requirements on the step, we now need to verify that the new condi-
tions (2.5) and (2.6) are compatible. We start by deriving an expression for the subdifferential
∂(‖ · ‖p+1

r )(s).

Lemma 2.1 We have that

∂(‖ · ‖r)(s) = {v ∈ IRn | vT s = ‖s‖r and ‖v‖r,1 = 1} (2.9)

and
∂C(‖ · ‖p+1

r )(s) = ∂(‖ · ‖p+1
r )(s) = (p+ 1)‖s‖pr ∂(‖ · ‖r)(s), (2.10)

where ∂C denotes the Clarke subdifferential.

Proof. The identity (2.9) is standard (see [28, Example 3.1] for instance). By composi-
tion of the norm with the increasing convex differentiable function φ(t) = tp+1 (on IR+),
we obtain from [28, Theorem 4.3.1] that

∂(‖ · ‖p+1
r )(s) = {αs ∈ IRns | α ∈ φ′(‖s‖r) and s ∈ ∂(‖ · ‖r)(s)},

which is the second equality in (2.10). Since ‖ · ‖p+1
r is also Lipschitz continuous, it is

Clarke regular and thus the Clarke subdifferential and the standard one coincide (see [19,
Proposition 4.3]), giving the first equality in (2.10). 2

This allows us to derive the following characterization of a minimizer of mk.
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Lemma 2.2 Let s∗k be a local minimizer of mk. Then

‖∇1
sTf,p(xk, s

∗
k)‖r,1 =

σk
p!
‖s∗k‖pr . (2.11)

Proof. Since mk is Lipschitz continuous, the Clarke criticality of s∗k implies that

0 ∈ ∂Cmk(s
∗
k) =

{
∇1
xTf,p(xk, s

∗
k)
}

+
σk

(p+ 1)!
∂C(‖s∗k‖p+1

r ), (2.12)

where we have used the property of the Clarke subdifferential of the sum of two locally
Lipschitz functions [19, Exercice 1.4] and the fact that, since Tf,p(xk, s) is continuously
differentiable as a function of s, ∂CTf,p(x, .)(s) = {∇1

sTf,p(xk, s)}. Using now (2.10), we
deduce from this identity and (2.12) that there exists a vector ξ ∈ ∂(‖ · ‖r)(s∗k) such that

∇1
sTf,p(xk, s

∗
k) = −σk

p!
‖s∗k‖pr ξ. (2.13)

Moreover, (2.9) implies that ‖ξ‖r,1 = 1. Taking norms in (2.13) gives (2.11). 2

The (scalar) necessary condition (2.11) is clearly weaker that the (vector) identity (2.12), but
is nevertheless sufficient to derive the following crucial result.

Corollary 2.3 A step satisfying both (2.5) and (2.6) always exists.

Proof. From

mk(s) ≥
σk

(p+ 1)!
‖s‖p+1

r − |f(x)| −
p∑
`=1

1

`!
‖∇`xf(xk)‖r,`‖s‖`r,

we obtain lim‖s‖r→+∞mk(s) = +∞ which, together with the continuity of mk(s), implies
that mk admits at least one minimizer s∗k over IRn, satisfying mk(s

∗
k) ≤ mk(0). Applying

Lemma 2.2 then gives that (2.6) holds at s∗k for any θ1 ≥ 1. 2

An important comment is in order at this point. Because the Clarke subdifferential of the
norm is not necessarily continuous in our context, it may seem at first sight that obtaining
a step satisfying the conditions (2.5) and (2.6) may require the computation of an exact
minimizer s∗k of the model, which is potentially costly. Fortunately, this fear is unfounded
because both the left- and the right-hand sides of (2.6) are continuous functions of s and the
inequality therefore also holds in a neighbourhood of s∗k provided θ1 > 1. Any convergent
minimization algorithm (such as those proposed, for instance, in [21, 33, 30, 11, 16, 25] or,
more generally, in [29], or in Section 5) applied on the model is therefore bound to produce
a suitable step sk in a finite number of iterations.

Following well-established practice, we now define

S def
= {k ≥ 0 | xk+1 = xk + sk} = {k ≥ 0 | ρk ≥ η1} and Sk

def
= S ∩ {1, . . . , k},
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the set of indeces of “successful iterations”, and the set of indeces of successful iterations up
to iteration k, respectively. We also recall a well-known result bounding the total number of
iterations of an adpative regularization method in terms of the number of successful ones.

Lemma 2.4 [6, Theorem 2.4] Suppose that the AR1pGN algorithm is used and that σk ≤
σmax for some σmax > 0. Then

k ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (2.14)

3 Evaluation complexity for the AR1pGN algorithm

Before discussing our analysis of evaluation complexity, we first formalize our assumptions on
problem (1.1).

AS.1 f is p times differentiable and its p-th derivative ∇pxf(x) is is globally Lipschitz
continuous in the ‖ · ‖r norm, that is there exists Lf,p ≥ 0 such that

‖∇pxf(x)−∇pxf(y)‖r,p ≤ Lf,p‖x− y‖r for all x, y ∈ IRn,

where the ‖ · ‖r norm in the left-hand side is defined by (2.2).

AS.2 There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.
Assumption AS.1 recasts the usual context for the analysis of complexity of adaptive regular-
ization methods in the context of the general norms, while AS.2 ensures that problem (1.1)
is well-defined. AS.1 yields the well-known Lipschitz error bounds.

Lemma 3.1 Suppose that AS.1 holds and that k ∈ S. Then

|f(xk+1)− Tf,p(xk, sk))| ≤
Lf,p

(p+ 1)!
‖sk‖p+1

r (3.1)

and

‖∇jxf(xk+1)−∇jsTf,p(xk, sk)‖r,j ≤
Lf,p

(p− j + 1)!
‖sk‖p−j+1

r (3.2)

for j ∈ {1, . . . , p}.

Proof. The proof is a direct extension of [15, Lemma 2.1] with β = 1 that now uses ‖ ·‖r
instead of ‖ · ‖2 and exploits (2.2). It is given in appendix for completeness. 2

The analysis in the rest of this section follows that presented in [6] quite closely. We first
state a simple lower bound on the decrease of the Taylor expansion.
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Lemma 3.2

∆Tf,p(xk, sk)
def
= Tf,p(xk, 0)− Tf,p(xk, s) ≥

σk
(p+ 1)!

‖sk‖p+1
r . (3.3)

Proof. Direct from (2.5) and (2.1). 2

We next derive an upper bound on the regularization parameter.

Lemma 3.3 Suppose that AS.1 holds. Then, for all k ≥ 0,

σk ≤ σmax
def
= γ3 max

[
σ0,

Lf,p
(1− η2)

]
. (3.4)

Proof. See [6, Lemma 2.2]. Using (2.7), (3.1), and (3.3), we obtain that

|ρk − 1| ≤
(p+ 1)!|f(xk + sk)− Tf,p(xk, sk)|

σk‖sk‖p+1
r

≤
Lf,p
σk

.

Thus, if σk ≥ Lf,p/(1− η2), then ρk ≥ η2, iteration k is successful and (2.8) implies that
σk+1 ≤ σk. The mechanism of the algorithm then guarantees that (3.4) holds. 2

The next lemma remains in the spirit of [6, Lemma 2.3], but now takes the new condition
(2.6) into account, avoiding any reference to the model’s derivative and resulting in a simpler
proof.

Lemma 3.4 Suppose that AS.1 holds and that k ∈ S before termination. Then

‖sk‖pr ≥
p!

Lf,p + θ1σmax
ε1. (3.5)

Proof. Successively using the fact that termination does not occur at iteration k, the
triangle inequality, (3.2) for j = 1, condition (2.6) and (3.4), we deduce that

ε1 < ‖∇1
xf(xk+1)‖r,1

≤ ‖∇1
xf(xk+1)−∇1

xTf,p(xk, sk)‖r,1 + ‖∇1
xTf,p(xk, sk)‖r,1

≤ Lf,p
p!
‖sk‖pr + θ1

σk
p!
‖sk‖pr .

This in turn directly implies (3.5). 2
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We may now resort to the classical “telescoping sum” argument to obtain the desired com-
plexity result.

Theorem 3.5 Suppose that AS.1–AS.2 hold. Then the AR1pGN algorithm requires at
most

(p+ 1)!

η1σmin

(
Lf,p + θ1σmax

p!

) p+1
p f(x0)− flow

ε
p+1
p

1

successful iterations and evaluations of {∇ixf}i=1,2 and at most

(p+ 1)!

η1σmin

(
Lf,p + θ1σmax

p!

) p+1
p f(x0)− flow

ε
p+1
p

1

(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)

evaluations of f to produce a vector xε1 ∈ IRn such that ‖∇1
xf(xε1)‖r,1 ≤ ε1.

Proof. Let k be the index of an iteration before termination. Then, using AS.2, the
definition of successful iterations, (3.3) and (3.5),

|Sk| ≤
(p+ 1)!

η1σmin

(
Lf,p + θ1σmax

p!

)− p+1
p f(x0)− flow

ε
p+1
p

1

for any k before termination, and the first conclusion follows since the derivatives are
only evaluated once per successful iteration. Applying now Lemma 2.4 gives the second
conclusion. 2

4 Approximate second-order minimizers for p = 2

We now turn the second-order case and from now on, limit our analysis to the case where
p = 2. We are thus interested in finding approximate second-order minimizers, that is, in line
with our desire to measure distances in the primal space with the norm ‖ · ‖r, points at which

λr[∇2
xf(xk)] ≥ −ε2 where λr[H]

def
= min

v 6=0

〈Hv, v〉
‖v‖2r

. (4.1)

Guaranteeing this result may however be unreachable in practice, because the computation
of λr[H] may be unrealistically expensive for some norms. For instance, if one consider the
case where ‖ · ‖r = ‖ · ‖∞, computing λr[H] for indefinite H amounts to solving an indefinite
quadratic optimization problem with bound constraints, a problem which is known to be
NP-complete [32, 35]. As a consequence, we may have to live with approximations. Observe
that, if ua is any vector with ‖ua‖r = 1, then λr[H] ≤ 〈Hua, ua〉. Thus, in what follows, we
assume that, for a symmetric H, we can compute a vector ua and an associated scalar λa
such that, for a given constant τ ∈ (0, 1],

‖ua‖r = 1, λa
def
= 〈Hua, ua〉 and

(
λa ∈

[
λr[H], τλr[H]

]
if λr[H] < 0

)
, (4.2)
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a requirement potentially more affordable than (4.1). We comment in Section 6 on strategies
related to this approximation. Meanwhile, and with this caveat in mind, we now establish a
second-order necessary condition for a global minimizer of a regularized quadratic model m.
As a first step, we derive a lower bound on the model decrease that can be obtained along a
direction of sufficient negative curvature.

Lemma 4.1 Let φ(s) = f0 + 〈g, s〉+ 1
2
〈Hs, s〉 be a quadratic polynomial in s ∈ IRn, and

m(s) = φ(s) + 1
6
σ‖s‖3r , where σ > 0 is a constant and ‖ · ‖r is a general norm. Consider

s 6= 0 and let λa and ua satisfy (4.2), where we additionally choose the sign of ua to
ensure that 〈g + Hs, ua〉 ≤ 0 and assume that λa + σ‖s‖r < 0. Then there exists an
α > 0 such that

m(s)−m(s+ α‖s‖rua) ≥
3(λa + σ‖s‖r)

4σ2

[
ψ(s)σ2‖s‖2r −

3

4
(λa + σ‖s‖r)2

]
, (4.3)

where

ψ(s)
def
= max

[
0, 1 + 2

〈g +Hs, ua〉
σ‖s‖2r

]
. (4.4)

Proof. Setting d = ‖s‖rua, we have that, for α > 0,

mk(s+αd) = mk(s) + α〈g +Hs, d〉+ 1
2
α2〈Hd, d〉+ 1

6
σ‖s+ αd‖3r − 1

6
σ‖s‖3r

≤ mk(s) + 1
2
ασ‖s‖3r

(
2
〈g +Hs, ua〉

σ‖s‖2r

)
+ 1

2
α2λa‖s‖2r + 1

6
σ‖s+ αs‖3r − 1

6
σ‖s‖3r .

where we have used (4.2) and the fact that ‖d‖r = ‖s‖r implies the inequality ‖s+αd‖3r ≤
‖s+ αs‖3r . Moreover

‖s+ αs‖3r − ‖s‖3r =
[
(1 + α)3 − 1

]
‖s‖3r = α

[
3 + 3α+ α2

]
‖s‖3r ,

and hence, using (4.4),

mk(s+ αd) ≤ mk(s) + 1
6
σ‖s‖3r

(
3αψ(s) + 3α2 + α3

)
+ 1

2
α2λa‖s‖2r . (4.5)

This in turn yields that, for α > 0,

m(s)−m(s+ αd) ≥ −α‖s‖
2
r

2

[
σ‖s‖r

3
α2 + (λa + σ‖s‖r)α+ σ‖s‖rψ(s)

]
def
= −α‖s‖

2
r

2
q0(α).

Now q0 = aα2+bα+c is a convex quadratic in α which admits a minimum for α = −b/(2a)
of value q(−b/(2a)) = c− b2/(4a). Since b = λa + σ‖s‖r < 0,

m(s)−m(s+ αd) ≥
(

3(λa + σ‖s‖r)
2σ‖s‖r

)
‖s‖2r

2

[
σ‖s‖rψ(s)− 3(λa + σ‖s‖r)2

4σ‖s‖r

]
for α = −b/(2a) > 0, which implies (4.3). 2
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This leads to the following necessary optimality condition.

Theorem 4.2 Let φ(s) = f0 + 〈g, s〉 + 1
2
〈Hs, s〉 be a quadratic polynomial in s ∈ IRn,

and s∗ be a global minimizer of m(s) = φ(s) + 1
6
σ‖s‖3r , where σ > 0 is a constant and

‖ · ‖r is a general norm. Let λa and ua satisfy (4.2), where we additionally choose the
sign of ua to ensure that 〈g +Hs, ua〉 ≤ 0. Then

λa + ω(s∗)σ‖s∗‖r ≥ 0, (4.6)

where

ω(s)
def
=

 1 +
2
√
ψ(s)√
3
≤ 1 + 2√

3

def
= κω if s 6= 0,

1 otherwise,
(4.7)

and ψ(s) is given by (4.4).

Proof. When H is positive-semidefinite, (4.6) follows trivially. Assume now that H
admits at least one negative eigenvalue. Suppose first that s∗ 6= 0. If λa + σ‖s∗‖r ≥ 0,
(4.6) trivially follows. Suppose thus that λa + σ‖s∗‖r < 0. Then (4.3) implies that there
exists an α > 0 such that m(s∗ + α‖s∗‖rua) < m(s∗) (which is impossible), unless

ψ(s∗)σ
2‖s∗‖2r >

3

4
(λa + σ‖s∗‖r)2.

If ψ(s∗) = 0, this cannot happen. Otherwise, this last inequality requires that

√
ψ(s∗)σ‖s∗‖r >

√
3

4

∣∣∣λa + σ‖s∗‖r
∣∣∣ > −√3

2

(
λa + σ‖s∗‖r

)
,

which, given (4.7), yields (4.6).

Suppose now that s∗ = 0 and that λa < 0. It is then easy to verify that, if the sign of ua
is chosen to ensure that 〈g, ua〉 ≤ 0 and

α ∈
[
0,−3λa

2σ

]
,

then, using (4.2),

m(αua) = f0 + α〈g, ua〉+ 1
2
α2λa + 1

6
α3σ ≤ f0 +

9λ3a
16σ2

= m(0) +
9λ3a
16σ2

< m(0), (4.8)

which again contradicts the assumption that s∗ = 0 is a global minimum of m. Thus
λa ≥ 0 and (4.6) also holds. 2

It is remarkable that this lemma provides a “second-order” necessary condition for a global
minimizer of quadratic polynomial regularized with a cubic term in a possibly non-smooth
norm, despite the first and second derivatives of this objective function failing to exist.
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Also note that, as long as 0 < ‖g + Hs‖r,1 ≤ 1
2
σ‖s‖2r , our assumptions on ua and the

Cauchy-Schwarz inequality imply that

ψ(s) = max

[
0, 1 +

‖g +Hs‖r,1
1
2
σ‖s‖2r

〈g +Hs, ua〉
‖g +Hs‖r,1‖ua‖r

]
≥ max

[
0, 1 +

〈g +Hs, ua〉
‖g +Hs‖r,1‖ua‖r

]
= 1 +

〈g +Hs, ua〉
‖g +Hs‖r,1‖ua‖r

∈ [0, 1].

and the maximum with zero in (4.4) is unnecessary. This is particular the case if s is any
local minimizer because Lemma 2.2.

It is interesting to pause at this point to stress that the necessary first- and second-
order conditions (2.11) and (4.6), while sufficient for our purposes as we will see, are merely
necessary, and by no means sufficient to guarantee a local minimizer. This is illustrated in
Figure 4.1.
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Figure 4.1: Admissible regions for the `1- (left), `2- (middle) and `∞- (right) norms

In this figure, a two-dimensional model is constructed with a zero gradient at the origin and
an indefinite Hessian(1) scaled such that λr[H] = −1, τ = 1 and with the regularization
parameter σ is chosen equal to 6. The left picture corresponds to the choice ‖ · ‖r = ‖ · ‖1,
the central one to ‖ · ‖r = ‖ · ‖2 and the right one to ‖ · ‖r = ‖ · ‖∞, all other parameters
being identical. In each case, the region of the plane where (2.5) holds is the interior of the
two green lobes and the regions were the deviation from (2.11) is bounded by 0.01 ( 1

2
)σ‖s‖2r

are shown in blue, the first being the small region surrounding the origin (where the gradient
is zero) and the second the zone between the two blue concentric curves. Finally, the region
where the deviation from (4.6) does not exceed 0.1σ‖s‖r is the exterior of the region around
the origin delineated in red. Note that the region around the origin which is admissible for
(2.11) alone is excluded for (4.6). Thus in all cases, the admissible regions for (2.5), (2.11) and
(4.6) consist of the regions limited by any of the shown curves and containing the minimizers
marked with a black dot. We immediately notice that these regions are relatively large and
may extend reasonably far from the minimizers. We also see that the geometry of these
regions, while simple for the Euclidean norm, can be quite complicated for other norms.

Our algorithm for finding second-order ε2-approximate minimizers is described below.

(1)Chosen to be I − 2uuT /〈u, u〉 with uT = (5, 1).
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Algorithm 4.1: Second-Order Adaptive Regularization with General Norm
(AR2GN)

Step 0: Initialization. An initial point x0 ∈ IRn, a regularization parameter σ0 a
desired final gradient accuracy ε, ε2 ∈ (0, 1] and a model degree p = 2 are given.
The constants η1, η2, γ1, γ2, γ3, θ1 > 1, θ2 > 1, and σmin are also given such that

σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3 and τ ∈ (0, 1]. (4.9)

Compute f(x0) and set k = 0.

Step 1: Check for termination. Compute λa,k and ua,k satisfying (4.2) with H =
∇2
xf(xk), and terminate with xε = xk if

‖gk‖r,1 ≤ ε1 and λa,k ≥ −τε2. (4.10)

Step 2: Step calculation. Compute a step sk which sufficiently reduces the model
mk in the sense that (2.5) and (2.6) hold (for p = 2) and, additionally,

λa,k + θ2ω(sk)σk‖sk‖r ≥ 0. (4.11)

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define ρk as in
(2.7). If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set σk+1 according to (2.8), increment
k by one and go to Step 1.
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As is the case for θ1 in the AR1pGN algorithm, choosing an iteration dependent θ2,k is possible
provided it is strictly bounded below by 1 and bounded above by a constant.

The existence of a suitable step in the AR2GN algorithm directly hinges on Theorem 4.2.

Lemma 4.3 A step satisfying (2.5), (2.6) (for p = 2) and (4.11) always exists.

Proof. It follows from Corollary 2.3 and Theorem 4.2 (with φ(s) = Tf,2(xk, s), m = mk

and σ = σk) and the bound θ2 > 1 that the required conditions are satisfied at every
global minimizer of the model mk. 2

As for the first-order case, continuity of ‖s‖r and of Tf,2(x, s) with respect to s implies that
conditions (2.5), (2.6) and (4.11) also hold in a neighbourhood of a global minimizer whenever
θ1 > 1 and θ2 > 1. Such a neigbourhood can be reached for instance by using the algorithm
discussed in Section 5.

Noting that Lemmas 2.4, 3.1, 3.2 and 3.3 remain valid for the AR2GN algorithm, we now
provide a lower bound on the length of the step, which simplifies that of [14, Lemma 3.4].

Lemma 4.4 Suppose that AS.1 holds for p = 2 and that, for k ∈ S before termination,
λa,k+1 < −τε2. Then

‖sk‖r ≥
τ

Lf,2 + τ−1θ2κωσmax
ε2.

Proof. Let k ∈ S such that λa,k+1 < −τε2. Since minz[a(z) + b(z)] ≥ minz a(z) +
minz b(z), we deduce that

λa,k+1 ≥ λr[∇2
xf(xk+1)] = min

‖d‖r=1
〈∇2

xf(xk+1)d, d〉

= min
‖d‖r=1

[
〈∇2

xf(xk+1)d, d〉 − 〈∇2
xf(xk)d, d〉+ 〈∇2

xf(xk)d, d〉
]

≥ min
‖d‖r=1

[
〈∇2

xf(xk+1)d, d〉 − 〈∇2
xf(xk)d, d〉

]
+ min
‖d‖r=1

〈∇2
xf(xk)d, d〉

= min
‖d‖r=1

〈(∇2
xf(xk+1)−∇2

xf(xk))d, d〉+ min
‖d‖r=1

〈∇2
xf(xk)d, d〉

≥ −‖∇2
xf(xk+1)−∇2

xf(xk)‖r,2 + λr[∇2
xf(xk)]

≥ −‖∇2
xf(xk+1)−∇2

xf(xk)‖r,2 + τ−1λa,k

≥ −
(
Lf,2‖sk‖r + τ−1θ2ω(sk)σk‖sk‖r

)
,

where we also used (4.2) (twice), (3.2) for p = j = 2, (4.11) and (4.7). The conclusion of
the lemma then follows from Lemma 3.3, (4.7) and the fact that λa,k+1 < −τε2. 2

This lemma and its proof show the potentially severe effect of the approximation bound τ
whose inverse occurs squared as a factor of θ2κωσmax. This is not surprising because the result
is based on the closeness of λr[∇2

xf(xk)] and λr[∇2
xf(xk+1)], both of which are approximated

within that factor.
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We conclude our analysis by stating our final evaluation complexity bound for finding
second-order ε2-approximate minimizers.

Theorem 4.5 Suppose that AS.1–AS.2 hold for p = 2 and let

κAR2GN
def
= max

{[
1
2
(Lf,2 + θ1σmax)

]3/2
,
[
τ−1(Lf,2 + τ−1θ2κωσmax)

]3
,
}
.

Then the AR2GN algorithm requires at most(
6κAR2GN
η1σmin

)
f(x0)− flow
min

[
ε
3/2
1 , ε32

] (4.12)

successful iterations and evaluations of g and H and at most(
6κAR2GN
η1σmin

)
f(x0)− flow
min

[
ε
3/2
1 , ε32

] (1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
(4.13)

evaluations of f to produce a vector xε ∈ IRn such that

‖∇1
xf(xε)‖r,1 ≤ ε1 and λr[∇2

xf(xε)] ≥ −ε2. (4.14)

Proof. We prove the upper bounds (4.12) and (4.13) on the number of evaluations
requested to produce an iterate xε at iteration kε such that

‖∇1
x(xε)‖r,1 ≤ ε1 and λa,kε ≥ −τε2

is identical to that of Theorem 3.5, except that p = 2 and the decrease(
p!

Lf,p + θ1σmax

) p+1
p

ε
p+1
p

1

is now replaced, using Lemmas 3.4 and 4.4, by

min

{(
2

Lf,2 + θ1σmax

) 3
2

ε
3
2
1 ,

(
1

τ−1(Lf,2 + τ−1θ2κωσmax)

)3

ε32

}
.

yielding the constant κAR2GN. The desired conclusion then follows from (4.2). 2

We emphasize again that a small value of τ−1 could lead to disastrous growth of the constant
κAR2GN in the above theorem, indicating potential difficulties. Consequences and alternative
are discussed in Section 6.
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5 An algorithm for approximate minimization of regularized
quadratics

This section is devoted to the definition and analysis of a method whose purpose is to minimize
a model of the form

m(s) = f0 + 〈g, s〉+ 1
2
〈Hs, s〉+ 1

6
σ‖s‖3r , (5.1)

approximately, but enough for the conditions requested in Step 2 of the AR1pGN (for p = 2)
and AR2GN algorithms to hold for m = mk. We first state a simple technical lemma.

Lemma 5.1 Consider the quadratic polynomial q(t) = at2+bt+c with a 6= 0 and c > 0.
Then, for any ν > 0,

q(t∗) > 1
2
c for t∗ = min

[
c

ν + 3|b|
,

1

3

√
c

|a|

]
. (5.2)

Proof. We immediately obtain that

q(t∗) ≥ c− |b|
(

c

ν + 3|b|

)
− |a|

(
1

9

c

|a|

)
≥ c
(

1− 1
3
− 1

9

)
> 1

2
c.

2

The constant ν in (5.2) is introduced to safeguard against b = 0 and its value can be chosen
for convenience in what follows.

We may start building our specialized method (which we will call the RQMIN algorithm)
for minimizing the regularized quadratic (5.1). The algorithm will unsurprisingly be iterative
and we will denote its successive iterates by {sk}k≥0 (the index k refers, for the rest of this
section, to RQMIN iterations, and therefore gk = g+Hsk). We will also make the choice to start
from the origin, that is s0 = 0. Moreover, we will construct the iterates sk to ensure that the
sequence {m(sk)}k≥0 is monotonically decreasing from m(0). To motivate the forthcoming
detailed description of the algorithm ensuring this property, we now consider the magnitude
of the model decrease which can be obtained at a given iterate sk, if any. We know from
Lemma 2.2 that, if sk were a local minimizer of m, then

‖gk‖r,1 = 1
2
σ‖sk‖2r . (5.3)

This is the condition that the RQMIN algorithm will strive to achieve. If (5.3) fails, we will
now show that taking a step from sk along a well chosen direction dk does produce a model
decrease

∆m(α)
def
= m(sk)−m(sk+αdk) = −α〈gk, dk〉− 1

2
α2〈Hdk, dk〉− 1

6
σ‖sk+αdk‖3r+ 1

6
σ‖sk‖3r (5.4)

which is suitably large. We start by analyzing the case where the step is too short (in view
of (5.3)), in which case a generalized “Cauchy point” will provide adequate descent.
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Lemma 5.2 Let sk ∈ IRn such that m(sk) ≤ m(0) and

‖gk‖r,1 ≥ 1
2
σ‖sk‖2r . (5.5)

Then

m(sk)−m(sCk ) ≥ 1
2

min

 ∣∣‖gk‖r,1 − 1
2
σ‖sk‖2r

∣∣2
1 + 3

2
(‖H‖r,2 + σ‖sk‖r)

,

∣∣‖gk‖r,1 − 1
2
σ‖sk‖2r

∣∣ 32
3
√
σ

 , (5.6)

where gk = g +Hsk and

sCk = sk + αCk dk, with dk = arg min
‖v‖r=1

〈gk, v〉 and αCk = arg min
α>0

m(sk + αdk). (5.7)

Proof. If ‖gk‖r,1 = 1
2
σ‖sk‖2r , the definition of sCk implies that m(sk) −m(sCk ) ≥ 0 and

(5.6) trivially follows. Suppose therefore that the inequality in (5.5) is strict, and consider
the unidimensional minimization of m(sk + αdk) as a function of the scalar α, where dk
is given by (5.7). Hence (5.4) holds.

Suppose first that sk = 0 and thus that gk = g. Then

∆m(α) = α q0(α) where q0(α) = ‖gk‖r,1 − 1
2
α〈Hdk, dk〉 − 1

6
σα2.

We have that q0(0) = ‖gk‖r,1 > 0 and q0(α) is a strictly concave quadratic. Hence the
equation q0(α) = 0 has a positive real root and we may apply Lemma 5.1 with ν = 1 to
deduce that

q0(α0) > 1
2
‖gk‖r,1 where α0 = min

[
‖gk‖r,1

1 + 3
2
|〈Hdk, dk〉|

,
1

3

√
‖gk‖r,1

1
6
σ

]
,

and thus that

∆m(α0) ≥ α0 q0(α0) > 1
2
‖gk‖r,1 min

[
‖gk‖r,1

1 + 3
2
‖H‖r,2

,
1

3

√
‖gk‖r,1
σ

]
. (5.8)

Suppose now that ‖sk‖r > 0 and define vk = ‖sk‖rdk. Then, because ‖vk‖r = ‖sk‖r, we
have that ‖sk + αsk‖r ≥ ‖sk + αvk‖r and hence, from (5.4),

∆m(α) ≥ α‖gk‖r,1‖sk‖r − 1
2
α2〈Hvk, vk〉 − 1

6
σ‖sk + αsk‖3r + 1

6
σ‖sk‖3r . (5.9)

Observe now that

‖sk + αsk‖3r − ‖sk‖3r = [(1 + α)3 − 1]‖sk‖3r = α(3 + 3α+ α2)‖sk‖3r ,

and thus (5.9) becomes

∆m(α) ≥ α
[
‖gk‖r,1‖sk‖r − 1

2
α〈Hvk, vk〉 − 1

6
σ(3 + 3α+ α2)‖sk‖3r

] def
= α q1(α) (5.10)
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with
q1(α) = (‖gk‖r,1‖sk‖r − β)− α ( 1

2
〈Hvk, vk〉+ β)− α2 ( 1

3
β) ,

where we have defined β
def
= 1

2
σ‖sk‖3r . Note that the constant term is positive because

we have assumed that ‖gk‖r,1 > 1
2
σ‖sk‖2r . Moreover, q1(α) is strictly concave. As above,

this implies that the equation q1(α) = 0 has a positive real root and we may then apply
Lemma 5.1 with ν = 1

2
‖sk‖2r to deduce that

q1(α1) >
1

2
(‖gk‖r,1‖sk‖r − β) ,

where

α1
def
= min

[
‖gk‖r,1‖sk‖r − β

1
2
‖sk‖2r + 3 | 1

2
〈Hvk, vk〉+ β|

,

√
‖gk‖r,1‖sk‖r − β

3
√

1
3
β

]
,

and hence, from (5.10),

∆m(α1) ≥ α1 q(α1)

≥ 1

2
(‖gk‖r,1‖sk‖r − β) min

[
‖gk‖r,1‖sk‖r − β

1
2
‖sk‖2r + 3 | 1

2
〈Hvk, vk〉+ β|

,

√
‖gk‖r,1‖sk‖r − β

3
√

1
3
β

]

=
1

2
min

[
(‖gk‖r,1‖sk‖r − β)2

1
2
‖sk‖2r + 3| 1

2
〈Hvk, vk〉+ β|

,
(‖gk‖r,1‖sk‖r − β)

3
2

3
√

1
3
β

]
.

Using the identity ‖vk‖r = ‖sk‖r and substituting the definition of β, this finally gives
that

∆m(α1) ≥
1

2
min

[
(‖gk‖r,1 − 1

2
σ‖sk‖2r)2

1 + 3
2
(‖H‖r,2 + σ‖sk‖r)

,
(‖gk‖r,1 − 1

2
σ‖sk‖2r)

3
2

3
√
σ

]
. (5.11)

Combining now (5.8) and (5.11) gives (5.6). 2

Note that the “Cauchy step” dk in (5.7) is made in the direction of the steepest descent for
the unregularized quadratic, that is ignoring the regularization term.

We now consider the alternative to (5.5), which, as (5.3) indicates, means that the step
sk is too large. It therefore makes sense to consider moving back from sk towards the origin.

Lemma 5.3 Let sk ∈ IRn such that m(sk) ≤ m(0) and

‖gk‖r,1 < 1
2
σ‖sk‖2r . (5.12)

Then

m(sk)−m(sRk ) ≥ 1
2

min

 ∣∣‖gk‖r,1 − 1
2
σ‖sk‖2r

∣∣2
1 + 3

2
(‖H‖r,2 + σ‖sk‖r)

,

∣∣‖gk‖r,1 − 1
2
σ‖sk‖2r

∣∣ 32
3
√
σ

 , (5.13)

where gk = g +Hsk and

sRk = (1− αRk )sk with αRk = arg min
α>0

m(sk − αsk). (5.14)
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Proof. Note that (5.12) implies that sk 6= 0. Then, from (5.4) with dk = −sk,

∆m(α) ≥ α〈gk, sk〉 − 1
2
α2〈Hsk, sk〉 − 1

6
σ‖sk − αsk‖3r + 1

6
σ‖sk‖3r . (5.15)

Now
‖sk − αsk‖3r − ‖sk‖3r = [(1− α)3 − 1]‖sk‖3r = −α(3− 3α+ α2)‖sk‖3r ,

so that, from (5.15),

∆m(α) ≥ α
[
〈gk, sk〉 − 1

2
α〈Hsk, sk〉+ 1

6
σ(3− 3α+ α2)‖sk‖3r

] def
= α q2(α), (5.16)

where
q2(α) = (〈gk, sk〉+ β) + α (− 1

2
〈Hsk, sk〉 − β) + α2 ( 1

3
β) .

Observe now that, because sk 6= 0 and, since we have assumed that m(sk) ≤ m(0), we
have that q2(1) = ∆m(1) ≤ 0. Moreover, the Cauchy-Schwarz inequality yields that

|〈gk, sk〉| ≤ ‖gk‖r,1‖sk‖r < 1
2
σ‖sk‖3r = β

and hence
q2(0) = 〈gk, sk〉+ β > 0.

This in turn implies the existence of a real root of q2(α) in (0, 1], and we may then again
apply Lemma 5.1 with ν = 1

2
‖sk‖2r to deduce that

q2(α2) > 1
2

(
〈gk, sk〉+ β

)
, (5.17)

where

α2 = min

[
〈gk, sk〉+ β

1
2
‖sk‖2r + 3 |− 1

2
〈Hsk, sk〉+ β|

,
1

3

√
〈gk, sk〉+ β

1
3
β

]
. (5.18)

Moreover
〈gk, s〉+ β ≥ −‖gk‖r,1‖s‖r + 1

2
σ‖s‖3r > 0.

Combining this bound with (5.16), (5.18) and (5.17), we obtain that

∆m(α2) ≥ 1
2

min

[
( 1
2
σ‖sk‖2r − ‖gk‖r,1)2

1 + 3
2

(‖H‖r,2 + σ‖sk‖r)
,
( 1
2
σ‖sk‖2r − ‖gk‖r,1)

3
2

3
√
σ

]
, (5.19)

which yields (5.13). 2

Remarkably, (5.6) and (5.13) give identical lower bounds for the model decrease. Lemmas 5.2
and 5.3 generalize [9, Lemma 2.1] to the case where sk 6= 0 and general norms are allowed.

We may now complete the analysis of what can happen at iterate sk (of the still unspecified
RQMIN algrithm) if the second-order necessary condition of Theorem (4.2) fails. We first state
an easy lemma giving lower and upper bounds on the step sk, dependent on the “most negative
curvature” of the quadratic given by (4.1).
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Lemma 5.4 Suppose that, for some sk and some β ≥ 0,

m(s0)−m(sk) ≥ β. (5.20)

Then,

‖sk‖r ≤
1
2
‖H‖r,2 +

√
‖H‖2r,2 + 2

3
σ‖g‖r,1

1
3
σ

def
= κs,upp, (5.21)

and, if β > 0,

‖sk‖r ≥


√
‖g‖2r,1 + 2β|λr[H]| − ‖g‖r,1

|λr[H]| if λr[H] < 0

β
‖g‖r,1

otherwise.

(5.22)

Proof. Since s0 = 0 and m(sk) ≥ m(0) + 〈g, sk〉+ 1
2
〈Hsk, sk〉, (5.20) implies that

−‖g‖r,1‖sk‖r + 1
2

min
[
0, λr[H]

]
‖sk‖2r ≤ 〈g, sk〉+ 1

2
〈Hsk, sk〉 ≤ m(sk)−m(0) ≤ −β,

which gives (5.22). Observe now that (5.20) implies that

1
6
σ‖sk‖3r ≤ |〈g, sk〉|+ 1

2
|〈Hsk, sk〉| ≤ ‖g‖r,1‖sk‖r + 1

2
‖H‖r,2‖sk‖2r ,

which yields (5.21). 2

Armed with this result, we now derive the model decrease when negative curvature is present.

Lemma 5.5 Suppose that λa < 0 where λa and ua satisfy (4.2) and that the sequence
{m(sk)}k≥0 is non-increasing. For k ≥ 0, define

sEk = sk +αEk uk where uk = −sign
(
〈gk, ua〉

)
ua and αEk = arg min

α>0
m(sk +αuk). (5.23)

Then

m(s0)−m(s1) ≥ m(s0)−m(sE0 ) ≥ 9|λa|3

16σ2
(5.24)

and there exists a constant κs such that, for k ≥ 1,

‖sk‖r ≥ κs. (5.25)

Moreover, if
λa + σω(sk)‖sk‖r < 0 (5.26)

at iteration k ≥ 1, then one has that

m(sk)−m(sEk ) ≥ 9‖sk‖2r
16σ2

∣∣∣λa + σω(sk)‖sk‖r
∣∣∣3. (5.27)
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Proof. The first inequality in (5.24) results from (5.31) and the second is a direct
consequence of the proof of Theorem 4.2 (see (4.8)). The existence of κs such that (5.25)
holds for k ≥ 1 then follows from Lemma 5.4 with β = 9

16
|λa|3/σ2 and our assumption

that {m(sk)} is non-increasing. We now prove (5.27). From (5.26), we have that

λa + σω(sk)‖sk‖r = −µσ‖sk‖r (5.28)

for some µ > 0. But (4.7) implies that 0 > λa + σ‖sk‖r = −|λa + σ‖sk‖r|, and thus, from
(4.7),

|λa + σ‖sk‖r| =
2
√
ψ(sk)√

3
σ‖sk‖r + µσ‖sk‖r, (5.29)

from which we obtain that

(
λa + σ‖sk‖r

)2
=

4

3
ψ(sk)σ

2‖sk‖2r + σ2‖sk‖2r

(
µ2 +

4
√
ψ(sk)√

3
µ

)
.

Substituting this inequality in (4.3), then gives that there exists an α > 0 such that

m(sk)−m(sk + α‖sk‖rua) ≥
3(λa + σ‖sk‖r)

4σ2

[
−3

4
σ2‖sk‖2r

(
µ2 +

4
√
ψ(sk)√

3
µ

)]

=
9

16

∣∣∣λa + σ‖sk‖r
∣∣∣‖sk‖2r

(
µ2 +

4
√
ψ(sk)√

3
µ

)
.

But (5.29) implies that
∣∣λa + σ‖sk‖r

∣∣ ≥ µσ‖sk‖r, and thus

m(sk)−m(sk + α‖sk‖rua) ≥
9σ‖sk‖3r

16

(
µ3 +

4
√
ψ(sk)√

3
µ2

)
≥ 9σ‖sk‖3r

16
µ3.

The inequality (5.27) then follows from (5.28) and (5.23). 2

We now have all ingredients to describe the RQMIN algorithm. It hinges on (5.2), (5.3) and
(5.5) and proceeds by successive one-dimensional minimizations of m along the directions sCk
or sRk (depending on the sign of ‖gk|r,1 − 1

2
σ‖s‖2r) and, if needed, sEk . It is formally stated on

the following page.

Note that the mechanism of the algorithm, which proceeds by successive unidimensional min-
imizations, guarantees that the sequence {m(sk)} is monotonically decreasing, as announced.

Having established, in Lemma 5.2, 5.3 and 5.5, lower bounds on the decrease in m for all
steps produced by the RQMIN algorithm, we are now ready to state its iteration complexity(2).

(2)At variance with its evaluation complexity, which would be irrelevant here since evaluating m(s) as many
times as necessary does not require evaluating f0, g and H more than once (when the algorithm is called).
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Algorithm 5.1: An algorithm for minimization of a regularized quadratic
(RQMIN)

The value f0, gradient g and Hessian H of the quadratic at s = 0 are given, as well as a
regularization parameter σ and accuracy requests ε1 > 0 and ε2 > 0.
Step 0: Initialization If unavailable, compute λa and ua according to (4.2). Set k = 0,

s0 = 0 and g0 = g.

Step 1: Check for termination. Terminate if∣∣‖gk‖r,1 − 1
2
σ‖sk‖2r

∣∣ ≤ ε1 and λa + θ2ω(sk)σ‖sk‖r ≥ 0. (5.30)

Step 2: Negative gradient step. If ‖gk‖r,1 > 1
2
σ‖sk‖2r , compute sCk according to

(5.7), set mk,1 = m(sCk ) and go to Step 4.

Step 3: Retraction step. If ‖gk‖r,1 < 1
2
σ‖sk‖2r , compute sCk according to (5.14) and

set mk,1 = m(sRk ).

Step 4: Eigenvalue step. If λa +ω(sk)σ‖sk‖r < −ε2σ‖sk‖r, compute sEk according to
(5.23) and set mk,2 = m(sEk ). Else, set mk,2 = m(sk).

Step 5: Move. Set

sk+1 =

{
sCk if mk,1 ≤ mk,2,
sEk otherwise,

and gk+1 = gk +H(sk+1 − sk). (5.31)

Increment k by one and got to Step 1.
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Theorem 5.6 Given ε1 > 0 and θ2 > 1, there exist a constant κRQMIN > 0 independent
of k such that the RQMIN algorithm requires at most

κRQMIN max

[
ε−21 , ε

− 3
2

1 , ε−32

]
(5.32)

iterations to produce an iterate sk such that∣∣‖gk‖r,1 − 1
2
σ‖sk‖2r

∣∣ ≤ ε1 and λa + ω(sk)σ‖sk‖r ≥ −ε2σ‖sk‖r. (5.33)

Proof. If the RQMIN algorithm terminates at k = 0, then the bound (5.32) is trivially
satisfied. Assume therefore that termination does not occur at s0. We then have that, for
k ≥ 1 before termination,

either
∣∣‖gk‖r,1 − 1

2
θ1σ‖sk‖2r

∣∣ > ε1 or λa + θ2ω(sk)σ‖sk‖r < 0.

Let us define N def
= {k ≥ 0 | sk = sEk } and note that, by construction, this set is non-empty

only if λa < 0. We then obtain from g0 = g, (5.31), (5.6) and (5.24) that

m(s0)−m(s1) ≥


1
2

max

min

 ‖g‖2r,1
1 + 3

2
‖H‖r,2

,
‖g‖

3
2
r,1

3
√
σ

 , 9|λa|3
16σ2

 if 0 ∈ N ,

1
2

min

 ‖g‖2r,1
1 + 3

2
‖H‖r,2

,
‖g‖

3
2
r,1

3
√
σ
,

 otherwise.

(5.34)
Observe now that the second part of (5.33) cannot hold as long as

−
(
λa + ω(sk)σ‖sk‖r

)
> ε2ω(sk)σ‖sk‖r.

Hence (5.27) give that, for k ≥ 1 and k ∈ N before termination,

m(sk)−m(sEk ) ≥ 9‖sk‖r
16σ2

[(θ2 − 1)ω(sk)]
3 . (5.35)

Because Lemma 5.4 with β chosen as the relevant right-hand side in (5.34) guarantees the
existence of κs,low > 0 such that ‖sk‖r ≥ κs,low for all k ≥ 1, and, because ω(sk) ≥ 1,
(5.35) ensures that, before termination and for 1 ≤ k ∈ N ,

m(sk)−m(sEk ) ≥
9κ2s,low
16σ2

ε32.

Using this together with (5.31) and (5.6) gives that for k ≥ 1 before termination,

m(sk)−m(sk+1) ≥
1
2

max

{
min

[
ε21

1 + 3
2

(‖H‖r,2 + σ‖sk‖r)
,
ε
3
2
1

3
√
σ

]
,
9ε32κ

2
s,low

16σ2

}
if k ∈ N ,

min

[
ε21

1 + 3
2

(‖H‖r,2 + σ‖sk‖r)
,
ε
3
2
1

3
√
σ

]
otherwise,
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and therefore, using (5.21),

m(sk)−m(sk+1) ≥ 1
2

min

[
1

1 + 3
2

(‖H‖r,2 + σκs,upp)
,

1

3
√
σ
,
9κ2s,low
16σ2

]
min

[
ε21, ε

3
2
1 , ε

3
2

]
def
= κ∗ min

[
ε21, ε

3
2
1 , ε

3
2

]
. (5.36)

We now observe that the definition of m(s) and (5.21) together imply that

m(s) ≥ m(0)− ‖g‖r,1κs,upp − 1
2
‖H‖r,2κ2s,upp

def
= mlow.

Therefore (5.36) implies that the number of iterations required by the RQMIN algorithm
to produce an iterate such that (5.33) holds cannot exceed

m(0)− β −mlow

κ∗min
[
ε21, ε

3
2
1 , ε

3
2

]
which is (5.32) with κRQMIN = (m(0)− β −mlow)/κ∗. 2

We now consider applying the RQMIN algorithm to find a step sk in Step 2 of the AR2GN

method(3). This latter methods requires the conditions (2.5), (2.6) and (4.11) to hold. We
immediately note that (2.5) automatically holds because of the monotonically decreasing
nature of the values of m in the RQMIN algorithm. Moreover, (4.11) and the second part
of (5.30) are identical. However, the first part of (5.30) is too strong, because it imposes a
two-sided inequality on ‖gk‖r,1 − 1

2
σk‖sk‖r while (2.6) only requests

‖gk‖r,1 − 1
2
σk‖sk‖2r ≤ ε1s

def
= 1

2
(θ1 − 1)σk‖sk‖2r (5.37)

but allows for ‖gk‖r,1− 1
2
σk‖sk‖2r to be negative. In Figure 4.1, this amounts to removing the

outer blue curve, thus considerably enlarging the admissible regions containing the minimizers.
A modified variant of the RQMIN algorithm is therefore suitable if our only objective is to satisfy
(2.5), (2.6) and (4.11). This variant, which we call the RQMIN1 algorithm, differs from RQMIN

in that

1. the first part of (5.30) is replaced by requiring that (5.37) holds,

2. Step 3 of RQMIN is skipped (as there is no need to correct for negative ‖gk‖r,1− 1
2
σk‖sk‖2r).

In addition, because (5.37) is weaker that the first part of (5.30), termination of the RQMIN1

algorithm cannot happen later than that what would happen if applying the RQMIN algorithm
with ε1 = ε1s. This allows us to derive the following upper bound on the number of iterations
of the RQMIN1 algorithm that are necessary to compute a step sk in Step 2 of AR2GN.

Corollary 5.7 Given θ1 > 1 and θ2 > 1, there exist a constant κRQMIN1 > 0 independent
of k such that the RQMIN1 algorithm requires at most

κRQMIN1 max
[
(θ1 − 1)−2, (θ1 − 1)−

3
2 , (θ2 − 1)−3

]
(5.38)

iterations to produce an iterate sk such that (2.5), (2.6) and (4.11) hold.

(3)With f(xk) = f0, ∇1
xf(xk) = g, ∇2

xf(xk) = H, σk = σ and xk = 0.
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Proof. The desired result immediately follows by noting that, by virtue of (2.8), (5.37)
and the definition of κs,low in the proof of Theorem 5.6,

ε1s ≥ 1
2
(θ1 − 1)σκ2s,low and ε2 = θ2 − 1.

The bound (5.38) then follows with

κRQMIN1
def
= κRQMIN min

[
( 1
2
σκ2s,low)2, ( 1

2
σκ2s,low)

3
2

]
.

2

The reader may have wondered why we did consider the RQMIN method and its two-sided
condition at all, since its one-sided version RQMIN1 is sufficient for the purpose of computing a
step in AR2GN. Our motivation for RQMIN is that it is likely to achieve a larger model decrease,
hopefully reducing the number of iterations needed by AR2GN to terminate. Whether this
motivation translates in practice remains to be explored.

But the story does not finish here. As we have alluded to in Section 2, an even simpler
variant of the RQMIN algorithm can be used to compute sk in Step 2 of the AR1pGN algorithm
when p = 2. Since the only requirements on sk are then (2.5) and (2.6), we may define the
RQMIN2 algorithm as a variant of RQMIN where

1. the whole of (5.30) is replaced by requiring that (5.37) holds,

2. Step 3 and Step 4 of RQMIN are skipped and the first part of (5.31) replaced by sk+1 = sCk .

Removing all bounds related to the second-order condition in Theorem 5.6, we then obtain
the following iteration bound for the RQMIN2 algorithm (as needed in Step 2 of AR1pGN with
p = 2).

Corollary 5.8 Given θ1 > 1, there exist a constant κRQMIN2 > 0 independent of k such
that the RQMIN2 algorithm requires at most

κRQMIN2 max
[
(θ1 − 1)−2, (θ1 − 1)−

3
2

]
(5.39)

iterations to produce an iterate sk such that (2.5), and (2.6) hold.

Note that the RQMIN2 algorithm reduces to a standard first-order method (in the ‖ · ‖r norm),
but applied to the quadratic alone, instead of to the complete regularized model.

6 Measuring curvature approximately

As we have observed at the end of Section 4, a poor capacity of approximating λr[H] in
the sense of (4.2), resulting in a large value of τ−1, can very quickly lead to extremely large
bounds (see the definition of κAR2GN in Theorem 4.5). For example, consider the following
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naive strategy using λmin[H], the smallest standard (Euclidean) eigenvalue of H and u2 one
of its associated eigenvector. Observe that, for λr[H] < 0,

λr[H] ≤ λmin[H] max
v 6=0

‖v‖22
‖v‖2r

and λmin[H] ≤ λr[H] max
v 6=0

‖v‖2r
‖v‖22

.

If we now define

κ1
def
= min

v 6=0

‖v‖r
‖v‖2

≤ max
v 6=0

‖v‖r
‖v‖2

def
= κ2,

then

λr[H] ≤ λmin[H]

κ22
≤
(
κ1
κ2

)2

λr[H],

which is (4.2) with λa = λmin[H]/κ22 and τ = (κ1/κ2)
2 ∈ (0, 1] . . . and κAR2GN would involve

the twelfth power of the norm equivalence constant (κ1/κ2)
−1, a truly fearsome prospect.

Unfortunately, for fully general norms, the question of finding a pratical approximation scheme
remains open. For norms whose unit balls are well approximated by an ellipsoid, a generalized
eigenvalue calculation is an option leading to an acceptably small κ1/κ2.

We conclude by examining two other options. The first is, unsurpringly, to resort to a
heuristic method for computing the approximations λa and ua. For instance, if the unit ball
has a manageable geometry, direct attemps to minimize 〈Hv, v〉/‖v‖2r can be considered, or
we could call on a stochastic sampling method to approximate λr[H] directly. Heuristics
approaches are however unlikely to give guarantees of (approximate) global minimization, the
AR2GN using the resulting approximation may miss significant negative curvature at iteration
k, and thus terminate early. As a consequence, the evaluation complexity upper bound
obtained for τ = 1 still holds with the proviso that the second part of (4.14) can only be
guaranteed within the “power” of the chosen heuristic. In other words, the only “second-
order” property holding at xε is that the used heuristic is unable to detect significant negative
curvature (in the ‖ · ‖r norm) locally. For example, if a stochastic sampling method is used, it
might be possible to ensure (4.2) with a given probability, and the second part of (4.14) can
then be guaranteed with the same probability. This type of degraded second-order property
might well be acceptable in practice. The second option is to give up imposing curvature
conditions in the ‖·‖r norm and to limit one’s ambition to ensuring that λmin[∇2

xf(xε)] ≥ −ε2
at termination (instead of the second part of (4.14)) This has the disadvantage of being
theoretically less coherent, but the advantage of being very easily computable. As it turns
out, the theory we have developed in Section 4 remains valid with a modified (4.14)(4) if λr[H]
is replaced by λmin[H], ua is chosen as a corresponding eigenvector with ‖ua‖2 = 1 and τ is
set to one if (4.2), and if the Lipschitz constant Lf,2 in the ‖ · ‖r norm used in AS.1, the proof
of Lemma (4.4) and its consequences is replaced by the Lipschitz constant in the Euclidean
norm. This is of course meaningful if these Lipschitz constants do not differ too much in
magnitude. Whether this modification of the algorithm’s purpose is acceptable is of course
strongly application-dependent.

(4)The interested reader will find a version of the present paper using this option in [26].
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7 Discussion

We have presented simple modifications of the already simplified(5) first- and second-order
evaluation complexity theory for adaptive regularization methods proposed by [6], [20] and
[14]. These modifications allow a direct use of general possibly non-smooth regularization
norms. The new algorithms (AR1pGN and AR2GN) differ from their predecessors in that the
conditions for approximate model minimization now use the norm of the gradient and the
smallest eigenvalue of the Hessian of the Taylor expansion of f , instead of those of the regu-
larized model. The resulting first- and second-order complexity theory is even more compact
than that presented in [6] and [14]. This theory does not depend on the norm-equivalence
constants as far as finding approximate first-order minimizers is concerned, but it does depend
on the factor τ , the relative accuracy of the approximation of λR[H], in the second-order case.
Because this factor may itself depend strongly on norm-equivalence constants, our objective
of avoiding such constants is only partially successful if approximate second-order minimizers
(in the ‖ · ‖r norm) are wanted at a reasonable cost. Practical alternatives were discussed,
leading to weaker second-order optimality guarantees. We have also presented and analyzed
a new method (RQMIN) for computing (potentially very) approximate second-order minimiz-
ers of quadratic polynomials regularized with a general norm. Variants of this method were
finally discussed which provide implementable ways of solving the subproblems arising in the
AR1pGN (with p = 2) and AR2GN algorithms.

Because of its general nature and strong links with existing theory for regularization in
smooth norms, we anticipate that the approach discussed here can be extended to other
contexts for which analysis is available for the smooth-norm case. In particular, we think
of the minimization of composite functions (along the lines of [16, 25] or [1]) and of the
case where function’s and derivatives’ values are allowed to be inexact but controllable either
deterministically (using ideas of [2, 25]) or probabilistically (along the lines of [7] for instance).
Another useful extension which seems likely is adding convex constraints to the problem (see
[15]).

While it might well be possible possible to extend our subproblem termination rule to
higher order by putting requests on Tf,j(xk, sk), it not yet clear that a step satisfying the
resulting condition may be shown to exists. This topic and its potential use in our context
are the subject of ongoing research.

Experimenting numerically with the ideas proposed here is also of interest. A first re-
search question is to measure the impact on performance of the more flexible termination
rules for the step computation within the standard adaptive cubic regularization algorithm.
But we anticipate that further developments are possible, for instance to provide possibly
more efficient alternatives to the RQMIN algorithm or to improve the strategies for measuring
curvature in the ‖ · ‖r norm.
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Proof of Lemma 3.1

We follow the reasoning of [15, Lemma 2.1] and first recall that∫ 1

0
ξ(1− ξ)k−1 dξ =

(k − 1)!

(k + 1)!
. (A.1)

Consider now the Taylor identity

ψ(1)− τk(1) =
1

(k − 1)!

∫ 1

0
(1− ξ)k−1[ψ(k)(ξ)− ψ(k)(0)] dξ (A.2)

involving a given univariate Ck function ψ(t) and its k-th order Taylor expansion

τk(t) =
k∑
i=0

ψ(i)(0)
ti

i!
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expressed in terms of the value ψ(0) = ψ and i-th derivatives ψ(i), i ∈ {1, . . . , k}. Then, picking
ψ(t) = f(x + ts), for given x, s ∈ IRn, and k = p, the identity (A.2), and the relationships
ψ(p)(t) = ∇pxf(x+ ts)[s]p and τp(1) = Tp(x, s) give that

f(x+ s)− Tp(x, s) =
1

(p− 1)!

∫ 1

0
(1− ξ)k−1 (∇pxf(x+ ξs)−∇pxf(x)) [s]p dξ,

and thus, using (2.2), AS.A and (A.1) for k = p, that

f(x+ s)− Tp(x, s) ≤ 1
(p− 1)!

∫ 1

0
(1− ξ)k−1

∣∣∣∣(∇pxf(x+ ξs)−∇pxf(x))

[
s

‖s‖r

]p∣∣∣∣ ‖s‖pr dξ
≤ 1

(p− 1)!

∫ 1

0
(1− ξ)k−1 max

‖v‖r=1
|(∇pxf(x+ ξs)−∇pxf(x)) [v]p| ‖s‖pr dξ

= 1
(p− 1)!

∫ 1

0
(1− ξ)k−1‖∇pxf(x+ ξs)−∇pxf(x)‖r,p dξ · ‖s‖pr

≤ 1
(p− 1)!

∫ 1

0
ξβ(1− ξ)p−1 dξ · Lf,p‖s‖p+1

r =
Lf,p

(p+ 1)!
‖s‖p+1

r

for all x, s ∈ IRn, which gives (3.1).
Likewise, for an arbitrary unit vector v, choosing ψ(t) = ∇jxf(x + ts)[v]j and k = p −

j, it follows from (A.2), the relationships ψ(p−j)(t) = ∇pxf(x + ts)[v]j [s]p−j and τp−j(1) =

∇jsTp(x, s) that

(∇jxf(x+ s)−∇jsTp(x, s))[v]j

= 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1 (∇pxf(x+ ξs)−∇pxf(x)) [v]j [s]p−j dξ.

(A.3)

Then, again using (2.2), AS.1 and (A.1) when k = p− j, we obtain that

‖∇jxf(x+ s)−∇jsTp(x, s)‖r,j

≤ 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1

∣∣∣∣∣(∇pxf(x+ ξs)−∇pxf(x))[v]j
[

s

‖s‖r

]p−j∣∣∣∣∣ ‖s‖p−jr dξ

≤ 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1 max

‖v‖r=1
|(∇pxf(x+ ξs)−∇pxf(x)) [v]p| ‖s‖p−jr dξ

= 1
(p− j − 1)!

∫ 1

0
(1− ξ)p−j−1‖∇pxf(x+ ξs)−∇pxf(x)‖r,p dξ · ‖s‖p−jr

≤ 1
(p− j − 1)!

∫ 1

0
ξ(1− ξ)p−j−1 dξ · Lf,p‖s‖p−j+1

r =
L

(p− j + 1)!
‖s‖p−j+1

r

for all x, s ∈ IRn, which gives (3.2). 2


