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Abstract

The unconstrained minimization of a sufficiently smooth objective function f(x) is
considered, for which derivatives up to order p, p ≥ 2, are assumed to be available. An
adaptive regularization algorithm is proposed that uses Taylor models of the objective
of order p and that is guaranteed to find a first- and second-order critical point in at

most O

(
max

(
ε
− p+1

p

1 , ε
− p+1

p−1

2

))
function and derivatives evaluations, where ε1 and ε2 > 0

are prescribed first- and second-order optimality tolerances. Our approach extends the
method in Birgin et al. (2016) to finding second-order critical points, and establishes the
novel complexity bound for second-order criticality under identical problem assumptions
as for first-order, namely, that the p-th derivative tensor is Lipschitz continuous and that
f(x) is bounded from below. The evaluation-complexity bound for second-order criticality
improves on all such known existing results.

1 Introduction

A question of general interest in computational optimization is to know how many evaluations
of the functions that define a given problem are needed for an algorithm to find an estimate
of a local minimizer. Considerable advances have been made on this topic, both for convex
problems [15] and nonconvex ones [6]. Although much of this research has been devoted
to the important issue of finding approximate first-order critical points, some authors have
addressed the case where higher-order necessary optimality conditions must also be satisfied.

We consider the unconstrained minimization of a C2 objective function f : IRn → IR. It
is, of course, well known that a finite minimizer x∗ of f necessarily satisfies the first- and
second-order criticality conditions ∇xf(x∗) = 0 and λleft(∇2f2(x∗)) ≥ 0, where λleft denotes
the leftmost eigenvalue of its symmetric matrix argument. Thus a reasonable requirement
might be to find a point xk for which

‖∇xf(xk)‖ ≤ ε1 and λleft
(
∇2
xf(xk)

)
≥ −ε2 (1.1)
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for given, small ε1, ε2 > 0 and suitable norm ‖ · ‖.
The earliest analysis we are aware of that provides both first- and second-order evaluation

complexity guarantees considers cubic regularization methods and shows that at most

O
(

max
(
ε
−3/2
1 , ε−32

))
(1.2)

evaluations of f are required to satisfy (1.1) so long as the objective function is bounded
from below, and its Hessian is Lipschitz continuous [16]. Adaptive cubic regularization vari-
ants with inexact subproblem solves and similar guarantees were proposed in [4, 5]. Under
similar conditions, many trust-region (TR) algorithms require at most O

(
max

(
ε−21 , ε−32

))
evaluations. Crucially, examples are known for which such order estimates are tight both for
trust-region and regularization methods [5]. Of late, more sophisticated trust region meth-
ods and quadratic regularization ones have been proposed that echo the order of the ARC
estimates [9, 14, 2]. At the same time, other methods [10, 12] have been shown to mirror the
TR-like evaluation estimate in a more general or simplified way, respectively.

The fact that the best-known evaluation bound for ARC is essentially tight, suggests that
in order to do better, one needs to add further ingredients. A similar picture emerged for

evaluation bounds for first-order critical points: improved bounds of order O
(
ε
− p+1

p

1

)
, p ≥ 2,

were obtained in [1] for p-times continuously differentiable functions using regularization
methods that employ higher-order local models. This will be the theme here. In order to
improve upon the estimate (1.2) for second-order criticality, we will use a higher-order model
and regularization. The model minimization conditions however, are approximate and local,
for both first- and second-order criticality.

In §2, we define terminology and propose our new algorithm, while in §3, we provide
a convergence analysis that indicates an improved complexity bound. We provide further
comments and perspectives in §4.

2 A regularized p-th order model and algorithm

Let p ≥ 2. Consider the optimization problem

min
x∈IRn

f(x), (2.1)

where we assume that f ∈ Cp,1(IRn), namely, that:

• f is p-times continuously differentiable;

• f is bounded below by flow

• the p-th derivative of f at x, the p-th order tensor

∇pxf(x) =

[
∂pf(x)

∂xi1 . . . ∂xip

]
ij∈{1,...,n},j=1,...,p

is globally Lipschitz continuous, that is, there exists a constant L ≥ 0 such that, for all
x, y ∈ IRn,

‖∇pxf(x)−∇pxf(y)‖[p] ≤ (p− 1)!L‖x− y‖. (2.2)
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In (2.2), ‖ · ‖[p] is the tensor norm recursively induced by the Euclidean norm ‖ · ‖ on the
space of p-th order tensors, which is given by

‖T‖[p]
def
= max
‖v1‖=···=‖vp‖=1

|T [v1, . . . , vp]|, (2.3)

where T [v1, . . . , vj ] stands for the tensor of order p− j ≥ 0 resulting from the application of
the p-th order tensor T to the vectors v1, . . . , vj

(1). Let Tp(x, s) be the Taylor series of the
function f(x+ s) at x truncated at order p

Tp(x, s)
def
= f(x) +

p∑
j=1

1

j!
∇jxf(x)[s]j , (2.4)

where the notation T [s]j stands for the tensor T applied j times to the vector s.
We shall use the following crucial bounds.

Lemma 2.1 [See Appendix A.1]. Let f ∈ Cp,1(IRn), and Tp(x, s) be the Taylor approx-
imation of f(x+ s) about x. Then for all x, s ∈ IRn,

f(x+ s) ≤ Tp(x, s) +
L

p
‖s‖p+1, (2.5)

‖∇1
xf(x+ s)−∇1

sTp(x, s)‖[1] ≤ L‖s‖p (2.6)

and
‖∇2

xf(x+ s)−∇2
sTp(x, s)‖[2] ≤ (p− 1)L‖s‖p−1. (2.7)

In order to describe our algorithm, we define the regularized Taylor series model

m(x, s, σ) = Tp(x, s) +
σ

p+ 1
‖s‖p+1, (2.8)

whose gradient and Hessian are

∇1
sm(x, s, σ) = ∇1

sTp(x, s) + σ‖s‖p s

‖s‖
(2.9)

and
∇2
sm(x, s, σ) = ∇2

sTp(x, s) +
σ

p+ 1
∇2
s

(
‖s‖p+1

)
, (2.10)

where
∇2
s

(
‖s‖p+1

)
= (p+ 1)

[
(p− 1)‖s‖p−3ssT + ‖s‖p−1I

]
. (2.11)

Note that
m(x, 0, σ) = Tp(x, 0) = f(x). (2.12)

For the objective function f , we define first- and second-order criticality measures as

χf,1(x)
def
= ‖∇1

xf(x)‖ (2.13)

(1)Note that ‖ · ‖[1] = ‖ · ‖, the usual Euclidean vector norm.
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and
χf,2(x)

def
= max

[
0,−λf (x)

]
= max

[
0,− min

‖y‖=1
∇2
xf(x)[y]2

]
(2.14)

where λf (x)
def
= λleft[∇2

xf(x)]. Similarly, for the model (2.8), we consider the measures

χm,1(x, s, σ)
def
= ‖∇1

sm(x, s, σ)‖ (2.15)

and

χm,2(x, s, σ)
def
= max

[
0,−λm(x, s, σ)

]
= max

[
0,− min

‖y‖=1
∇2
sm(x, s, σ)[y]2

]
(2.16)

where λm(x, s, σ)
def
= λleft[∇2

sm(x, s, σ)].

The minimization algorithm we consider is now described in detail in Algorithm 2.1. Note
that if the second-order conditions are removed – namely, the conditions for i = 2 in (2.18)
and (2.20) – then this method reduces to the ARp algorithm in [1].

Algorithm 2.1: ARp

Step 0: Initialization. An initial point x0 and an initial regularization parameter σ0 >
0 are given, as well as an accuracy levels ε1, ε2 and ε3. The constants θ, η1, η2, γ1,
γ2, γ3 and σmin are also given and satisfy

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (2.17)

Compute f(x0) and set k = 0.

Step 1: Test for termination. Evaluate {∇ixf(xk)}2i=1. If

χf,i(xk) ≤ εi for i = 1, 2, (2.18)

terminate with the approximate solution xε = xk. Otherwise compute derivatives
of f from order 3 to p at xk.

Step 2: Step calculation. Compute the step sk by approximately minimizing the
model m(xk, s, σk) with respect to s in the sense that the conditions

m(xk, sk, σk) < m(xk, 0, σk) (2.19)

and
χm,i(xk, sk, σk) ≤ θ‖sk‖p+1−i, (i = 1, 2) (2.20)

hold.
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Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tp(xk, 0)− Tp(xk, sk)
. (2.21)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.22)

Increment k by one and go to Step 1 if ρk ≥ η1 or to Step 2 otherwise.

Each iteration of this algorithm requires the approximate minimization of m(xk, s, σk),
and we note that conditions (2.19) and (2.20) are always achievable as they are satisfied at
a second-order critical point of m(x, s, σ). Indeed, existing algorithms, such as the standard
second-order trust-region method [8, §6.6] and ARC [3] will find such a point as the regu-
larized Taylor model is both sufficiently smooth and bounded from below.(2) Moreover, this
approximate minimization does not involve additional computations of f nor its derivatives at
points other than xk, and therefore the precise method used, and the resulting effort spent, in
Step 2 have no impact on the evaluation complexity(3). Finally note that the second condition
in (2.20) disappears if λleft(∇2

xTp(x, s)) ≥ 0.
Iterations for which ρk ≥ η1 (and hence xk+1 = xk + sk) are called “successful” and we

denote by Sk
def
= {0 ≤ j ≤ k | ρj ≥ η1} the index set of all successful iterations between 0 and

k. We also denote the complement, Uk, of Sk in {0, . . . , k}, that corresponds to the index set
of “unsuccessful” iterations between 0 and k. Note that, before termination, each successful
iteration requires the evaluation of f and its first p derivatives, while only the evaluation of
f is needed at unsuccessful ones.

3 Complexity analysis

As it is typical for a complexity analysis of (regularization and other) methods, we proceed
by showing lower bounds on the Taylor model decrease and on the length of the step at each
iteration. The proofs of the next three lemmas is very similar to corresponding results in [1]
and hence we defer the proofs to the appendix (but still include them for completeness, as
the algorithm has changed).

(2)When p is even, m(x, s, σ) is smooth everywhere but at the origin, but a step from s = 0 in the steepest-
descent/eigen direction will move to a region for which the model is always smooth.

(3)We implicitly assume here that derivatives at xk can be stored explicitly.
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Lemma 3.1 The mechanism of Algorithm 2.1 guarantees that, for all k ≥ 0,

Tp(xk, 0)− Tp(xk, sk) ≥
σk
p+ 1

‖sk‖p+1, (3.1)

and so (2.21) is well-defined.

We next deduce a simple upper bound on the regularization parameter σk.

Lemma 3.2 Let f ∈ Cp,1(IRn). Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[
σ0,

γ3L(p+ 1)

p (1− η2)

]
. (3.2)

Our next move, very much in the line of the theory proposed in [4, 1], is to show that the
step cannot be arbitrarily small compared with the gradient of the objective function at the
trial point xk + sk.

Lemma 3.3 Let f ∈ Cp,1(IRn). Then, for all k ≥ 0,

‖sk‖ ≥
(
χf,1(xk + sk)

L+ θ + σk

) 1
p

. (3.3)

Next we show that the step cannot also be arbitrarily small compared to the second order
criticality measure (2.14) at the trial point xk + sk. This is the crucial novel ingredient of the
paper, that is essential to the improved second-order complexity results.

Lemma 3.4 Let f ∈ Cp,1(IRn). Then, for all k ≥ 0,

‖sk‖ ≥
(

χf,2(xk + sk)

(p− 1)L+ θ + pσk

) 1
p−1

. (3.4)

Proof. Using (2.8) and the fact that minz[a(z) + b(z)] ≥ minz[a(z)] + minz[b(z)], we
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find that

λf (xk + sk) = min
‖y‖=1

∇2
xf(xk + sk)[y]2

= min
‖y‖=1

(
∇2
xf(xk + sk)−∇2

sTp(xk, sk)−
σk
p+ 1

∇2
s‖sk‖p+1 +∇2

sm(xk, sk, σk)

)
[y]2

≥ min
‖y‖=1

(
∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y]2 +
σk
p+ 1

min
‖y‖=1

(
−∇2

s‖sk‖p+1
)

[y]2+

min
‖y‖=1

∇2
sm(xk, sk, σk)[y]2

Considering each term in turn, and using (2.3) and (2.7), we see that

min
‖y‖=1

(
∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y]2

≥ min
‖y1‖=‖y2‖=1

(
∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y1, y2]

≥ − max
‖y1‖=‖y2‖=1

∣∣(∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y1, y2]
∣∣

= −‖∇2
xf(xk + sk)−∇2

sTp(xk, sk)‖[2]
≥ −(p− 1)L‖sk‖p−1,

and using (2.11), we find that∇2
s

(
‖sk‖p+1

)
[y]2 = (p+1)[(p−1)‖sk‖p−3(sTk y)2+‖sk‖p−1‖y‖2],

and so

min
‖y‖=1

(
−∇2

s(‖sk‖p+1)
)

[y]2 = − max
‖y‖=1

∇2
s(‖sk‖p+1)[y]2 = −p(p+ 1)‖sk‖p−1.

Recalling (2.16), we have min‖y‖=1∇2
sm(xk, sk, σk)[y]2 = λm(xk, sk, σk). This, and the

last two displayed equations imply that

−λf (xk + sk) ≤ (p− 1)L‖sk‖p−1 + pσk‖sk‖p−1 −min[0, λm(xk, sk, σk)]. (3.5)

As the right hand side of (3.5) is nonnegative, the bound (3.5) can be re-written as

max[0,−λf (xk + sk)] ≤ [(p− 1)L+ pσk] ‖sk‖p−1 + max[0,−λm(xk, sk, σk)].

Combining the above with (2.14) and (2.16), and with (2.20) with i = 2, we conclude

χf,2(xk + sk) ≤ ((p− 1)L+ pσk)‖sk‖p−1 + χm,2(xk, sk, σk)
≤ ((p− 1)L+ θ + pσk)‖sk‖p−1

and (3.4) follows. 2

We now bound the number of unsuccessful iterations as a function of the number of
successful ones and include a proof in the Appendix.

Lemma 3.5 [4, Theorem 2.1] The mechanism of Algorithm 2.1 guarantees that, if

σk ≤ σmax, (3.6)

for some σmax > 0, then

k + 1 ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (3.7)
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Using all the above results, we are now in position to state our main evaluation complexity
result.

Theorem 3.6 Let f ∈ Cp,1(IRn). Then, given ε1 > 0 and ε2 > 0, Algorithm 2.1 needs
at most ⌊

κs(f(x0)− flow) max

(
ε
− p+1

p

1 , ε
− p+1

p−1

2

)⌋
+ 1

successful iterations (each involving one evaluation of f and its p first derivatives) and
at most⌊

κs(f(x0)− flow) max

(
ε
− p+1

p

1 , ε
− p+1

p−1

2

)⌋(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
+ 1

iterations in total to produce an iterate xε such that ‖∇1
xf(xε)‖ ≤ ε1 and

λleft
(
∇2
xf(xε)

)
≥ −ε2, where σmax is given by (3.2) and where

κs
def
=

p+ 1

η1σmin
max

(
(L+ θ + σmax)

p+1
p , ((p− 1)L+ θ + pσmax)

p+1
p−1

)
.

Proof. At each successful iteration k before termination, either the first order or the
second order approximate optimality condition must fail (at the next iteration), namely,

χf,1(xk+1) > ε1 or χf,2(xk+1) > ε2, (3.8)

and we also have the guaranteed decrease

f(xk)− f(xk+1) ≥ η1(Tp(xk, 0)− Tp(xk, sk)) ≥
η1σmin

p+ 1
‖sk‖p+1 (3.9)

where we used (2.21), (3.1) and (2.22). For any successful iteration for which the first
condition in (3.8) holds, we deduce from (3.9), (3.3) and (3.2) that

f(xk)− f(xk+1) ≥ κ1ε
p+1
p

1 where κ1
def
=

η1σmin

p+ 1

(
1

L+ θ + σmax

) p+1
p

. (3.10)

Similarly, for any successful iteration for which the second condition in (3.8) holds, we
deduce from (3.9), (3.4) and (3.2) that

f(xk)− f(xk+1) ≥ κ2ε
p+1
p−1

2 where κ2
def
=

η1σmin

p+ 1

(
1

(p− 1)L+ θ + pσmax

) p+1
p−1

. (3.11)

Thus on any successful iteration until termination we can guarantee the minimal of the
two decreases in (3.10) and (3.11), and hence, since {f(xk)} decreases monotonically,

f(x0)− f(xk+1) ≥ min[κ1, κ2] min

[
ε
p+1
p

1 , ε
p+1
p−1

2

]
· |Sk|.

Using that f is bounded below by flow, we conclude

|Sk| ≤
f(x0)− flow
min[κ1, κ2]

max

[
ε
− p+1

p

1 , ε
− p+1

p−1

2

]
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until termination, from which the desired bound on the number of successful iterations
follows. Lemma 3.5 is then invoked to compute the upper bound on the total number of
iterations. 2

Observe that we may modify the algorithm to seek only first-order points by restricting
(2.20) to i = 1. The corresponding complexity is then

O

(
ε
− p+1

p

1

)
,

which coincides with the bound in [1]. Moreover the same complexity result holds if, by
chance, λleft

(
∇2
xf(xk)

)
≥ −ε2 for all iterations. By contrast, if ε1 is so large that ‖∇1

xf(xk)‖ ≤
ε1 at every iteration, the complexity is

O

(
ε
− p+1

p−1

2

)
to find a point with a sufficiently large leftmost eigenvalue.

4 Final comments

Our goal has been to devise an algorithm that can guaranteed to find an approximate first-
and second-order critical point in fewer evaluations than the best known current champions.
The new algorithm we have designed finds such a point in at most

O

(
max

(
ε
− p+1

p

1 , ε
− p+1

p−1

2

))
function and derivative evaluations under suitable differentiablity and Lipschitz continuity
conditions. When p = 2, we recover the standard best bound (1.2), while for p = 3,

this improves to O
(

max
(
ε
−4/3
1 , ε−22

))
function and derivative evaluations, and approaches

O
(
max

(
ε−11 , ε−12

))
evaluations as p increases to infinity. Of course, this comes at an increased

cost of requiring derivatives of order up to p, and of needing to approximately solve a poten-
tially harder step subproblem. Note though, that the conditions (2.19) and (2.20) for model
minimization are only local ones, and that the improved second-order approximate criticality
result is achieved under the same problem assumptions as the first order one (in [1] and here).

In practice, the test (2.18) for termination in Step 1 of Algorithm 2.1 would be arranged
to check one of the pair of required inequalities, and only to check the other if the first
holds (the order is immaterial). One could imagine a variant of the algorithm in which
failure of one (but not both) of (2.18) might influence the requirement for the next step
calculation/model minimization. Specifically, if χf,1(xk) > ε1, one might simply require that
χm,1(xk, sk, σk) ≤ θ‖sk‖p rather than (2.20) as this alone would aim to improve first-order
criticality. However, though this decoupling is possible both in practice and in the analysis,
it is not as straightforward as in the case of say, trust-region methods [12], as the lower
bounds on the step in (3.3) and (3.4) depend on the objective’s gradient and Hessian value at
the next trial point/iterate, not the current xk. Also, one might modify the ARp algorithm
to check the optimality measures (2.18) at every trial point, not just successful ones. This
may allow earlier termination but possibly at an unsuccessful step and at increased first- and
second-derivatives evaluation cost.
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While one might be tempted to try to provide bounds for an algorithm that guarantees
approximate third- and higher-order necessary optimality conditions, we have not, as yet,
been able to do so. The main sticking point has been that third-order necessary conditions
involve the behaviour of the third-order term of the Taylor series in the nullspace of the
Hessian (if it exists) and that this (typically proper) subspace of IRn is highly sensitive. Its
use or the use of an approximating set is therefore open to miss-diagnosis. Higher-order
criticality becomes successively trickier; the critical spaces are then no longer subspaces but
cones [7].

Extending the approach here to the constrained case, even convex constraints, also seems
challenging as the connection between model eigenvalues and function eigenvalues in a set
is no longer straightforward. Another aspect for future work is quantifying the cost of the
subproblem solution in a similar vein to recent works [13, 11], where there is particular interest
due to large scale applications, in quantifying the number of derivative actions required per
iteration as derivatives cannot be stored/called explicitly. More generally, finding efficient
ways to solve higher order polynomial models would bring ARp methods closer to practical
use.
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Appendix A

A.1 Proof of Lemma 2.1

As in [7], consider the Taylor identity

φ(1)− τk(1) =
1

(k − 1)!

∫ 1

0
(1− ξ)k−1[φ(k)(ξ)− φ(k)(0)] dξ (A.1)

involving a given univariate Ck function φ(α) and its k-th order Taylor approximation

τk(α) =

k∑
i=0

φ(i)(0)
αi

i!

expressed in terms of the value φ(0) = φ and ith derivatives φ(i), i = 1, . . . , k. Then, picking
φ(α) = f(x+ αs) and k = p, the identity∫ 1

0
(1− ξ)k−1 dξ =

1

k
, (A.2)

(2.2), (2.3) and (A.1) imply that, for all x, s ∈ IRn,

f(x+ s) ≤ Tp(x, s) +
L

p
‖s‖p+1

[7, (2.8) with Lf,p = (p− 1)!L] since τp(1) = Tp(x, s), which is the required (2.5).
Likewise, for an arbitrary unit vector v, selecting instead φ(α) = ∇1

xf(x + αs)[v] and
k = p− 1, it follows from (A.1) that

(∇1
xf(x+ s)−∇1

sTp(x, s))[v]

= 1
(p− 2)!

∫ 1

0
(1− ξ)p−2(∇pxf(x+ ξs)−∇pxf(x))[s]p−1[v] dξ

(A.3)

since τp−1(1) = ∇1
sTp(x, s)[v]. Thus, using the symmetry of the derivative tensors, picking v

to maximize the absolute value of the left-hand side of (A.3) and using (A.2), (2.3) and (2.2)



Cartis, Gould, Toint — Complexity for second-order criticality with higher-order models 12

successively, we obtain that

‖∇1
xf(x+ s)−∇1

sTp(x, s)‖[1]

= 1
(p− 2)!

∣∣∣∣∣
∫ 1

0
(1− ξ)p−2(∇pxf(x+ ξs)−∇pxf(x))[v]

[
s

‖s‖

]p−1
‖s‖p−1dξ

∣∣∣∣∣
≤ 1

(p− 2)!

[∫ 1

0
(1− ξ)p−2dξ

]
max
ξ∈[0,1]

∣∣∣∣∣(∇pxf(x+ ξs)−∇pxf(x))[v]

[
s

‖s‖

]p−1∣∣∣∣∣ ‖s‖p−1
≤ 1

(p− 1)!
max
ξ∈[0,1]

max
‖w1‖=···=‖wp‖=1

|(∇pxf(x+ ξs)−∇pxf(x))[w1, . . . , wp]| ‖s‖p−1

= 1
(p− 1)!

max
ξ∈[0,1]

‖∇pxf(x+ ξs)−∇pxf(x)‖[p]‖s‖p−1

≤ L‖s‖p

which gives (2.6).
Finally, for arbitrary unit vectors v1 and v2, choosing φ(α) = ∇2

xf(x + αs)[v1, v2] and
k = p− 2, the identity τp−2(1) = ∇2

sTp(x, s)[v1, v2] and (A.1) together show that

(∇2
xf(x+ s)−∇2

sTp(x, s))[v1, v2]

= 1
(p− 3)!

∫ 1

0
(1− ξ)p−3(∇pxf(x+ ξs)−∇pxf(x))[v1, v2][s]

p−2 dξ.
(A.4)

As before, picking v1 and v2 to maximize the absolute value of the left-hand side of (A.4),

‖∇2
xf(x+ s)−∇2

sTp(x, s)‖[2]

= 1
(p− 3)!

∣∣∣∣∣
∫ 1

0
(1− ξ)p−3(∇pxf(x+ ξs)−∇pxf(x))[v1, v2]

[
s

‖s‖

]p−2
‖s‖p−2 dξ

∣∣∣∣∣
≤ 1

(p− 3)!

[∫ 1

0
(1− ξ)p−3dξ

]
max
ξ∈[0,1]

∣∣∣∣∣(∇pxf(x+ ξs)−∇pxf(x))[v1, v2]

[
s

‖s‖

]p−2
‖s‖p−2

∣∣∣∣∣
≤ 1

(p− 2)!
max
ξ∈[0,1]

max
‖w1‖=···=‖wp‖=1

|(∇pxf(x+ ξs)−∇pxf(x))[w1, . . . , wp]‖ s‖p−2

= 1
(p− 2)!

max
ξ∈[0,1]

‖∇pxf(x+ ξs)−∇pxf(x)‖[p]‖s‖p−2

≤ (p− 1)L‖s‖p−1

again using (2.2), (2.3) and (A.2). which provides (2.7).

A.2 Proof of Lemmas in Section 3

Proof of Lemma 3.1 (See [1, Lemma 2.1]) Observe that, because of (2.19) and (2.8),

0 < m(xk, 0, σk)−m(xk, sk, σk) = Tp(xk, 0)− Tp(xk, sk)−
σk
p+ 1

‖sk‖p+1

which implies the desired bound. Note that sk 6= 0 as long as we can satisfy condition (2.19),
and so (3.1) implies (2.21) is well defined. 2

Proof of Lemma 3.2 (See [1, Lemma 2.2]) Assume that

σk ≥
L(p+ 1)

p (1− η2)
. (A.5)
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Using (2.5) and (3.1), we may then deduce that

|ρk − 1| ≤ |f(xk + sk)− Tp(xk, sk)|
|Tp(xk, 0)− Tp(xk, sk)|

≤ L(p+ 1)

p σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk. As
a consequence, the mechanism of the algorithm ensures that (3.2) holds. 2

Proof of Lemma 3.3 (See [1, Lemma 2.3]) Using the triangle inequality, (2.6), (2.9) and
(2.20) for i = 1, we obtain that

χf,1(xk + sk) ≤ ‖∇1
xf(xk + sk)−∇1

sTp(xk, sk)‖+

∥∥∥∥∇1
sTp(xk, sk) + σk‖sk‖p sk

‖sk‖

∥∥∥∥
+σk‖sk‖p

= ‖∇1
xf(xk + sk)−∇1

sTp(xk, sk)‖[1] + χm,1(xk, sk, σk) + σk‖sk‖p

≤ L‖sk‖p + χm,1(xk, sk, σk) + σk‖sk‖p

≤ [L+ θ + σk] ‖sk‖p

and (3.3) follows. 2

Proof of Lemma 3.5. The regularization parameter update (2.22) gives that, for each
k,

γ1σj ≤ max[γ1σj , σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk.

Thus we deduce inductively that

σ0γ
|Sk|
1 γ

|Uk|
2 ≤ σk.

We therefore obtain, using (3.6), that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(
σmax

σ0

)
,

which then implies that

|Uk| ≤ −|Sk|
log γ1
log γ2

+
1

log γ2
log

(
σmax

σ0

)
,

since γ2 > 1. The desired result (3.7) then follows from the equality k + 1 = |Sk|+ |Uk| and
the inequality γ1 < 1 given by (2.17). 2


