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Abstract

The effect of preconditioning linear weighted least-squares using an approximation of
the model matrix is analyzed, showing the interplay of the eigenstructures of both the
model and weighting matrices. A small example is given illustrating the resulting potential
inefficiency of such preconditioners. Consequences of these results in the context of the
weakly-constrained 4D-Var data assimilation problem are finally discussed.
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1 Introduction

Solving weighted linear least-squares problems, that is optimization problem of the form

min
x∈IRn

1

2
‖Ax− b‖2W−1 (1.1)

(with A ∈ IRm×n, b ∈ IRm and W ∈ IRm×m symmetric positive-definite), is an ubiquitous
problem in applied mathematics (see [?, ?, ?] for an introduction to this domain and its
vast literature), in particular when modelling in the presence of uncertainties in the data
and/or the model itself. The particular application which motivates this paper is the solution
of the weakly-constrained 4D-Var problem in data assimilation [?, ?, ?, ?], a mathematical
formulation used, among others, for weather forecasting [?, ?, ?, ?] and oceanography [?].

It is well-known that the solution of (1.1) is given by solution of the system of “normal
equations”

(ATW−1A)x = ATW−1b. (1.2)
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Gratton, Gürol, Simon, Toint: Preconditioning least-squares 2

In many applications of interest (such as data assimilation in the earth sciences), this system
can be so large that the use of factorizations becomes impractical, and one is then led to
applying iterative methods, such as Krylov methods [?]. However, these methods typically
require preconditioning for achieving computational efficiency, often in the context of parallel
computing. Building preconditioners for general symmetric positive-definite matrices has
been widely investigated over the years (and is out of the scope of the present study). It
is however fair to say that the choice of a good preconditioner is often far from easy and
typically relies on experience and on the details of the problem at hand. When the matrix
to precondition is that of the system of normal equations (1.2) and W is known, one might
consider that a reasonable preconditioner may be obtained by using a suitable approximation
of the matrix A.

The purpose of this short paper is to show why this strategy may sometimes be ineffective.
While practitioners have been aware of the difficulty for some time (see [?, ?, ?, ?] for example),
a formal analysis, and hence a complete understanding, has been missing so far. A first step in
this direction was made by Braess and Peisker in [?], where they showed (in a slighly different
context) that, if A is square, symmetric and positive-definite, and if W is the identity matrix,
then preconditioning A2 (which corresponds to unweighted symmetric least-squares) using
the square of an approximation of A as a preconditioner might lead to a situation worse than
not preconditioning at all, unless A and its preconditioner commute. Our objective is to
elaborate further and to provide an analysis for the case where A need not be symmetric nor
positive-definite while still requiring that A be square and nonsingular. As it turns out, this
framework is general enough to cover our application in data assimilation.

The paper is organized as follows. Section 2 proposes the main analysis and relevant
theorem, while a small illustrative numerical example is presented in Section ??. The conse-
quences of our analysis for the weakly-constrained 4D-Var data assimilation are then discussed
in Section ?? and some conclusions finally drawn in Section ??.

2 Preconditioning weighted linear least squares

Let the non-singular matrix Ã ∈ IRn×n be an approximation (in a sense yet to be defined) of
A ∈ IRn×n. Then the inverse of the matrix

P = ÃTW−1Ã (2.1)

may be used to construct a preconditioner for the system (1.2), yielding

P−1(ATW−1A)x = P−1ATW−1b = (Ã−1WÃ−T )ATW−1b. (2.2)

The condition number of the preconditioned system matrix Ap = (Ã−1WÃ−T )(ATW−1A) –
and thus the ”quality” of the preconditioner P – naturally depends on the approximation Ã
and the weight matrix W . A trivial (but useless) choice is Ã = A, resulting in the condition
number of Ap being equal to 1.

We now show that σ((Ã−1WÃ−T )(ATW−1A)), the spectrum of the preconditioned system
matrix, is bounded by a function of the error of Ã as an approximation of A and the condition
number of the matrix W .
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Theorem 2.1 Let (A, Ã) ∈ IRn×n × IRn×n be non singular matrices, and let W be a
symmetric positive-definite matrix in IRn×n and let

Ap
def
= (Ã−1WÃ−T )(ATW−1A). (2.3)

Then
σ(Ap) ⊂ B

(
1, (1 + κ2(W ))‖E‖2 + κ2(W )‖E‖22

)
(2.4)

where E
def
= AÃ−1 − In the approximation error of A by Ã ,κ2(W ) = ‖W‖ 2‖W−1‖2 the

condition number of W in the Euclidean norm and B(a, r) is the closed ball of radius r
centered in a .

Proof. We first note that, because Ã is non singular, the eigenvalues of Ap are identical
to the eigenvalues of

F = WÃ−TATW−1AÃ−1

= W (In + ET )W−1(In + E)
= In + E +WETW−1 +WETW−1E
def
= In +G.

Now let (λ, v) be an eigenpair of F , with ‖v‖2 = 1. By definition, we have that

vTFv = 1 + vTGv = λ‖v‖22 = λ, (2.5)

and therefore, using the Cauchy-Schwarz and triangle inequalities, that

λ ∈ B(1, ‖G‖2). (2.6)

Now, using ‖E‖ = ‖ET ‖,

‖G‖2 = ‖E +WETW−1 +WETW−1E‖2 (2.7)

≤ ‖E‖2 + ‖WETW−1‖2 + ‖WETW−1E‖2 (2.8)

≤ ‖E‖2 + ‖W‖2‖ET ‖2‖W−1‖2 + ‖W‖2‖ET ‖2‖W−1‖2‖E‖2 (2.9)

≤ (1 + κ2(W ))‖E‖2 + κ2(W )‖E‖22 (2.10)

Combining this inequality with (2.6) then gives (2.4). 2

It results from this theorem that the condition number of W and the approximation error
E interact, and that a large condition number of W then requires the error ‖E‖2 to be
correspondingly small in order to guarantee a small bound on the eigenvalues of the precon-
ditioned system. Thus the choice of the approximation of the system matrix A, and thus
of the preconditioner, should take the weighting matrix W into account, as to ensure that
κ(W )‖E‖2 = O(1).

Following [?], we now define, κ(D,C), the condition number of a symmetric positive
definite matrix D with respect to a symmetric positive definite matrix C by

κ(D,C) = min
0<γ1<γ2

γ2
γ1

subject to γ1x
TCx ≤ xTDx ≤ γ2xTCx for all x ∈ IRn. (2.11)
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The following easy property then follows, where λmin(M) (resp. λmax(M)) denotes the small-
est (resp. largest) eigenvalue of the matrix M .

Theorem 2.2 Let (D,C) two symmetric positive-definite matrices. Then

κ(D,C) =
λmax(C−1D)

λmin(C−1D)
. (2.12)

Proof. If C1/2 its symmetric square root of C and if y = C1/2x, we obtain that, for all
0 < γ1 < γ2, (2.11) is equivalent to

γ1‖y‖22 ≤ yTC−1/2DC−1/2y ≤ γ2‖y‖22 for all y ∈ IRn.

The optimal constant γ1 (resp. γ2) is equal to the smallest (resp. largest) eigenvalues
of the matrix C−1/2DC−1/2 which is also the smallest (resp. largest) eigenvalue of the
matrix C−1D. 2

We now provide an upper bound of the condition number of ATW−1A with respect to
ÃTW−1Ã.

Corollary 2.3 Let (A, Ã) ∈ IRn×n × IRn×n be non singular matrices, and let W be a
symmetric positive-definite matrix. Then, if E = AÃ−1 − In is the approximation error
of A by Ã, and assuming that

‖E‖2 <
−(1 + κ2(W )) +

√
(1 + κ2(W ))2 + 4κ2(W )

2κ2(W )
, (2.13)

one has that

κ(ATW−1A, ÃTW−1Ã) ≤ 1 + (1 + κ2(W ))‖E‖2 + κ2(W )‖E‖22
1− (1 + κ2(W ))‖E‖2 − κ2(W )‖E‖22

.

Proof. From Theorem 2.2, one has that κ(ATW−1A, ÃTW−1Ã) is the ratio between the
largest and smallest eigenvalues of the matrix Ap. Furthermore, the assumption (2.13)
guarantees that 1 − (1 + κ2(W ))‖E‖2 − κ2(W )‖E‖22 > 0. The desired conclusion then
follows from the observation that, because of Theorem 2.1, the eigenvalues of the matrix
Ap defined in (2.3) all belong to B(1, (1 + κ2(W ))‖E‖2 + κ2(W )‖E‖22). 2

The condition (2.13) has a strong impact on numerical applications. Observe that the upper
bound on the error ‖E‖2 stated in (2.13) is less than one and tends to zero when κ2(W ) grows
(see Figure ?? (a)). For instance, a condition number κ2(W ) = 100 imposes an approximation
error of the order of 10−2. Furthermore, if one aims at a preconditioned matrix Ap with a



Gratton, Gürol, Simon, Toint: Preconditioning least-squares 5

(a) Upper bound (2.13) on the error
‖E‖2 as a function of the condition
number of W (logarithmic scales).

(b) Upper bound g on the error ‖E‖2 as
a function of the condition number of W

(logarithmic scales).

condition number bounded above by M > 0, then the requirement

κ(ATW−1A, ÃTW−1Ã) ≤ 1 + (1 + κ2(W ))‖E‖2 + κ2(W )‖E‖22
1− (1 + κ2(W ))‖E‖2 − κ2(W )‖E‖22

≤M

results in an upper bound for the approximation error given by

‖E‖2 ≤
−(1 + κ2(W )) +

√
(1 + κ2(W ))2 + 4κ2(W )M−1M+1

2κ2(W )

def
= g(κ2(W ),M).

The evolution of g with respect to κ2(W ) is shown in Figure ?? (b) for two values of M .
We note that even relatively large bounds on the condition number of ATW−1A with respect
to ÃTW−1Ã impose small approximation errors, especially when W has a large condition
number.

3 A simple illustrative example

We now illustrate the impact of the preconditioners (2.1) on the eigenvalues and condition
number of the preconditioned system matrix (2.2) in a very simple case. Let α ≥ 1 be a
parameter corresponding to the condition number of the weight matrix W . We define

A =

(
1 0
α 1

)
and W =

(
α 0
0 1

)
.

It can then be verified that the matricesATA and ATW−1A both have their condition numbers
tending to infinity when α grows. We now introduce the approximation of A given by

Ã =

(
1 0

α+ 2 1

)
.

It is now possible to construct a ”good preconditioner” P−1 = Ã−1Ã−T of the matrix ATA
in the sense that, while the condition number of ATA goes towards infinity when α grows,
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the condition number of the matrix ATA with respect to ÃT Ã is constant. In this specific
case, one has κ(ATA, ÃT Ã) which is the same as κ2(Ã

−T (ATA)Ã−1) is approximately equal
to 33.9706.

However, the approximation error E associated with this matrix is

E = AÃ−1 − I2 =

(
0 0
−2 0

)
,

leading to ‖E‖2 = 2. From Theorem 2.1, one then has that the eigenvalues of Ap =
(Ã−1WÃ−T )(ATW−1A) belong to the closed ball B(1, 1+6α), which makes it possible for the
largest eigenvalue to tend to infinity with α. Indeed, this is is what happens in this example.
One has that

Ap =

(
1− 2α2 −2α

2α3 + 4α2 − 2 2α2 + 4α+ 1

)
.

It can be shown that the eigenvalues of Ap are 1 + 2α± 2
√
α(α+ 1), and so the largest one

tends to infinity when α grows. Moreover, κ(ATW−1A, ÃTW−1Ã), the condition number of
ATW−1A with respect to ÃTW−1Ã, therefore also tends to infinity with α.

However, if we now define the approximation of A by

Ã =

(
1 0

α+ α−1 1

)
,

the approximation error then becomes

E =

(
0 0
α−1 0

)
,

leading to ‖E‖2 = α−1 and κ2(W )‖E‖2 = 1. Again, Theorem 2.1 says that the eigenvalues
of Ap belongs to B(1, 1 + 2α−1), but now the radius of this ball tends to one when α grows,
which results in bounded eigenvalues. This can easily be verified as, in this case,

Ap =

(
1− α −1

α2 − α−1 + 1 α+ α−1 + 1

)
.

which has two distinct eigenvalues 1
2
(2 + α−1 ±

√
4α−1 + α−2) tending to one when α grows,

as does κ(ATW−1A, ÃTW−1Ã).

4 Application to weakly-constrained data assimilation

We now turn to the implications of the above results for our motivating application, the
weakly-constrained 4D variational formulation for data assimilation. In this context, one
attempts to fit an initial state x0 so as to fit observations yj taken from the evolution of
a dynamical model M over Nsw time windows. We refer to [?, ?] for further details and
motivation for this formulation, but, for our present purposes, it is enough to know that it
involves the (often approximate) solution of the optimization problem

min
x∈IRn

1

2
‖x0 − xb‖2B−1 +

1

2

Nsw∑
j=0

∥∥Hj(xj)− yj∥∥2R−1
j

+
1

2

Nsw∑
j=1

‖xj −Mj(xj−1)‖2Q−1
j

(4.1)

where
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• x = (x0, x1, . . . , xNsw)T ∈ IRn is the control variable (with xj = x(tj)),

• xb is the background given at the initial time (t0),

• yj ∈ IRmj is the observation vector over a given time interval,

• Hj maps the state vector xj from model space to observation space,

• Mj represents an integration of the numerical model from time tj−1 to tj ,

• B, Rj and Qj are the covariances of the background, observation and model error.

This general unconstrained nonlinear least-squares problem is typically solved by applying the
Gauss-Newton algorithm, which iteratively proceeds by linearizing H and M at the current
iterate and then, again approximately, minimizing the resulting quadratic function. If the
operators Mj are the linearized Mj and Hj are the linearized Hj , then the problem can be
expressed in terms of δx = x− x0 as

min
δx∈IRn

1

2
‖Lδx− b‖2D−1 +

1

2
‖Hδx− d‖2R−1

where

L =


In
−M1 In

−M2 In
. . .

. . .

−MNsw In

 (4.2)

for suitable vectors

d = (d0, d1, . . . , dNsw)T and b = (b, c1, . . . , cNsw)T ,

and where

H = diag(H0, H1, . . . ,HNsw), D = diag(B,Q1, . . . , QNsw) and R = diag(R0, R1, . . . , RNsw).

This particular form of the problem is called the ”state formulation” and its optimality
conditions amount to (approximately) solving linear systems of the form

(LTD−1L+HTR−1H)δx = LTD−1b+HTR−1d (4.3)

An alternative, called the “forcing formulation”, is also possible by rewriting the problem in
terms of δp = Lδx, but we do not consider it here because it is not amenable to parallel
computation. Its conditioning has been studied in [?, ?].

It is traditionally assumed that the term LTD−1L (called the background term) dominates
in the system matrix, which then leads to preconditioners of the form

P−1 = L̃−1D L̃−T , (4.4)

with L̃ an approximation of the matrix L (see (??)). This approximation is often built by
replacing in L the operators Mj associated with the numerical model by approximations M̃j .
While the matrix-vector product with L can be done in parallel, the preconditioner (??)
involves L̃−1, whose parallelization potential crucially depends on the choice of the operators
M̃j . Two very simple approximations are commonly chosen in practice: M̃j = 0 or M̃j = In.
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The preconditioned system matrix is then (L̃−1DL̃−T )(LTD−1L+HTR−1H). In what follows,
we focus on the preconditioned background term (L̃−1DL̃−T )(LTD−1L) and we investigate
the consequences of Theorem 2.1 for this matrix.

We first analyse the form of the approximation error E = LL̃−1 − InNsw .

Lemma 4.1 Let L, L̃, Mj , M̃j and E = LL̃−1 − InNsw . Then

• if M̃j = 0, one has that E =


0
−M1 0

−M2 0
. . .

. . .

−MNsw 0

;

• if M̃j = In, one has that E =


0

In −M1 0
In −M2 In −M2 0

. . .
. . .

In −MNsw In −MNsw · · · In −MNsw 0

.

Proof. It can be verified that E is block-lower triangular with null blocks on the
diagonal. Furthermore, one has that, for all indeces (i, j) such that 1 ≤ j < i ≤ Nsw + 1,

Ei,j =

{
(M̃i−1 −Mi−1)M̃i−2 · · · M̃j if j < i− 1,

M̃i−1 −Mi−1 if j = i− 1,

where Ei,j ∈ IRn×n is the (i, j)-th block of E. The conclusions of the lemma then follow
by specializing Mj . 2

Using those expressions for the approximation error (of M̃j as an approximation of Mj), we
may then derive the following conclusions from Theorem 2.1, in terms of σmax(Mj), the largest
singular value of the linearized model matrix Mj .

Corollary 4.2 Let L and Mj be defined in (??), and let L̃ be the approximation of L
defined from M̃j ∈ {0, In} for j = 1, . . . , Nsw. Let Ap = (L̃−1DL̃−T )(LTD−1L) be the
preconditioned background matrix. Then

σ(Ap) ⊂ B(1, (1 + κ2(D))ρ+ κ2(D)ρ2)

where

ρ =


max

j=1,...,Nsw

σmax(Mj) if M̃j = 0 (j = 1 . . . , Nsw),√
(nNsw+1)(nNsw+2)

2

[
max

j=1,...,Nsw

σmax(In −Mj)

]
if M̃j = In (j = 1, . . . , Nsw).
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Proof.

1. Consider first the case where Mj = 0. From Lemma ??, we deduce that ETE is
block diagonal and

ETE = diag(MT
1 M1,M

T
2 M2, · · · ,MT

Nsw
MNsw , 0).

This then implies that ‖E‖2 = maxj=1,...,Nsw(σmax(Mj)) and we can conclude by
applying Theorem 2.1.

2. If Mj = In, then, from Corollary ??, one has that E = ST with

S =


0

In −M1 0
In −M2 0

. . .
. . .

In −MNsw 0


and T is the lower triangular matrix with the lower entries equal to one. As in
the previous case, one obtains that ‖S‖2 = maxj=1,...,Nsw σmax(In −Mj). Hence the
desired conclusion follows from applying Theorem 2.1, and using the bound

‖E‖2 ≤ ‖S‖2‖T‖2 ≤ ‖S‖2‖T‖F = ‖S‖2

√
(nNsw + 1)(nNsw + 2)

2
.

2

We immediately see that obtaining a well-conditioned matrix Ap requires specific assumptions
on the dynamical models within a sub-window. Choosing M̃j = 0 will work well if the model
itself is close to zero, which may be unrealistic in many situations. The choice M̃j = In
is often more sensible if the dynamics of the model may remain limited, especially if the
time sub-windows are short. This can be viewed as a motivation to choose Nsw large, but
one nevertheless should remember that the gain in making the singular value closer to 1 is
offset by the dependence on the square root term in part 2 of Corollary ??. Obviously, the
quality of the preconditioner may improve with the quality of M̃j as an approximation of
Mj , but it remains challenging to select good approximations which preserve efficient parallel
computation of L̃−1 (see [?] for an approach of this question). One should also remember that
our analysis merely provides bounds on the conditioning, which are pessimistic by nature, and
that the observation term HTR−1H (which we ignored here) may not always be negligible.
The situation is therefore often problem dependent, as has been demonstrated in [?] where
very different behaviours (good and bad) were observed for two contrasting data assimilation
problems.

5 Conclusions

We have provided a formal analysis of the preconditioning efficiency for nonsingular weighted
least-squares, thereby extending previous results by Braess and Peisker [?] and vindicating
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the numerical experience of several practitioners. We have also specialized the analysis to
the state formulation of the weakly-constrained data assimilation problems, an important
computational tool in the earth sciences. While the conditioning bounds discussed in this
paper remain indicative as all bounds are, they nevertheless provide some guidance on how
to construct good parallelizable preconditioners, a task which remains for now a problem-
dependent exercize.
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