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Abstract

We establish or refute the optimality of inexact second-order methods for uncon-
strained nonconvex optimization from the point of view of worst-case evaluation com-
plexity, improving and generalizing the results of [15, 19]. To this aim, we consider
a new general class of inexact second-order algorithms for unconstrained optimization
that includes regularization and trust-region variations of Newton’s method as well as of
their linesearch variants. For each method in this class and arbitrary accuracy threshold
ǫ ∈ (0, 1), we exhibit a smooth objective function with bounded range, whose gradient
is globally Lipschitz continuous and whose Hessian is α−Hölder continuous (for given
α ∈ [0, 1]), for which the method in question takes at least ⌊ǫ−(2+α)/(1+α)⌋ function eval-
uations to generate a first iterate whose gradient is smaller than ǫ in norm. Moreover,
we also construct another function on which Newton’s takes ⌊ǫ−2⌋ evaluations, but whose
Hessian is Lipschitz continuous on the path of iterates. These examples provide lower
bounds on the worst-case evaluation complexity of methods in our class when applied
to smooth problems satisfying the relevant assumptions. Furthermore, for α = 1, this
lower bound is of the same order in ǫ as the upper bound on the worst-case evaluation
complexity of the cubic regularization method and other methods in a class of methods
proposed in [36] or in [65], thus implying that these methods have optimal worst-case
evaluation complexity within a wider class of second-order methods, and that Newton’s
method is suboptimal.

1 Introduction

Newton’s method has long represented a benchmark for rapid asymptotic convergence when
minimizing smooth, unconstrained objective functions [38]. It has also been efficiently safe-
guarded to ensure its global convergence to first- and even second-order critical points, in the
presence of local nonconvexity of the objective using linesearch [64], trust-region [34] or other
regularization techniques [54, 63, 16]. Many variants of these globalization techniques have
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been proposed. These generally retain fast local convergence under non-degeneracy assump-
tions, are often suitable when solving large-scale problems and sometimes allow approximate
rather than true Hessians to be employed. We attempt to capture the common features of
these methods in the description of a general class of second-order methods, which we denote
by M.α in what follows.

In this paper, we are concerned with establishing lower bounds on the worst-case evaluation
complexity of the M.α methods1 when applied to “sufficiently smooth” nonconvex minimiza-
tion problems, in the sense that we exhibit objective functions on which these methods take
a large number of function evaluations to obtain an approximate first-order point.

There is a growing literature on the global worst-case evaluation complexity of first- and
second-order methods for nonconvex smooth optimization problems (for which we provide
a partial bibliography with this paper). In particular, it is known [70], [61, p. 29] that
steepest-descent method with either exact or inexact linesearches takes at most2 O

(

ǫ−2
)

iterations/function-evaluations to generate a gradient whose norm is at most ǫ when started
from an arbitrary initial point and applied to nonconvex smooth objectives with gradients
that are globally Lipschitz continuous within some open convex set containing the iterates
generated. Furthermore, this bound is essentially sharp (for inexact [15] and exact [22] line-
searches). Similarly, trust-region methods that ensure at least a Cauchy (steepest-descent-
like) decrease on each iteration satisfy a worst-case evaluation complexity bound of the same
order under identical conditions [53]. It follows that Newton’s method globalized by trust-
region regularization has the same O

(

ǫ−2
)

worst-case evaluation upper bound; such a bound
has also been shown to be essentially sharp [15].

From a worst-case complexity point of view, one can do better when a cubic regulariza-
tion/perturbation of the Newton direction is used [54, 63, 16, 36]—such a method iteratively
calculates step corrections by (exactly or approximately) minimizing a cubic model formed
of a quadratic approximation of the objective and the cube of a weighted norm of the step.

For such a method, the worst-case global complexity improves to be O
(

ǫ−3/2
)

[63, 16], for

problems whose gradients and Hessians are Lipschitz continuous as above; this bound is also
essentially sharp [15]. If instead powers between two and three are used in the regulariza-

tion, then an “intermediate” worst-case complexity of O
(

ǫ−(2+α)/(1+α)
)

is obtained for such

variants when applied to functions with globally α−Hölder continuous Hessian on the path
of iterates, where α ∈ (0, 1] [19]. It is finally possible, as proposed in [65], to obtain the

desired O
(

ǫ−3/2
)

order of worst-case evaluation complexity using a purely quadratic regu-

larization, at the price of mixing iterations using the regularized and unregularized Hessian
with iterations requiring the computation of its left-most eigenpair.

These (essentially tight) upper bounds on the worst-case evaluation complexity of such
second-order methods naturally raise the question as to whether other second-order methods
might have better worst-case complexity than cubic (or similar) regularization over certain
classes of sufficiently smooth functions. To attempt to answer this question, we define a
general, parametrized class of methods that includes Newton’s method, and that attempts
to capture the essential features of globalized Newton variants we have mentioned. Our class
includes for example, the algorithms discussed above as well as multiplier-adjusting types such
as the Goldfeld-Quandt-Trotter approach [46]. The methods of interest take a potentially-

1And, as an aside, on that of the steepest-descent method.
2When {ak} and {bk} are two sequences of real numbers, we say that ak = O (bk) if the ratio ak/bk is

bounded.



C. Cartis, N. I. M. Gould and Ph. L. Toint 3

perturbed Newton step at each iteration so long as the perturbation is “not too large” and
the subproblem is solved “sufficiently accurately”. The size of the perturbation allowed is
simultaneously related to the parameter α defining the class of methods and the rate of
the asymptotic convergence of the method. For each method in each α-parametrized class
and each ǫ ∈ (0, 1), we construct a function with globally α−Hölder-continuous Hessian and
Lipschitz continuous gradient for which the method takes precisely ⌈ǫ−(2+α)/(1+α)⌉ function
evaluations to drive the gradient norm below ǫ. As such counts are the same order as the worst-
case upper complexity bound of regularization methods, it follows that the latter methods
are optimal within their respective α-class of methods. As α approaches zero, the worst-case
complexity of these methods approaches that of steepest descent, while for α = 1, we recover
that of cubic regularization. We also improve the examples proposed in [15, 19] in two ways.
The first is that we now employ objective functions with bounded range, which allows refining
the associated definition of sharp worst-case evaluation complexity bounds, the second being
that the new examples now have finite isolated global minimizers.

The structure of the paper is as follows. Section 2 describes the parameter-dependent class
of methods and objectives of interest; Section 2.1 gives properties of the methods such as their
connection to fast asymptotic rates of convergence while Section 2.2 reviews some well-known
examples of methods covered by our general definition of the class. Section 3 then introduces
two examples of inefficiency of these methods and Section 4 discusses the consequences of
these examples regarding the sharpness and possible optimality of the associated worst-case
evaluation complexity bounds. Further consequences of our results on the new class proposed
by [36] and [65] are developed in Section 5 and 6, respectively. Section 7 draws our conclusions.

Notation. Throughout the paper, ‖ · ‖ denotes the Euclidean norm on IRn, I the n× n
identity matrix, and λmin(H) and λmax(H) the left- and right-most eigenvalue of any given
symmetric matrix H, respectively. The condition number of a symmetric positive definite

matrix M is denoted by κ(M)
def
= λmax(M)/λmin(M). If M is only positive-semidefinite

which we denote by M � 0, and λmin(M) = 0, then κ(0)
def
= +∞ unless M = 0, in which case

we set κ(0)
def
= 1. Positive definiteness of M is written as M ≻ 0.

2 A general parametrized class of methods and objectives

Our aim is to minimize a given C2 objective function f(x), x ∈ IRn. We consider methods
that generate sequences of iterates {xk} for which {f(xk)} is monotonically decreasing, we
let

fk
def
= f(xk), gk

def
= g(xk) and Hk

def
= H(xk).

where g(x) = ∇xf(x) and H(x) = ∇xxf(x).
Let α ∈ [0, 1] be a fixed parameter and consider iterative methods whose iterations are

defined as follows. Given some x0 ∈ IRn, let

xk+1 = xk + sk, k ≥ 0, (2.1)

where sk satisfies

(Hk +Mk)sk = −gk + rk with ‖rk‖ ≤ min [κrg‖gk‖, κrs‖Mksk‖] (2.2)

for some residual rk and constants κrg ∈ [0, 1) and κrs > 0, and for some symmetric matrix
Mk such that

Mk � 0, Hk +Mk � 0 (2.3)
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and

λmin(Hk) + λmin(Mk) ≤ κλmax
{

|λmin(Hk)|, ‖gk‖
α

1+α

}

(2.4)

for some κλ > 1 independent of k. Without loss of generality, we assume that sk 6= 0.
Furthermore, we require that no infinite steps are taken, namely

‖sk‖ ≤ κs (2.5)

for some κs > 0 independent of k. The M.α class of second-order methods consists of all
methods whose iterations satisfy (2.1)–(2.5). The particular choices Mk = λkI and Mk =
λkNk (with Nk symmetric, positive definite and with bounded condition number) will be
of particular interest in what follows3. Note that the definition of M.α just introduced
generalizes that of M.α in [19].

Typically, the expression (2.2) for sk is derived by minimizing (possibly approximately)
the second-order model

mk(s) = fk + gTk s+
1

2
sT (Hk + βkMk)s, with βk

def
= βk(s) ≥ 0 and βk ≤ 1 (2.6)

of f(xk + s)—possibly with an explicit regularizing constraint—with the aim of obtaining
a sufficient decrease of f at the new iterate xk+1 = xk + sk compared to f(xk). In the
definition of an M.α method however, the issue of (sufficient) objective-function decrease
is not explicitly addressed/required. There is no loss of generality in doing so here since
although local refinement of the model may be required to ensure function decrease, the
number of function evaluations to do so (at least for known methods) does not increase the
overall worst-case evaluation complexity by more than a constant multiple and thus does not
affect quantitatively the worst-case bounds derived; see for example, [15, 17, 53] and also
Section 2.2. Furthermore, the examples of inefficiency proposed in Section 3 are constructed
in such a way that each iteration of the method automatically provides sufficient decrease of
f .

Having defined the classes of methods we shall be concerned with, we now specify the
problem classes that we shall apply the methods in each class to, in order to demonstrate
slow convergence. Given a method in M.α, we are interested in minimizing functions f that
satisfy

A.α f : IRn → IR is twice continuously differentiable and bounded below, with gradient
g being globally Lipschitz continuous on IRn with constant Lg, namely,

‖g(x)− g(y)‖ ≤ Lg‖x− y‖, for all x, y ∈ IRn; (2.7)

and the Hessian H being globally α−Hölder continuous on IRn with constant LH,α, i.e.,

‖H(x)−H(y)‖ ≤ LH,α‖x− y‖α, for all x, y ∈ IRn. (2.8)

✷

The case when α = 1 in A.α corresponds to the Hessian of f being globally Lipschitz con-
tinuous. Moreover, (2.7) implies (2.8) when α = 0, so that the A.0 class is that of twice

3Note that (2.4) is slightly more general than a maybe more natural condition involving λmin(Hk + Mk)
instead of λmin(Hk) + λmin(Mk).
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continuously differentiable functions with globally Lipschitz continuous gradient. Note also
that (2.7) and the existence of H(x) imply that

‖H(x)‖ ≤ Lg (2.9)

for all x ∈ IRn [61, Lemma 1.2.2], and that every function f satisfying A.α with α > 1 must
be quadratic. As we will see below, it turns out that we could weaken the conditions defining
A.α by only requiring (2.7) and (2.8) to hold in an open set containing all the segments
[xk, xk + sk] (the “path of iterates”), but these segments of course depend themselves on f
and the method applied.

The next subsection provides some background and justification for the technical condition
(2.4) by relating it to fast rates of asymptotic convergence, which is a defining feature of
second-order algorithms. In Section 2.2, we then review some methods belonging to M.α.

2.1 Properties of the methods in M.α

We first state inclusions properties for M.α and A.α.

Lemma 2.1

1. Consider a method of M.α1 for α1 ∈ [0, 1] and assume that it generates bounded
gradients. Then it belongs to M.α2 for α2 ∈ [0, α1].

2. A.α1 implies A.α2 for α2 ∈ [0, α1], with LH,α2
= max[LH,α1

, 2Lg].

Proof. By assumption, ‖gk‖ ≤ κg for some κg ≥ 1. Hence, if ‖gk‖ ≥ 1,

‖gk‖
α1

1+α1 ≤ κ
α1

1+α1
g ≤ κg ≤ κg‖gk‖

α2
1+α2 (2.10)

for any α2 ∈ [0, α1]. Moreover, (2.10) also holds if ‖gk‖ ≤ 1, proving the first statement
of the lemma. Now we obtain from (2.9), that, if ‖x− y‖ > 1, then

‖H(x)−H(y)‖ ≤ ‖H(x)‖+ ‖H(y)‖ ≤ 2Lg ≤ 2Lg‖x− y‖α

for any α ∈ [0, 1]. When ‖x − y‖ ≤ 1, we may deduce from (2.8) that, if α1 ≥ α2, then
(2.8) with α = α1 implies (2.8) with α = α2. This proves the second statement. ✷

Observe if a method is known to be globally convergent in the sense that ‖gk‖ → 0 when
k → ∞, then it obviously generates bounded gradients and thus the globally convergent
methods of M.α1 are included in M.α2 (α2 ∈ [0, α1]).

We next give a sufficient, more concise, condition on the algorithm-generated matricesMk

that implies the bound (2.4).
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Lemma 2.2 Let (2.2) and (2.3) hold. Assume also that the algorithm-generated matri-
ces Mk satisfies

λmin(Mk) ≤ κλ‖sk‖α, for some κλ > 1 and α ∈ [0, 1] independent of k. (2.11)

Then (2.4) holds with κλ
def
= 2κ

1

1+α

λ (1 + κrg).

Proof. Clearly, (2.4) holds when λmin(Hk +Mk) = 0. When λmin(Hk +Mk) > 0 and
hence Hk +Mk ≻ 0, (2.2) implies that

‖sk‖ ≤ ‖gk‖+ ‖rk‖
λmin(Hk +Mk)

≤ (1 + κrg)‖gk‖
λmin(Hk) + λmin(Mk)

. (2.12)

This and (2.11) give the inequality

ψ(λmin(Mk)) ≤ 0 with ψ(λ)
def
= λ

1

α (λ+ λmin(Hk))− κ
1

α
λ (1 + κrg)‖gk‖. (2.13)

Now note that ψ(0) = ψ(−λmin(Hk)) = −κ
1

α
λ (1 + κrg)‖gk‖ and thus

ψ(λ1,k) < 0 with λ1,k = max{0,−λmin(Hk)}. (2.14)

Moreover, the form of ψ(λ) implies that ψ(λ) is strictly increasing for λ ≥ λ1,k. Define
now

λ2,k
def
= −λmin(Hk) + 2max

{

|λmin(Hk)|, κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖
α

1+α

}

> λ1,k. (2.15)

Suppose first that λmin(Hk) < 0 and |λmin(Hk)| ≥ κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖
α

1+α . Then one
verifies that λ2,k = 3|λmin(Hk)| and

ψ(λ2,k) = (3|λmin(Hk)|)
1+α
α − (3|λmin(Hk)|)

1

α |λmin(Hk)| − κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖

= 2 · 3 1

α |λmin(Hk)|
1+α
α − κ

1

1+α

λ (1 + κrg)
α

1+α ‖gk‖ > 0

Suppose now that λmin(Hk) ≥ 0 and |λmin(Hk)| ≥ κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖
α

1+α . Then
λ2,k = λmin(Hk) and

ψ(λ2,k) = (λmin(Hk))
1+α
α + (λmin(Hk))

1

α |λmin(Hk)| − κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖ > 0.

Thus we deduce that ψ(λ2,k) > 0 whenever |λmin(Hk)| ≥ κ
1

1+α

λ (1+κrg)
α

1+α ‖gk‖
α

1+α . More-

over the same inequality obviously holds if |λmin(Hk)| < κ
1

1+α

λ (1 + κrg)
α

1+α ‖gk‖
α

1+α be-
cause ψ(λ) is increasing with λ. As a consequence, ψ(λ2,k) > 0 in all cases. We now
combine this inequality, (2.14) and the monotonicity of ψ(λ) for λ ≥ λ1,k to obtain that
either λmin(Mk) ≤ λ1,k < λ2,k or λmin(Mk) ∈ [λ1,k, λ2,k) because of of (2.13). Thus
λmin(Mk) ≤ λ2,k, which, due to (2.15) and κλ > 1, implies (2.4). ✷
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Thus a method satisfying (2.1)–(2.5) and (2.11) belongs toM.α, but not every method inM.α
needs to satisfy (2.11). This latter requirement implies the following property regarding the
length of the step generated by methods in M.α satisfying (2.11) when applied to functions
satisfying A.α.

Lemma 2.3 Assume that an objective function f satisfying A.α is minimized by a
method satisfying (2.1), (2.2), (2.11) and such that the conditioning of Mk is bounded
in that κ(Mk) ≤ κκ for some κκ ≥ 1. Then there exists κs,α > 0 independent of k such
that, for k ≥ 0,

‖sk‖ ≥ κs,α‖gk+1‖
1

1+α . (2.16)

Proof. The triangle inequality provides

‖gk+1‖ ≤ ‖gk+1 − (gk +Hksk)‖+ ‖gk +Hksk‖. (2.17)

From (2.1), gk+1 = g(xk + sk) and Taylor expansion provides gk+1 = gk +
∫ 1
0 H(xk +

τsk)skdτ . This and (2.8) now imply

‖gk+1 − (gk +Hksk)‖ ≤
∥

∥

∥

∥

∫ 1

0
[H(xk + τsk)−H(xk)]dτ

∥

∥

∥

∥

· ‖sk‖ ≤ LH,α(1 + α)−1‖sk‖1+α,

so that (2.17) and (2.2) together give that

‖gk+1‖ ≤ LH,α(1 + α)−1‖sk‖1+α + (1 + κrs)‖Mk‖ ‖sk‖.

If Mk 6= 0, this inequality and the fact that κ(Mk) is bounded then imply that

‖gk+1‖ ≤ LH,α(1 + α)−1‖sk‖1+α + κ(Mk)(1 + κrs)λmin(Mk) ‖sk‖,

while we may ignore the last term on the right-hand side if Mk = 0. Hence, in all cases,

‖gk+1‖ ≤ LH,α(1 + α)−1‖sk‖1+α + κκ(1 + κrs)λmin(Mk) ‖sk‖,

where we used that κ(Mk) ≤ κκ by assumption. This bound and (2.11) then imply (2.16)

with κs,α
def
= [LH,α(1 + α)−1 + κκ(1 + κrs)κλ]

− 1

1+α . ✷

Property (2.16) will be central for proving (in Appendix A2) desirable properties of a class
of methods belonging to M.α. In addition, we now show that (2.16) is a necessary condition
for fast local convergence of methods of type (2.2), under reasonable assumptions; fast local
rate of convergence in a neighbourhood of well-behaved minimizers is a “trademark” of what
is commonly regarded as second-order methods.
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Lemma 2.4 Let f satisfy assumptions A.α. Apply an algorithm to minimizing f that
satisfies (2.1) and (2.2) and for which

‖Mk‖ ≤ κλ, k ≥ 0, for some κλ > 0 independent of k. (2.18)

Assume also that convergence at linear or faster than linear rate occurs, namely,

‖gk+1‖ ≤ κc‖gk‖1+α, k ≥ 0, (2.19)

for some κc > 0 independent of k, with κc ∈ (0, 1) when α = 0. Then (2.16) holds.

Proof. Let

0 ≤ αk
def
=

‖sk‖
‖gk+1‖

1

1+α

, k ≥ 0. (2.20)

From (2.19) and the definition of αk in (2.20), we have that, for k ≥ 0,

(1− κrg)
‖sk‖
αk

≤ κc,α(1− κrg)‖gk‖ ≤ κc,α‖gk + rk‖
= κc,α‖(Hk +Mk)sk‖ ≤ κc,α‖Hk +Mk‖ · ‖sk‖,

where κc,α
def
= κ

1

1+α
c and where we used (2.2) to obtain the first equality. It follows that

‖Hk +Mk‖ ≥ (1− κrg)

αkκc,α
, k ≥ 0. (2.21)

The bounds (2.9) and (2.18) imply that {Hk +Mk} is uniformly bounded above for all k,
namely,

‖Hk +Mk‖ ≤ κhl, k ≥ 0, (2.22)

where κhl
def
= Lg +κλ. Now (2.21) and (2.22) give that αk ≥ 1/(κhlκc,α) > 0, for all k ≥ 0,

and so it follows from (2.20), that (2.16) holds with κs,α
def
= (1− κrg)/(κc1κc,α). ✷

It is clear from the proof of Lemma 2.4 that (2.19) is only needed asymptotically, that is for
all k sufficiently large; for simplicity, we have assumed it holds globally.

Note that letting α = 1 in Lemma 2.4 provides a necessary condition for quadratically
convergent methods satisfying (2.1), (2.2) and (2.18). Also, similarly to the above proof, one
can show that if superlinear convergence of {gk} to zero occurs, then (2.16) holds with α = 0
for all κs,α > 0, or equivalently, ‖gk+1‖/‖sk‖ → 0, as k → ∞.

Summarizing, we have shown that (2.16) holds for a method in M.α if (2.11) holds and
κ(Mk) is bounded, or if linear of faster asymptotic convergence takes place for unit steps.

2.2 Some examples of methods that belong to the class M.α

Let us now illustrate some of the methods that either by construction or under certain con-
ditions belong to M.α. This list of methods does not attempt to be exhaustive and other
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practical methods may be found to belong to M.α.

Newton’s method [38]. Newton’s method for convex optimization is characterised by find-
ing a correction sk that satisfies Hksk = −gk for nonzero gk ∈ Range(Hk). Letting

Mk = 0, rk = 0 and βk = 0 (2.23)

in (2.2) and (2.6), respectively, yields Newton’s method. Provided additionally that both
gk ∈ Range(Hk) and Hk is positive semi-definite, sk is a descent direction and (2.3) holds.
Since (2.4) is trivially satisfied in this case, it follows that Newton’s method belongs to the
class M.α, for any α ∈ [0, 1], provided it does not generate infinite steps to violate (2.5). As
Newton’s method is commonly embedded within trust-region or regularization frameworks
when applied to nonconvex functions, (2.5) will in fact, hold as it is generally enforced for the
latter methods. Note that allowing ‖rk‖ > 0 subject to the second part of (2.2) then covers
inexact variants of Newton’s method.

Regularization algorithms [54, 61, 17]. In these methods, the step sk from the current
iterate xk is computed by (possibly approximately) globally minimizing the model

mk(s) = fk + gTk s+
1

2
sTHks+

σk
2 + α

‖s‖2+α, (2.24)

where the regularization weight σk is adjusted to ensure sufficient decrease of f at xk + sk.
We assume here that the minimization of (2.24) is carried accurately enough to ensure that
∇ssmk − (s) = Hk + σk‖s‖I is positive semidefinite, which is always possible because of [16,
Theorem 3.1]. The scalar α is the same fixed parameter as in the definition of A.α andM.α, so
that for each α ∈ [0, 1], we have a different regularization term and hence what we shall call an
(2+α)-regularization method. For α = 1, we recover the cubic regularization (ARC) approach
[54, 72, 63, 16, 17]. For α = 0, we obtain a quadratic regularization scheme, reminiscent of
the Levenberg-Morrison-Marquardt method [64]. For these (2 + α)-regularization methods,
we have

α ∈ [0, 1], Mk = σk‖sk‖αI, and βk =
2

2 + α
(2.25)

in (2.2) and (2.6). If scaling the regularization term is considered, then the second of these
relation is replaced by Mk = σk‖sk‖αNk for some fixed scaling symmetric positive definite
matrix having a bounded condition number. Note that, by construction, κ(Mk) = 1. Since
α ≥ 0, we have 0 ≤ βk ≤ 1 which is required in (2.6). A mechanism of successful and
unsuccessful iterations and σk adjustments can be devised similarly to ARC [16, Alg. 2.1] in
order to deal with steps sk that do not give sufficient decrease in the objective. An upper
bound on the number of unsuccessful iterations which is constant multiple of successful ones
can be given under mild assumptions on f [17, Theorem 2.1]. Note that each (successful or
unsuccessful) iteration requires one function- and at most one gradient evaluation.

We now show that for each α ∈ [0, 1], the (2 + α)−regularization method based on the
model (2.24) satisfies (2.5) and (2.4) when applied to f in A.α, and so it belongs to M.α.
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Lemma 2.5 Let f satisfy A.α with α ∈ (0, 1]. Consider minimizing f by applying an
(2 + α)-regularization method based on the model (2.24), where the step sk is chosen
as the global minimizer of the local α−model, namely of mk(s) in (2.6) with the choice
(2.25), and where the regularization parameter σk is chosen to ensure that

σk ≥ σmin, k ≥ 0, (2.26)

for some σmin > 0 independent of k. Then (2.5) and (2.11) hold, and so the (2 + α)-
regularization method belongs to M.α.

Proof. (see Appendix A2 for details) The same argument that is used in [16, Lem.2.2]
for the α = 1 case (see also Appendix A2) provides

‖sk‖ ≤ max







(

3(2 + α)Lg

4σk

)

1

α

,

(

3(2 + α)‖gk‖
σk

)

1

1+α







, k ≥ 0, (2.27)

so long as A.α holds, which together with (2.26), implies

‖sk‖ ≤ max







(

3(2 + α)Lg

4σmin

)

1

α

,

(

3(2 + α)‖gk‖
σmin

)

1

1+α







, k ≥ 0. (2.28)

The assumptions A.α, that the model is minimized globally imply that the α ≤ 1 analog
of [16, Corollary 2.6] holds, which gives ‖gk‖ → 0 as k → ∞, and so {‖gk‖}, k ≥ 0, is
bounded above. The bound (2.5) now follows from (2.28).

Using the same techniques as in [16, Lemma 5.2] that applies when f satisfies A.1, it is
easy to show for the more general A.α case that σk ≤ cσ max(σ0, LH,α) for all k, where cσ
is a constant depending solely on α and algorithm parameters. It then follows from (2.25)
that (2.11) holds and therefore that the (2+α)-regularization method belongs to M.α for
α ∈ (0, 1]. ✷

We cannot extend this result to the α = 0 case unless we also assume that Hk is positive
semi-definite. If this is the case, further examination of the proof of [16, Lem.2.2] allows us
to remove the first term in the max in (2.28), and the remainder of the proof is valid.

We note that bounding the regularization parameter σk away from zero in (2.26) appears
crucial when establishing the bounds (2.5) and (2.4). Requiring (2.26) implies that the Newton
step is always perturbed, but does not prevent local quadratic convergence of ARC [17].

Goldfeld-Quandt-Trotter-type (GQT) methods [46]. Let α ∈ (0, 1]. These algorithms
set Mk = λkI, where

λk =

{

0, when λmin(Hk) ≥ ωk‖gk‖
α

1+α ;

−λmin(Hk) + ωk‖gk‖
α

1+α , otherwise,
(2.29)

in (2.2), where ωk > 0 is a parameter that is adjusted so as to ensure sufficient objective
decrease. (Observe that replacing α

1+α by 1 in the exponent of ‖gk‖ in (2.29) recovers the
original method of Goldfeld et al. [46].) It is straightforward to check that (2.3) holds for the
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choice (2.29). Thus the GQT approach takes the pure Newton step whenever the Hessian is
locally sufficiently positive definite, and a suitable regularization of this step otherwise. The
parameter ωk is increased by a factor, say γ1 > 1, and xk+1 left as xk whenever the step sk
does not give sufficient decrease in f (i.e., iteration k is unsuccessful), namely when

ρk
def
=

fk − f(xk + sk)

fk −mk(sk)
≤ η1, (2.30)

where η1 ∈ (0, 1) and

mk(s) = fk + gTk s+
1

2
sTHks (2.31)

is the model (2.6) with βk = 0. If ρk > η1, then ωk+1 ≤ ωk and xk+1 is constructed as in
(2.1). Note that the choice (2.29) implies that (2.4) holds, provided ωk is uniformly bounded
above. We show that the latter, as well as (2.5), hold for functions in A.α.

Lemma 2.6 Let f satisfy A.α with α ∈ (0, 1]. Consider minimizing f by applying a
GQT method that sets λk in (2.2) according to (2.29), measures progress according to
(2.30), and chooses the parameter ωk and the residual rk to satisfy, for k ≥ 0,

ωk ≥ ωmin k ≥ 0. and rTk sk ≤ 0. (2.32)

Then (2.5) and (2.4) hold, and so the GQT method belongs to M.α.

Note that the second part of (2.32) merely requires that sk is not longer that the line
minimum of the regularized model along the direction sk, that is 1 ≤ argminτ≥0mk(τsk).

Proof. Let us first show (2.5). Since ωk > 0, and gk + rk 6= 0 until termination, the
choice of λk in (2.29) implies that λk + λmin(Hk) > 0, for all k, and so (2.2) provides

sk = −(Hk + λkI)
−1(gk + rk), (2.33)

and hence,

‖sk‖ ≤ ‖(Hk + λkI)
−1‖ · ‖gk + rk‖ =

(1 + κrg)‖gk||
λk + λmin(Hk)

, k ≥ 0. (2.34)

It follows from (2.29) and the first part of (2.32) that, for all k ≥ 0,

λk + λmin(Hk) ≥ ωk‖gk‖
α

1+α ≥ ωmin‖gk‖
α

1+α , (2.35)

This and (2.34) further give

‖sk‖ ≤ (1 + κrg)‖gk‖
1

1+α

ωmin
, k ≥ 0. (2.36)

As global convergence assumptions are satisfied when f in A.α [34, 46], we have ‖gk‖ →
0 as k → ∞ (in fact, we only need the gradients {gk} to be bounded). Thus (2.36)
implies (2.5).
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Due to (2.29), (2.4) holds if we show that {ωk} is uniformly bounded above. For this, we
first need to estimate the model decrease. Taking the inner product of (2.2) with sk, we
obtain that

−gTk sk = sTkHksk + λk‖sk‖2 − rTk sk.

Substituting this into the model decrease, we deduce also from (2.6) with βk = 0 that

fk −mk(sk) = −gTk sk − 1

2
sTkHksk = 1

2
sTkHksk +λk‖sk‖2− rTk sk ≥ ( 1

2
λmin(Hk) + λk) ‖sk‖2.

where we used the second part of (2.32) to obtain the last inequality. It is straightforward
to check that this and (2.35) now imply

fk −mk(sk) ≥ 1

2
ωk‖gk‖

α
1+α · ‖sk‖2. (2.37)

We show next that iteration k is successful for ωk sufficiently large. From (2.30) and
second-order Taylor expansion of f(xk + sk), we deduce

|ρk − 1| =
∣

∣

∣

∣

f(xk + sk)−mk(sk)

fk −mk(sk)

∣

∣

∣

∣

≤ |Hk −H(ξk)| · ‖sk‖2
2(fk −mk(sk))

≤ LH,α‖sk‖2+α

2(fk −mk(sk))
.

This and (2.37) now give

|ρk − 1| ≤ LH,α‖sk‖α

ωk‖gk‖
α

1+α

≤ LH,α

ωα
minωk

, (2.38)

where to obtain the last inequality, we used (2.36). Due to (2.30), iteration k is successful

when |ρk − 1| ≤ 1− η1, which from (2.38) is guaranteed to hold whenever ωk ≥ LH,α

ωα
min

(1−η1)
.

As on each successful iteration we set ωk+1 ≤ ωk, it follows that

ωk ≤ ω
def
= max

{

ω0,
γ1LH,α

ωα
min(1− η1)

}

, k ≥ 0, (2.39)

where the max term addresses the situation at the starting point and the γ1 factor is
included in case an iteration was unsuccessful and close to the bound. This concludes
proving (2.4). ✷

Trust-region algorithms [34]. These methods compute the correction sk as the global
solution of the subproblem

minimize fk + gTk s+
1

2
sTHks subject to ‖s‖ ≤ ∆k, (2.40)

where ∆k is an evolving trust-region radius that is chosen to ensure sufficient decrease of
f at xk + sk. The resulting global minimizer satisfies (2.2)–(2.3) [34, Corollary 7.2.2] with
Mk = λkI (or Mk = λkNk if scaling is considered) and rk = 0. The scalar λk is the Lagrange
multiplier of the trust-region constraint, satisfies

λk ≥ max{0,−λmin(Hk)} (2.41)

and is such that λk = 0 whenever ‖sk‖ < ∆k (and then, sk is the Newton step) or calculated
using (2.2) to ensure that ‖sk‖ = ∆k. The scalar βk = 0 in (2.6). The iterates are defined by
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(2.1) whenever sufficient progress can be made in some relative function decrease (so-called
successful iterations), and they remain unchanged otherwise (unsuccessful iterations) while ∆k

is adjusted to improve the model (decreased on unsuccessful iterations, possibly increased on
successful ones). The total number of unsuccessful iterations is bounded above by a constant
multiple of the successful ones plus a (negligible) term in log ǫ [53, page 23] provided ∆k is
not increased too fast on successful iterations. One successful iteration requires one gradient
and one function evaluation while an unsuccessful one only evaluates the objective.

The property (2.5) of M.α methods can be easily shown for trust-region methods, see
Lemma 2.7. It is unclear however, whether conditions (2.4) or (2.11) can be guaranteed in
general for functions in A.α. The next lemma gives conditions ensuring a uniform upper
bound on the multiplier λk, which still falls short of (2.4) in general.

Lemma 2.7 Let f satisfy assumptions A.0. Consider minimizing f by applying a trust-
region method as described in [34, Algorithm 6.1.1], where the trust-region subproblem
is minimized globally to compute sk and where the trust-region radius is chosen to ensure
that

∆k ≤ ∆max, k ≥ 0, (2.42)

for some ∆max > 0. Then (2.5) holds. Additionally, if

‖gk+1‖ ≤ ‖gk‖, for all k sufficiently large, (2.43)

then λk ≤ λmax for all k and some λmax > 0, and λmin(Mk) is bounded.

Proof. Consider the basic trust-region algorithm as described in [34, Algorithm 6.1.1],
using the same notation. Since the global minimizer sk of the trust-region subproblem
is feasible with respect to the trust-region constraint, we have ‖sk‖ ≤ ∆k, and so (2.5)
follows trivially from (2.42).

Clearly, the upper bound on λk holds whenever λk = 0 or λk = −λmin(Hk) ≤ Lg. Thus
it is sufficient to consider the case when λk > 0 and Hk + λkI ≻ 0. The first condition
implies that the trust-region constraint is active, namely ‖sk‖ = ∆k [34, Corollary 7.2.2].
The second condition together with (2.2) implies, as in the proof of Lemma 2.2, that (2.12)
holds. Thus we deduce

∆k ≤ ‖gk‖
λk + λmin(Hk)

,

or equivalently,

λk ≤ ‖gk‖
∆k

− λmin(Hk) ≤
‖gk‖
∆k

+ Lg, k ≥ 0. (2.44)

It remains to show that

{‖gk‖/∆k} is bounded above independently of k. (2.45)

By [34, Theorem 6.4.2], we have that there exists c ∈ (0, 1) such that the implication holds

∆k ≤ c‖gk‖ =⇒ ∆k+1 ≥ ∆k, i.e., k is successful. (2.46)
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(Observe that the Cauchy model decrease condition [34, Theorem 6.3.3] is sufficient to
obtain the above implication.) Let γ1 ∈ (0, 1) denote the largest factor we allow ∆k to
be decreased by (during unsuccessful iterations). Using a similar argument to that of [34,
Theorem 6.4.3], we let k ≥ k0 be the first iterate such that

∆k+1 < cγ1‖gk+1‖, (2.47)

where k0 is the iteration from which onwards (2.43) holds. Then since ∆k+1 ≥ γ1∆k and
from (2.43) we have that ∆k < c‖gk‖. This and (2.46) give

∆k+1 ≥ ∆k ≥ cγ1‖gk‖ ≥ cγ1‖gk+1‖,

where to obtain the second and third inequalities, we used the hypothesis and (2.43),
respectively. We have reached a contradiction with our assumption that k + 1 is the first
iteration greater than k0 such that (2.47) holds. Hence there is no such k and we deduce
that

∆k ≥ min {∆k0 , cγ1‖gk‖} for all k ≥ k0. (2.48)

Note that since gk remains unchanged on unsuccessful iterations, (2.43) trivially holds on
such iterations. Since the assumptions of [34, Theorem 6.4.6] are satisfied, we have that
‖gk‖ → 0, as k → ∞. This and (2.48) imply (2.45). The desired conclusion then follows
from (2.44). ✷

Note that if (2.19) holds for some α ∈ [0, 1], then (2.43) is satisfied, and so Lemma 2.7 shows
that if (2.19) holds, then (2.18) is satisfied. It follows from Lemma 2.4 that fast convergence
of trust-region methods for functions in A.α alone is sufficient to ensure (2.16), which in turn
is connected to our definition of the class M.α. However, the properties of the multipliers
(in the sense of (2.4) for any α ∈ [0, 1] or even (2.16)) remain unclear in the absence of fast
convergence of the method. Based on our experience, we are inclined to believe that generally,
the multipliers λk are at best guaranteed to be uniformly bounded above, even for specialized,
potentially computationally expensive, rules of choosing the trust-region radius.

As the Newton step is taken in the trust-region framework satisfying (2.2) whenever it is
within the trust region and gives sufficient decrease in the presence of local convexity, the A.1-
(hence A.α-) example of inefficient behaviour for Newton’s method of worst-case evaluation
complexity precisely ǫ−2 can be shown to apply also to trust-region methods [15] (see also
[53]).

Linesearch methods [38, 64]. We finally consider methods using a linesearch to control
improvement in the objective at each step. Such methods compute xk+1 = xk + sk, k ≥ 0,
where sk is defined via (2.2) in whichMk is chosen so that Hk+Mk, the Hessian of the selected
quadratic model mk(s), is “sufficiently” positive definite, and rk = (1 − µk)gk, yielding a
stepsize µk ∈ [1−κrg, 1] which is calculated so as to decrease f (the linesearch); this is always
possible for sufficiently small µk (and hence sufficiently small κrg.) The precise definition of
”sufficient decrease” depends on the particular linesearch scheme being considered, but we
assume here that

µk = 1 is acceptable whenever mk(sk) = f(xk + sk).

In other words, we require the unit step to be acceptable when the model and the true objective
function match at the trial point. Because the minimization of the quadratic model along the
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step always ensure that mk(sk) = f(xk) + 1

2
gksk, the above condition says that sk must be

acceptable with µk = 1 whenever f(xk + sk) = f(xk) + 1

2
gksk. This is for instance the case

for the Armijo and Goldstein linesearch conditions4, two standard linesearch techniques. As
a consequence, the corresponding linesearch variants of Newton’s method and of the (2 +α)-
regularization methods also belong to M.α (with βk = 1 for all k), and the list is not
exhaustive. Note that linesearch methods where the search direction is computed inexactly
are also covered by setting rk = gk − µk(gk + wk) for some “error vector” wk, provided the
second part of (2.2) still holds.

3 Examples of inefficient behaviour

After reviewing the methods in M.α, we now turn to showing they can converge slowly when
applied to specific functions with fixed range5 and the relevant degree of smoothness.

3.1 General methods in M.α

Let α ∈ [0, 1] and ǫ ∈ (0, 1) be given and consider an arbitrary method in M.α. Our intent
is now to construct a univariate function fM.α

ǫ (x) satisfying A.α such that

fM.α
ǫ (0) = 1, fM.α

ǫ (x) ∈ [a, b] for x ≥ 0, (3.1)

for some constants a ≤ b independent of ǫ and α, and such that the method will terminate in
exactly

kǫ,α =
⌈

ǫ−
2+α
1+α

⌉

(3.2)

iterations (and evaluations of f , g and H).

We start by defining the sequences fk, gk and Hk for k = 0, . . . , kǫ,α by

fk = 1− 1

2
kǫ

2+α
1+α , gk = −2 ǫ fk and Hk = 4 ǫ

α
1+α f2k . (3.3)

They are intended to specify the objective function, gradient and Hessian values at successive
iterates generated by the chosen method in M.α, according to (2.1) and (2.2) for some
choice of multipliers {λk} = {Mk} = {λmin(Mk)} satisfying (2.3) and (2.4). In other words,

we impose that fk = fM.α
ǫ (xk), gk = ∇fM.α

ǫ (xk) and Hk = ∇2fM.α
ǫ (xk) for k ∈ K def

=
{0, . . . , kǫ,α}. Note that fk, |gk| and Hk are monotonically decreasing and that, using (3.2),

fk ∈ [ 1
2
, 1] for k ∈ K. (3.4)

In addition, (2.3) and (2.4) impose that, for k ∈ K,

0 ≤ λk + 4ǫ
α

1+α f2k ≤ κλmax[4ǫ
α

1+α f2k , (2ǫfk)
α

1+α ] = 4κλǫ
α

1+α f2k .

yielding that

λk ∈
[

0, 4(κλ − 1)ǫ
α

1+α f2k

]

, (3.5)

4With reasonable algorithmic constants, see Appendix A1.
5At variancewith the examples proposed in [15, 19].
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As a consequence, we obtain, using both parts of (2.2), that, for k ∈ K,

sk = θk
ǫ

1

1+α

2fk
for some θk ∈

[

1− κrg
κλ

, 1 + κrg

]

. (3.6)

Note that our construction imposes that

mk(sk) = fk + gksk + 1

2
gksk + 1

2
sk(Hk + βkλk)sk

= fk + gksk + 1

2
sk[−gk + rk + (βk − 1)λksk]

≥ fk − 1

2
|gk|sk − 1

2
κrg|gk|sk + 1

2
θ2k(κλ − 1)(βk − 1)ǫ

2+α
1+α

≥ fk − 1

2
θkǫ

2+α
1+α [1 + κrg + θk(1− βk)(κλ − 1)]

≥ fk − 1

2
ǫ
2+α
1+α (1 + κrg)

2[1 + (1− βk)(κλ − 1)]

≥ fk − 1

2
ǫ
2+α
1+α (1 + κrg)

2κλ

(3.7)

where we have used (2.2), (3.3), (3.6), (3.5) and βk ≤ 1. Hence, again taking (3.3) into
account,

fk − fk+1

fk −mk(sk)
≥

1

2
ǫ
2+α
1+α

1

2
ǫ
2+α
1+ακλ(1 + κrg)2

=
1

(1 + κrg)2κλ
∈ (0, 1), (3.8)

and sufficient decrease of the objective function automatically follows. Moreover, given (3.4),
we deduce from (3.6) that |sk| ≤ 1 for k ∈ K and (2.5) holds with κs = 1, as requested for a
method in M.α. It also follows from (2.1) and (3.6) that, if x0 = 0,

sk > 0 and xk =
k−1
∑

i=0

si, k = 0, . . . , kǫ,α. (3.9)

We therefore conclude that the sequences {fk}kǫ,αk=0, {gk}
kǫ,α
k=0, {Hk}kǫ,αk=0, {λk}

kǫ,α−1
k=0 and {sk}kǫ,α−1

k=0

can be viewed as produced by our chosen method in M.α, and, from (3.3), that termination
occurs precisely for k = kǫ,α, as desired.

We now construct the function fM.α
ǫ (x) for x ∈ [0, xkǫ,α ] using Hermite interpolation. We

set

fM.α
ǫ (x) = pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k = 0, . . . , kǫ,α − 1, (3.10)

where pk is the polynomial

pk(s) = c0,k + c1,ks+ c2,ks
2 + c3,ks

3 + c4,ks
4 + c5,ks

5,

with coefficients defined by the interpolation conditions

pk(0) = fk − fk+1, pk(sk) = 0;

p′k(0) = gk, p′k(sk) = gk+1;

p
′′

k(0) = Hk, p
′′

k(sk) = Hk+1,

(3.11)

where sk is defined in (3.6). These conditions yield the following values for the coefficients

c0,k = fk − fk+1, c1,k = gk, c2,k = 1

2
Hk; (3.12)
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with the remaining coefficients satisfying






s3k s4k s5k
3s2k 4s3k 5s4k
6sk 12s2k 20s3k













c3,k
c4,k
c5,k






=







∆fk − gksk − 1

2
sTkHksk

∆gk −Hksk
∆Hk






,

where
∆fk = fk+1 − fk, ∆gk = gk+1 − gk and ∆Hk = Hk+1 −Hk.

Hence we obtain after elementary calculations that

c3,k = 10∆fk
s3k

− 4∆gk
s2k

+ ∆Hk
2sk

− 10gk
s2k

− Hk
sk

;

c4,k = −15∆fk
s4k

+ 7∆gk
s3k

− ∆Hk

s2k
+ 15gk

s3k
+ Hk

2s2k
;

c5,k = 6∆fk
s5k

− 3∆gk
s4k

+ ∆Hk

2s3k
− 6gk

s4k
;

(3.13)

The top three graphs of Figure 3.1 on this page illustrate the global behaviour of the
resulting function fM.α

ǫ (x) and of its first and second derivatives for x ∈ [0, xkǫ,α ], while
the bottom ones show more detail of the first 10 iterations. The figure is constructed using
ǫ = 5.10−2 and α = 1

2
, which then yields that kǫ,α = 148. In addition, we set λk = 1

10
|gk|

α
1+α

for k = 0, . . . , kǫ,α. The nonconvexity of fM.α
ǫ (x) is clear from the bottom graphs.
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Figure 3.1: fM.α
ǫ (x) (left) and its first (center) and second (right) derivatives as a function of

x for α = 1

2
and ǫ = 5.10−2 (top: x ∈ [0, xkǫ,α ]; bottom: x ∈ [0, x10]). Horizontal dotted lines

indicate values of −ǫ and ǫ in the central top graph.

Lemma 3.1 The function fM.α
ǫ defined above on the interval [0, xkǫ,α ] can be extended

to a function from IR to IR satifying A.α and whose range is bounded independently of
α and ǫ.
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Proof. We start by showing that, on

[0, xkǫ,α ] =
⋃

k∈K

[xk, xk + sk],

fM.α
ǫ is bounded in absolute value independently of ǫ and α, twice continuously differ-
entiable with Lipschitz continuous gradient and α-Hölder continous Hessian. Recall first
(3.10) provide that fM.α

ǫ is twice continuously differentiable by construction on [0, xkǫ,α ].
It thus remains to investigate the gradient’s Lipschitz continuity and Hessian’s α−Hölder
continuity, as well as whether |fM.α

ǫ (x)| is bounded on this interval.

Defining now

πk
def
=

θk
2

2fk − 1

fk
∈ [0, 1

2
θk] and φ(θ)

def
= 2− 1

θ
∈ [2− κλ

1− κrg
, 1 + κrg] (3.14)

(where we used (3.4) and (3.6)), we obtain from (3.2), (3.3), (3.6) and (3.13), that, for
k ∈ K,

|c3,k|s2k = ǫfk
(

20− 10
θk

− 2θk
)

− ǫ
3+2α
1+α (4 + πk) ≤ ǫ

[

10|φ(θ)|+ 2θ + 9
2ǫ

2+α
1+α

]

= O(ǫ),

|c4,k|s3k = ǫfk
(

15
θk

− 30 + θk
)

+ ǫ
3+2α
1+α (7 + 2πk) ≤ ǫ

[

15|φ(θ)|+ θ + 8ǫ
2+α
1+α

]

= O(ǫ),

|c5,k|s4k = ǫfk
(

12− 6
θk

)

− ǫ
3+2α
1+α (3 + πk) ≤ ǫ

[

6|φ(θ)|+ 7
2ǫ

2+α
1+α

]

= O(ǫ),

(3.15)
where we also used ǫ ≤ 1 and (3.4). To show that the Hessian of fM.α

ǫ is globally α−Hölder
continuous on [0, xkǫ,α ], we need to verify that (2.8) holds for all x, y in this interval. From
(3.10), this is implied by

|p′′′(s)| ≤ c|s|−1+α, for all s ∈ [0, sk] and k ∈ K, (3.16)

for some c > 0 independent of ǫ, s and k. We have from the expression of pk and s ∈ [0, sk]
that

|p′′′k (s)| · |s|1−α ≤ (6|c3,k|+ 24|c4,k|sk + 60|c5,k|s2k)s1−α
k

= (6|c3,k|s2k + 24|c4,k|s3k + 60|c5,k|s4k)s
−(1+α)
k .

(3.17)

The boundedness of this last right-hand side on [0, xkǫ,α ] , and thus the α-Hölder continuity
of the Hessian of fM , then follow from (3.15), (3.6) and (3.4).

Similarly, to show that the gradient of fM is globally Lipschitz continuous in [0, xkǫ,α ]

is equivalent to proving that p
′′

k(s) is uniformly bounded above on the interval [0, sk] for
k ∈ K. Since sk > 0, we have

|p′′k(s)| ≤ 2|c2,k|+ 6|c3,k|sk + 12|c4,k|s2k + 20|c5,k|s3k
= 2|c2,k|+ (6|c3,k|s2k + 12|c4,k|s3k + 20|c5,k|s4k)s−1

k .
(3.18)

Then the third part of (3.3) and the bounds ǫ ≤ 1, (3.15), (3.12), (3.6) and (3.4) again
imply the boundedness of the last right-hand side on [0, xkǫ,α ], as requested. Finally, the
fact that |fM.α

ǫ | is bounded on [0, xkǫ,α ] results from the observation that, on the interval
[0, sk] with k ∈ K,

|pk(s)| ≤ fk + |gk||sk|+ 1

2
|Hk| |sk|2 + (|c3,k|s2k + |c4,k|s3k + |c5,k|s4k)sk
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from which a finite bound a independent from α and ǫ again follows from ǫ ≤ 1, (3.3),
(3.10), (3.15), (3.12), (3.6) and (3.4). We have thus proved that fM.α

ǫ satisfies the desired
properties on [0, xkǫ,α ].

We may then smoothly prolongate fM.α
ǫ for x ∈ IR, for instance by defining two additional

interpolation intervals [x−1, x0] = [−1, 0] and [xkǫ,α , xkǫ,α + 1] with end conditions

f−1 = 1, fkǫ,α+1 = fkǫ,α and g−1 = H−1 = gkǫ,α+1 = Hkǫ,α+1 = 0,

and setting

fM.α
ǫ (x) =











1 for x ≤ −1,
pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k ∈ {−1, . . . , kǫ,α},
fM.α
ǫ (xkǫ,α) for x ≥ xkǫ,α + 1,

which subsumes (3.10). Using arguments similar to those used above, it is easy to verify
from (3.12), (3.13) and s−1 = skǫ,α = 1 that all desired properties are maintained. ✷

We formulate the results of this development in the following theorem.

Theorem 3.2 For every ǫ ∈ (0, 1), every α ∈ [0, 1] and every method in M.α, a function
fM.α
ǫ satisfying A.α with values in a bounded interval independent of ǫ and α can be
constructed, such, when applied to fM.α

ǫ , the considered method terminates exactly at
iteration

kǫ,α =
⌈

ǫ−
2+α
1+α

⌉

.

with the first iterate xkǫ,α such that ‖∇xf
M.α
ǫ (xkǫ,α)‖ ≤ ǫ.

Note that the prolongation of fM.α
ǫ (x) to x ≥ 0 suggested as an example in the proof

of Lemma 3.1 admits an isolated finite global minimizer. Indeed, since the gkǫ,α < 0, there
must be a value lower than f(xkǫ,α) in (xkǫ,α , xkǫ,α + 1), and thus the global minimizer must
lie in one of the constructed sub-intervals in (−1, xkǫ,α+1); since f

M.α
ǫ (x) is quintic (and not

constant) in each of these, the global minimizer must therefore be isolated.

3.2 The inexact Newton’s method

It is interesting that the technique developed in the previous subsection can also be used to
derive an O

(

ǫ−2
)

lower bound on worst-case evaluation complexity for an inexact Newton’s
method applied to a function having Lipschitz continuous Hessians on the path of iterates.
This is stronger than using Theorem 3.2 above for α = 1, as it would result in a weaker

O
(

ǫ−3/2
)

lower bound, or for α = 0 as it would then only guarantee bounded Hessians. In

the spirit of [15], this new function is constructed by extending to IR2 the unidimensional
fM.0
ǫ (x) obtained in the previous section for the specific choice Mk = 0, which then ensures
that θk ∈ [1 − κrg, 1 + κrg] for all k (see (3.5) and (3.6)). The proposed extension is of the
form

hNǫ (x, y)
def
= fM.0

ǫ (x) + uǫ(y), (3.19)
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where we still have to specify the univariate function uǫ such that Newton’s method applied
to uǫ converges with large steps. In order to define it, we start by redefining

kǫ = kǫ,0 = ⌈ǫ−2⌉ and K = {0, . . . , kǫ}.

Then we set, for k ∈ K,

uk = 1− 1

2
kǫ2, guk = −2ǫ2uk, Hu

k = 2|guk |uk > 0, (3.20)

and
suk =

νk
2uk

with νk ∈ [1− κrg, 1 + κrg] and uk ∈ [ 1
2
, 1], (3.21)

this definition allowing for

Hu
k s

u
k = −guk + ruk with |ruk | ≤ κrg|guk |.

(Remember that Mk = 0 because we are considering Newton’s method.) Note that sufficient
decrease is obtained in manner similar to (3.7)-(3.8), because of (3.20), (3.21) and λk = 0,
yielding that uk−uk+1 ≥ −(guks

u
k+

1

2
Hu

k (s
u
k)

2)/(1+κrg). Setting now y0 = 0 and yk+1 = yk+s
u
k

for k ∈ {1, . . . , kǫ}, we may then, as in Section 3.1, define

uǫ(y) = puk(y − yk) + uk+1 for y ∈ [yk, yk+1] and k = 0, . . . , kǫ − 1, (3.22)

where puk is a fifth degree polynomial interpolating the values and derivatives given by (3.20)
on the interval [0, suk ]. We then obtain the following result.

Theorem 3.3 For every ǫ ∈ (0, 1), there exists a function hNǫ with Lipschitz continuous
gradient and Lipschitz continuous Hessian along the path of iterates ∪kǫ−1

k=0 [xj , xj+1], and
with values in a bounded interval independent of ǫ, such that, when applied to hNǫ ,
Newton’s terminates exactly at iteration

kǫ =
⌈

ǫ−2
⌉

with the first iterate xkǫ such that ‖∇xf
M.α
ǫ (xkǫ)‖ ≤ ǫ

√
1 + ǫ2.

Proof. One easily verifies from (3.20), (3.21) and (3.13) that the interpolation coeffi-
cients, now denoted by |di,k|, are bounded for all k ∈ {0, . . . , kǫ − 1} and i ∈ {0, . . . , 5}.
This observation and (3.21) in turn guarantee that uǫ and all its derivatives (including
the third) remain bounded on each interval [0, suk ] by constants independent of ǫ. As in
Lemma 3.1, we next extend uǫ to the whole of IR while preserving this property. We then
construct hN using (3.19). From the properties of fM.0

ǫ and uǫ, we deduce that hNǫ is
twice continuously differentiable and has a range bounded independently of ǫ. Moreover,
it satisfies A.0. When applied on hNǫ (x, y), Newton’s generates the iterates (xk, yk) and
its gradient at the kǫ-th iterate is (ǫ, ǫ2) so that ‖∇hN (xkǫ , ykǫ)‖ = ǫ

√
1 + ǫ2, prompting

termination. Before that, the algorithm generates the steps (sk, s
u
k), where, because both

fk and uk belong to [ 1
2
, 1] and because of (3.6) with α = 0,

sk ∈ [ǫ(1− κrg), 2ǫ(1 + κrg)] and suk ∈ [1− κrg, 2(1 + κrg)]. (3.23)
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Thus the absolute value of the third derivative of hNǫ (x, y) is given, for (x, y) in the k-th
segment of the path of iterates, by

1

‖(sk, suk)‖
∣

∣

∣p
′′′

k (x− xk)s
3
k + (puk)

′′′

(y − yk)(s
u
k)

3
∣

∣

∣

≤ 1
1− κrg

[

|p′′′k (x− xk)|s3k + |(puk)
′′′

(y − yk)|(suk)3
]

= 1
1− κrg

[ (

6|c3,k|+ 24|c4,k|sk + 60|c5,k|s2k
)

s3k

+
(

6|d3,k|+ 24|d4,k|suk + 60|d5,k|(suk)2
)

(suk)
3
]

= 1
1− κrg

[ (

6|c3,k|s2k + 24|c4,k|s3k + 60|c5,k|s4k
)

sk

+6|d3,k|(suk)3 + 24|d4,k|(suk)4 + 60|d5,k|(suk)5
]

,

(3.24)

where we used the fact that ‖(sk, suk)‖ ≥ ‖suk‖. and (3.23). But, in view of (3.15), (3.14)
with θk ∈ [1 − κrg, 1 + κrg], (3.23), ǫ ≤ 1 and the boundedness of the di,k, the last right-
hand side of (3.24) is bounded by a constant independent of ǫ. Thus the third derivative
of hNǫ (x, y) is bounded on every segment by the same constant, and, as a consequence,
the Hessian of hNǫ (x, y) is Lipschitz continuous of each segment, as desired. ✷

Note that the same result also holds for any method in M.0 with Mk small enough to
guarantee that sk is bounded away from zero for all k.

4 Complexity and optimality for methods in M.α

We now consider the consequences of the examples derived in Section 3 on the evaluation
complexity analysis of the various methods identified in Section 2 as belonging to M.α.

4.1 Newton’s method.

First note that the third part of (3.3) ensures that Hk > 0 so that the Newton iteration is
well-defined for the choice (2.23). This choice corresponds to setting θk = 1 for all k ≥ 0
in the example of Section 3. So we first conclude from Theorem 3.2 that Newton’s method
may require ǫ−(2+α)/(1+α) evaluations when applied on the resulting objective function fM.α

ǫ

satisfying A.α to generate |gk| ≤ ǫ. However, Theorem 3.3 provides the stronger result that it
may in fact require ǫ−2 evaluations (as a method in M.0) for nearly the same task (we traded
Lipschitz continuity of the Hessian on the whole space for that along the path of iterates). As
a consequence we obtain that Newton’s method is not optimal in M.α as far as worst-case
evaluation complexity is concerned.

The present results also improves on the similar bound given in [19], in that the objective
function on Sections 3.1 and 3.2 ensure the existence of a lower bound flow on fM.α

ǫ (x)
such that fM.α

ǫ (x0) − flow is bounded, while the latter difference is unbounded in [19] (for
α ∈ {0, 1}) as the number of iterations approaches ǫ−2. We will return to the significance of
this observation when discussing regularization methods.

Since the steepest-descent method is known to have a worst-case evaluation complexity
of O

(

ǫ−2
)

when applied on functions having Lipschitz continuous gradients [61, p. 29] ,
Theorem 3.3 shows that Newton’s method may, in the worst case, converge as slowly as
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steepest descent in the worst case. Moreover, we show in Appendix A1 that the quoted worst-
case evaluation complexity bound for steepest descent is sharp, which means that steepest-
descent and Newton’s method are undistinguishable from the point of view of worst-case
complexity orders.

Note also that if the Hessian of the objective is unbounded, and hence, we are outside of
the class A.0, the worst-case evaluation complexity of Newton’s method worsens, and in fact,
it may be arbitrarily bad [15].

4.2 Cubic and other regularizations.

Recalling our discussion of the (2 + α)-regularization method in Section 2.2, we first note, in
the example of Section 3.1, that, because of (2.2) and (2.3), sk is a minimizer of the model
(2.6) with βk = λk at iteration k, in that

mk(sk) = fM.α
ǫ (xk + sk) = fk+1 (4.1)

for k ∈ K. Thus every iteration is successful as the objective function decrease exactly matches
decrease in the model. Hence the choice σk = σ > 0 for all k is allowed by the method, and
thus λk = σ‖sk‖2+α satisfies (2.3) and (2.4). Theorem 3.2 then shows that this method may
require at least ǫ−(2+α)/(1+α) iterations to generate an iterate with |gk| ≤ ǫ. This is important
as the upper bound on this number of iterations was proved6 in [17] to be

O
(

[f(x0)− flow)] ǫ
− 2+α

1+α

)

(4.2)

where flow is any lower bound of f(x). Since we have that f(x0) − flow is a fixed number
independent of ǫ for the example of Section 3.1, this shows that the ratio

ρcomp
def
=

upper bound on the worst-case evaluation complexity

lower bound on the worst-case evaluation complexity
(4.3)

for the (2 + α)-regularization method is bounded independently of ǫ and α. Given that (4.2)
involves an unspecified constant, this is the best that can be obtained as far as the order in ǫ
is concerned, and yields the following important result on worst-case evaluation complexity.

Theorem 4.1 When applied to a function satisfying A.α, the (2 + α)-regularization
method may require at most (4.2) function and derivatives evaluations. Moreover this
bound is sharp (in the sense that ρcomp is bounded independently of ǫ and α) and the
(2 + α)-regularization method is optimal in M.α.

Proof. The optimality of the (2 + α)-regularization method within M.α results from
the observation that the example of Section 3 implies that no method in M.α can have a
worst-case evaluation complexity of a better order. ✷

6As a matter of fact, [17] contains a detailed proof of the result for α = 1, as well as the statement that it
generalizes for α ∈ (0, 1]. Because of the central role of this result in the present paper, a more detailed proof
of the worst-case evaluation complexity bound for α ∈ (0, 1] in provided as Appendix A2.
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In particular, the cubic regularization method is optimal for smooth optimization problems
with Lipschitz continuous second derivatives. As we have seen above, this is in contrast with
Newton’s method.

Note that Theorem 4.1 as stated does not result from the statement in [19] that the
bound (4.2) is “essentially sharp”. Indeed this latter statement expresses the fact that, for
any τ > 0, there exists a function independent of ǫ, on which the relevant method may need
at least ǫ−3/2+τ evaluations to terminate with |gk| ≤ ǫ. But, for any fixed ǫ, the value of
f(x0) − flow tends to infinity when, in the example of that paper, the number of iterations
to termination approaches ǫ−3/2 as τ goes to zero. As a consequence, the numerator of the
ratio (4.3), that is (4.2), and ρcomp itself are unbounded for that example. Theorem 4.1 thus
brings a formal improvement on the conclusions of [19].

4.3 Goldfeld-Quandt-Trotter

Recalling (2.29), we can set ωk = ω in the algorithm as every iteration is successful due to (4.1)

which, with (3.3) and fk ∈ [ 1
2
, 1] gives that λk + λmin(Hk) ≤ ω|gk|

α
1+α , which is in agreement

with (2.5) and (2.4). Thus the lower bound of ǫ−(2+α)/(1+α) iterations for termination also
applies to this method.

An upper bound on the worst-case evaluation complexity for the GQT method can be
obtained by the following argument. We first note that, similarly to regularization methods,
we can bound the total number of unsuccessful iterations as a constant multiple of the suc-
cessful ones, provided ωk is chosen such that (2.32) holds. Moreover, since f satisfies A.α,
its Hessian is bounded above by (2.9). In addition, we have noted in Section 2.2 that ‖gk‖
is also bounded above. In view of (2.29) and (2.39), this in turn implies that ‖Hk + λkI‖ is
also bounded above. Hence we obtain from (2.33) that ‖sk‖ ≥ κGQT ‖gk‖ ≥ κGQT ǫ for some
κQGT > 0, as along as termination has not occurred. This last bound and (2.37) then give

that GQT takes at most O
(

(f(x0)− flow)ǫ
− α

1+α
−2
)

iterations, which is worse than (4.2) for

α > 0. Note that this bound improves if only Newton steps are taken (i.e. λk = 0 is chosen
for all k ≥ 0), to be of the order of (4.2); however, this cannot be assumed in the worst-case
for nonconvex functions. In any case, it implies that the GQT method is not optimal in M.α.

4.4 Trust-region methods

Recall the choices (2.41) we make in this case. If λk = 0, the trust-region constraint ‖s‖ ≤ ∆k

is inactive at sk, in which case, sk is the Newton step. If we make precisely the choices we made
for Newton’s method above, choosing ∆0 such that ∆0 > |s0| implies that the Newton step
will be taken in the first and in all subsequent iterations since each iteration is successful and
then ∆k remains unchanged or increases while the choice (3.6) implies that sk decreases. Thus
the trust-region approach, through the Newton step, has a worst-case evaluation complexity
when applied to fM.α

ǫ which is at least that of the Newton’s method, namely ǫ−2.

4.5 Linesearch methods

Because the examples of Sections 3.1 and 3.2 are valid for rk = 0 which corresponds to
µk = 1 for all k, and because this stepsize is acceptable since f(xk+1) = mk(sk), we deduce

that at least ǫ−
2+α
1+α iterations and evaluations may be needed for the linesearch variants of

any method in M.α applied to a function satisfying A.α, and that ǫ−2 evaluations may be
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needed for the linesearch variant of Newton’s method applied on a function satisfying A.0.
Thus the conclusions drawn regarding their (sub-)optimality in terms of worst-case evaluation
complexity are not affected by the use of a linesearch.

5 The Curtis-Robinson-Samadi class

We finally consider a class of methods recently introduced in [36], which we call the CRS
class. This class depends on the parameters 0 < σ ≤ σ̄, η ∈ (0, 1) and two non-negative
accuracy thresholds κ1 and κ2. It is defined as follows. At the start, adaptive regularization
thresholds are set according to

σL0 = 0 and σU0 = σ̄. (5.1)

Then for each iteration k ≥ 0, a step sk from the current iterate xk and a regularization
parameter λk ≥ 0 are chosen to satisfy7

(Hk + λkI)sk = −gk + rk, (5.2)

σLk ‖sk‖ ≤ λk ≤ σUk ‖sk‖, (5.3)

sTk rk ≤ 1

2
sTk (Hk + λkI)sk + 1

2
κ1‖sk‖3, (5.4)

and

‖rk‖ ≤ λk‖sk‖+ κ2‖sk‖2. (5.5)

The step is then accepted, setting xk+1 = xk + sk, if

ρCRS =
f(xk)− f(xk + sk)

‖sk‖3
≥ η (5.6)

or rejected otherwise. In the first case, the regularization thresholds are reset according to
(5.1). If sk is rejected, σLk and σUk are updated by a simple mechanism (using σ) which is
irrelevant for our purpose here. The algorithm is terminated as soon as an iterate is found
such that ‖gk‖ ≤ ǫ.

Observe that (5.2) corresponds to inexactly minimizing the regularized model (2.6) and
that (5.5) is very similar to the subproblem termination rule of [10].

An upper bound of O
(

ǫ−3/2
)

is proved in [36, Theorem 17] for the worst-case evaluation

complexity of the methods belonging to the CRS class. It is stated in [36] that both ARC
[54, 72, 63, 16, 17] and TRACE [37] belong to the class, although the details are not given.

Clearly, the CRS class is close toM.1, but yet differs from it. In particular, no requirement
is made that Hk+λkI be positive semi-definite but (5.4) is required instead, there is no formal
need for the step to be bounded and (5.5) combined with (5.3) is slightly more permissive
than the second part of (2.2). We now define CRSa, a sub-class of the CRS class of methods,
as the set of CRS methods for which (5.5) is strengthened8 to become

‖rk‖ ≤ min
[

κrg‖gk‖, λk‖sk‖+ κ2‖sk‖2
]

with κrg < 1. (5.7)

7In [36], further restrictions on the step are imposed in order to obtain global convergence under A.0 and
bounded gradients, but are irrelevant for the worst-case complexity analysis under A.1. We thus ignore them
here, but note that this analysis also ensures global convergence to first-order stationary points.

8Hence the subscript a, for “accurate”.
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(in a manner reminiscent of the second part of (2.2)) and such that

2η(1 + κrg)
3 ≤ 1 (5.8)

(a mild technical condition9 whose need will become apparent below). We claim that, for any
choice of method in the CRSa class and termination threshold ǫ, we can construct a function

satisfying A.1 such that the considered CRSa method terminates in exactly
⌈

ǫ−3/2
⌉

iterations

and evaluations. This achieved simply by showing that the generated sequences of iterates,
function, gradient and Hessian values belong to those detailed in the example of Section 3.1.

We now apply a method of the CRSa class for a given ǫ > 0, and first consider an iterate
xk with associated values fk, gk and Hk given by (3.3) for α = 1, that is

f0 = 1, fk = f0 − 1

2
kǫ3/2, gk = −2ǫfk and Hk = 4ǫ1/2f2k ; (5.9)

Suppose that
σLk = 0 and σUk = σ̄ (5.10)

(as is the case by definition for k = 0), and let

sk = θk
ǫ1/2

2fk
(θk > 0) (5.11)

be an acceptable step for an arbitrary method in the CRSa class. Now, because of (5.10),
(5.3) reduces to

λk ∈ [0, σ̄|sk|] =
[

0, σ̄θk
ǫ1/2

2fk

]

(5.12)

and, given that Hk > 0 because of (5.9), this in turn implies that Hk + λk > 0. Condition
(5.7) requires that

|gk + (Hk + λk)sk| = |rk| ≤ κrg|gk| = 2κrgǫfk < 2ǫ, (5.13)

where we used the fact that fk ≤ 1 because of (5.9) and κrg < 1 because of (5.7). Moreover,
(5.13) and (5.12) imply that

2(1− κrg)ǫfk
4ǫ1/2f2k + σ̄sk

≤ |gk|(1− κrg)

Hk + λk
≤ sk ≤ |gk|(1 + κrg)

Hk + λk
≤ (1 + κrg)ǫ

1/2

2fk
. (5.14)

Thus, using (5.11) and the right-most part of these inequalities, we obtain that θk ≤ 1 + κrg,
which in turn ensures that sk ≤ (1 + κrg)ǫ

1/2/(2fk). Substituting this latter bound in the
denominator of the left-most part of (5.14) and using (5.11) again with the fact that fk ≥ 1

2

before termination, we obtain that

θk ∈
[

1− κrg
1 + σ̄(1 + κrg)

, 1 + κrg

]

(5.15)

(note that this is (3.6) with κλ = 1 + σ̄(1 + κrg)). We immediately note that πk and φ(θk)
are then both guaranteed to be bounded above and below as in (3.14). (Since this is enough
for our purpose, we ignore the additional restriction on θk which might result from (5.4).)

9Due to the lack of scaling invariance of (5.6), at variance with (2.30).
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Using the definitions (5.9) for k + 1, we may then construct the objective function fCRS
ǫ on

the interval [xk, xk + sk] by Hermite interpolation, as in Section 3.1. Moreover, using (5.6),
(5.9), (5.11), (5.15), fk ∈ [ 1

2
, 1] and the condition (5.8), we obtain that

ρk =
ǫ3/2

2

(

2fk
θkǫ1/2

)3

=
4f3k
θ3k

≥ 1

2(1 + κrg)3
≥ η.

Thus iteration k is successful, xk+1 = xk + sk, σ
L
k+1 = σLk = 0, σUk+1 = σUk = σ̄, and all

subsequent iterations of the CRSa method up to termination follow the same pattern in
accordance with (5.9). As in Section 3.1, we may construct fCRS

ǫ on the whole of IR which
satisfies A.1 and such that, the considered CRSa method applied to fCRS

ǫ will terminate

in exactly ⌈ǫ−3/2⌉ iterations and evaluations. This and the O
(

ǫ−3/2
)

upper bound on the

worst-case evaluation complexity of CRS methods allow stating the following theorem.

Theorem 5.1 For every ǫ ∈ (0, 1) and every method in the CRSa class, a function fCRS
ǫ

satisfying A.1 with values in a bounded interval independent of ǫ can be constructed,
such that the considered method terminates exactly at iteration

kǫ =
⌈

ǫ−3/2
⌉

with the first iterate xkǫ such that ‖∇xf
CRS
ǫ (xkǫ)‖ ≤ ǫ. As a consequence, methods in

CRSa are optimal within the CRS class and their worst-case evaluation complexity is, in
order, also optimal with respect to that of methods in M.1.

CRSa then constitutes a kernel of optimal methods (from the worst-case evaluation com-
plexity point of view) within CRS and M.1. Methods in CRS but not in CRSa correspond
to very inaccurate minimization of the regularized model, which makes it unlikely that their
worst-case evaluation complexity surpasses that of methods in CRSa. Finally note that, since
we did not use (5.4) to construct our example, it effectively applies to a class larger than
CRSa where this condition is not imposed.

6 The algorithm of Royer and Wright

We finally consider the linesearch algorithm proposed in [65, Algorithm 1], which is reminis-
cent of the double linesearch algorithm of [47] and [34, Section 10.3.1]. From a given iterate
xk, this algorithm computes a search direction dk whose nature depends on the curvature of
the (unregularized) quadratic model along the negative gradient, and possibly computes the
left-most eigenpair of the Hessian if this curvature is negative or if the gradient’s norm is
small enough to declare first-order stationarity. A linesearch along dk is then performed by
reducing the steplength αk from αk = 1 until

f(xk + αkdk) ≤ f(xk)−
η

6
α3
k‖dk‖3 (6.1)

for some η > 0. The algorithm uses ǫg and ǫH , two different accuracy thresholds for first- and
second-order approximate criticality, respectively.
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Our objective is now to show that, when applied to the function fM.1
ǫg of Section 3.1

with ǫ = ǫg, this algorithm, which we call the RW algorithm, takes exactly kǫg ,1 = ⌈ǫ−3/2
g ⌉

iterations and evaluations to terminate with ‖gk‖ ≤ ǫg.
We first note that (3.3) guarantees that Hk is positive definite and, using (3.4), that

gTkHkgk
‖gk‖2

= 4ǫ1/2g f2k > ǫg

for k ∈ {0, . . . , kǫg ,1}. Then, provided

ǫH ≤ √
ǫg, (6.2)

and because λmin(Hk) = 4ǫ
1/2
g f2k > ǫH (using (3.4) again), the RW algorithm defines the

search direction from Newton’s equation Hkdk = −gk (which corresponds, as we have already
seen, to taking Mk = 0 = rk and thus θk = 1 in the example of Section 3.1). The RW
algorithm is therefore, on that example, identical to a linesearch variant of Newton’s method
with the specific linesearch condition (6.1). Moreover, using (3.4) once more,

f(xk)− f(xk + dk) =
1

2
ǫ3/2g ≥ η

6

(

ǫ
1/2
g

2fk

)3

≥ η

6
ǫ3/2g

whenever η ≤ 3, an extremely weak condition10. Thus (6.1) holds11 with αk = 1. We have
thus proved that the RW algorithm generates the same sequence of iterates as Newton’s

method when applied to fM.1
ǫg . The fact that an upper bound of O

(

ǫ
−3/2
g

)

iterations and

evaluations was proved to hold in [65, Theorem 5] then leads us to stating the following result.

Theorem 6.1 Assume that η ∈ (0, 3]. Then, for every ǫg ∈ (0, 1) and ǫH satisfying
(6.2), a function fM.1

ǫg satisfying A.1 with values in a bounded interval (independent of
ǫg and ǫH) can be constructed, such that the Royer-Wright algorithm terminates exactly
at iteration

kǫg =
⌈

ǫ−3/2
g

⌉

with the first iterate xkǫg such that ‖∇xf
M.1
ǫg (xkǫg )‖ ≤ ǫg. As a consequence and under

assumption (6.2), the first-order worst-case evaluation complexity order of O
(

ǫ
−3/2
g

)

for

this algorithm is sharp and it is (in order of ǫg), also optimal with respect to that of
algorithms in the M.1 and CRS classes.

7 Conclusions

We have provided lower bounds on the worst-case evaluation complexity of a wide class of
second-order methods for reaching approximate first-order critical points of nonconvex, ade-
quately smooth unconstrained optimization problems. This has been achieved by providing

10In practice, η is most likely to belong to (0, 1) and even be reasonably close to zero.
11But fails for the example of Section 3.2 as ‖sk‖ = 1.
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improved examples of slow convergence on functions with bounded range independent of ǫ.
We have found that regularization algorithms, methods belonging to a subclass of that pro-
posed in [36] and the linesearch algorithm of [65] are optimal from a worst-case complexity
point of view within a very wide class of second-order methods, in that their upper complexity
bounds match in order the lower bound we have shown for relevant, sufficiently smooth ob-
jectives satisfying A.α. At this point, the question of whether all known optimal second-order
methods share enough design concepts to be made members of a single class remains open.

Note that every iteration complexity bound discussed above is of the order ǫ−p (for various
values of p > 0) for driving the objective’s gradient below ǫ; thus the methods we have
addressed may require an exponential number of iterations 10p·k to generate k correct digits
in the solution. Also, as our examples are one-dimensional, they fail to capture the problem-
dimension dependence of the upper complexity bounds. Indeed, besides the accuracy tolerance
ǫ, existing upper bounds depend on the distance to the solution set, that is f(x0)− flow, and
the gradient’s and Hessian’s Lipschitz or Hölder constants, all of which may dependent on the
problem dimension. Some recent developments in this respect can be found in [56, 1, 57, 65].

Here we have solely addressed the evaluation complexity of generating first-order critical
points, but it is common to require second-order methods for nonconvex problems to achieve
second-order criticality. Indeed, upper worst-case complexity bounds are known in this case
for cubic regularization and trust-region methods [63, 17, 21], which are essentially sharp
in some cases [21]. A lower bound on the whole class of second order methods for achiev-
ing second-order optimality remains to be established, especially when different accuracy is
requested in the first- and second-order criticality conditions.

Regarding the worst-case evaluation complexity of constrained optimization problems,
we have shown [20, 18, 23] that the presence of constraints does not change the order of
the bound, so that the unconstrained upper bound for some first- or second-order methods
carries over to the constrained case; note that this does not include the cost of solving the
constrained subproblems as the latter does not require additional problem evaluations. Since
constrained problems are at least as difficult as unconstrained ones, these bounds are also
sharp. It remains an open question whether a unified treatment such as the one given here can
be provided for the worst-case evaluation complexity of methods for constrained problems.
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A1. An example of slow convergence of the steepest-descent

method

We show in this paragraph that the steepest-descent method may need at least ǫ−2 iteration
to terminate on a function whose range is fixed and independent of ǫ.

We once again follow the methodology used in Section 3.1 and build a unidimensional
function fSDǫ by Hermite interpolation, such that the steepest-descent method applied to this
function takes exactly kǫ = ⌈ǫ−2⌉ iterations and function evaluations to terminate with an
iterate xk such that |g(xk)| ≤ ǫ. Note that, for the sequence of function values to be inter-
pretable as the result of applying the steepest-descent method (using a Goldstein linesearch),
we require that, for all k,

f(xk) + µ1g
T
k sk ≤ f(xk − µkgk) ≤ f(xk) + µ2g

T
k sk for constants 0 < µ2 < µ1 < 1 (A.1)

where, as above, sk = xk+1 − xk. Keeping this in mind, we define the sequences fk, gk, Hk

and sk for k ∈ {0, . . . , kǫ − 1} by

fk = 1− 1

2
kǫ2 gk = −2ǫfk, Hk = 0, rk = 0 and µk =

1

4f2k
∈ [ 1

4
, 1].

Note that this last definition ensures that (A.1) holds provided 0 < µ2 < 1

2
< µ1 < 1. It also

gives that sk = ǫ/(2fk) ≤ ǫ < 1. Using these values, it can also be verified that termination
occurs for k = kǫ, that f

SD
ǫ defined by (3.10) and Hermite interpolation is twice continuously

differentiable on [0, xkǫ ] and that (3.12) again holds. Since |gk| ≤ ǫ, we also obtain that, for
k ∈ {0, . . . , kǫ − 1},

∣

∣

∣

∣

∣

∆fk
s2k

∣

∣

∣

∣

∣

= 2f2k ≤ 1,
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∣
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∆gk
sk
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∣

∣

= 2ǫ2fk ≤ 2 and

∣

∣

∣

∣

gk
sk

∣

∣

∣

∣

= 4f2k ≤ 4.

These bounds, Hk = ∆Hk = 0, the first equality of (3.18) and (3.13) then imply that the
Hessian of fSDǫ is bounded above by a constant independent of ǫ. fSDǫ thus satisfies A.0
and therefore has Lipchitz continuous gradient. Moreover, since sk ≤ 1, we also obtain, as
in Section 3.1 and 3.2, that |fSDǫ | is bounded by a constant independent of ǫ on [0, xkǫ ]. As
above we then extend fSDǫ to the whole of IR while preserving A.0.
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Theorem A.1 For every ǫ ∈ (0, 1), a function fSDǫ satisfying A.0 (and thus having
Lipschitz continuous gradient) with values in a bounded interval independent of ǫ can be
constructed, such that the steepest-descent method terminates exactly at iteration

kǫ =
⌈

ǫ−2
⌉

with the first iterate xkǫ such that ‖∇xf
SD
ǫ (xkǫ)| ≤ ǫ.

As a consequence, the O
(

ǫ−2
)

order of worst-case evaluation complexity is sharp for
the steepest-descent method in the sense that the complexity ratio ρcomp is bounded above
independently of of ǫ, which improves on the conclusion proposed in [15] for the steepest-
descent method.

The top three graphs of Figure A.2 illustrate the global behaviour of the resulting function
fNǫ (x) and of its first and second derivatives for x ∈ [0, xkǫ ], while the bottom ones show
more detail of the first 10 iterations. The figure is once more constructed using ǫ = 5.10−2

(kǫ = 400).
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Figure A.2: fSDǫ (x) (left) and its first (center) and second (right) derivatives as a function of
x for ǫ = 5.10−2 (top: x ∈ [0, xkǫ,α ]; bottom: x ∈ [0, x10]). Horizontal dotted lines indicate
values of −ǫ and ǫ in the central top graph.

A2. Upper complexity bound for the (2 + α)-regularization
method

The purpose of this paragraph is to to provide some of the missing details in the proof of
Lemma 2.5, as well as making explicit the statement made at the end of Section 5.1 in [17]
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that the (2+α)-regularization method needs at most (4.2) iterations (and function/derivatives
evaluations) to obtain and iterate xk such that |gk| ≤ ǫ.

We start by proving (2.27) following the reasoning of [16, Lem.2.2]. Consider

mk(s)− f(xk) = gTk s+
1

2
sTHks+

1
2+ασk‖s‖2+α

≥ −‖gk‖ ‖s‖ − 1

2
‖s‖2 ‖Hk‖+ 1

2+ασk‖s‖2+α

≥
(

1
3(2+α)σk‖s‖2+α − ‖gk‖ ‖s‖

)

+
(

2
3(2+α)σk‖s‖2+α − 1

2
‖s‖2‖Hk‖

)

But then 2
3(2+α)σk‖s‖2+α−‖Hk‖ ‖s‖2 > 0 if ‖sk‖ < (3(2+α)‖Hk‖/(4σk))

1

α while 1
3(2+α)σk‖s‖2+α−

‖gk‖ ‖s‖ > 0 if ‖sk‖ < (3(2 + α)‖gk‖/σk)
1

1+α . Hence, since mk(sk) < f(xk), we have that

‖sk‖ ≤ max





(

3(2 + α)‖Hk‖
4σk

)

1

α

,

(

3(2 + α)‖gk‖
σk

)

1

1+α





which yields (2.27) because ‖Hk‖ ≤ Lg.
We next explicit the worst-case evaluation complexity bounf of Section 5.1 in [17]. Fol-

lowing [16, Lemma 5.2], we start by proving that

σmax
def
= cσ max(σ0, LH,α) (A.1)

for some constant cσ only dependent on α and algorithm’s parameters. To show this inequality,
we deduce from Taylor’s theorem that, for each k ≥ 0 and some ξk belonging the the segment
[xk, xk + sk],

f(xk+sk)−mk(sk) ≤
1

2
‖H(ξk)−H(xk)‖·‖sk‖2−

σk
2 + α

‖sk‖2+α ≤
(

LH,α

2
− σk

2 + α

)

‖sk‖2+α,

where, to obtain the second inequality, we employed (2.8) in A.α and ‖ξk − xk‖ ≤ ‖sk‖.
Thus f(xk + sk) < mk(sk) whenever σk > 1

2
(2 + α)LH,α, providing sufficient descent and

ensuring that σk+1 ≤ σk. Taking into account the (possibly large) choice of the regularization
parameter at startup then yields (A.1).

We next note that, because of (2.25) and (A.1), (2.11) holds. Moreover, κ(Mk) =
κ (σk‖sk‖αI) = 1. Lemma 2.3 then ensures that (2.16) also holds.

We finally follow [16, Corollary 5.3] to prove the final upper bound on the number of
successful iterations (and hence on the number of function and derivatives evaluations). Let Sǫ

k

index the subset of the first k iterations that are successful and such that min[‖gk‖, ‖gk+1‖] >
ǫ, and let |Sǫ

k| denote its cardinality. It follows from this definition, (2.11), (2.26) and the fact
that sufficient decrease is obtained at successful iterations that, for all k before termination,

f(xj)−mk(sj) ≥ αSǫ
2+α
1+α , for all j ∈ Sǫ

k, (A.2)

for some positive constant αS independent of ǫ. Now, if flow > −∞ is a lower bound on f(x),
we have, using the monotonically decreasing nature of {f(xk)}, that

f(x0)− flow ≥ f(x0)− f(xk+1) =
∑

j∈Sǫ
k

[f(xj)− f(xj+1)]

≥ η1
∑

j∈Sǫ
k

[f(xj)−mk(sj)] ≥ |Sǫ
k| η1αS ǫ

2+α
1+α ,



C. Cartis, N. I. M. Gould and Ph. L. Toint 35

where the constant η1 ∈ (0, 1) defines sufficient decrease. Hence, for all k ≥ 0,

|Sǫ
k| ≤

f(x0)− flow
η1αS

ǫ−
2+α
1+α .

As a consequence, the (2+α)-regularization method needs at most (4.2) successful iterations
to terminate. Since it known that, for regularization methods, k ≤ κS |Sǫ

k| for some constant
κS [17, Theorem 2.1] and because every iteration involves a single evaluation, we conclude that
the (2 + α)-regularization method needs at most (4.2) function and derivatives evaluations
to produce an iterate xk such that ‖gk‖ ≤ ǫ when applied to an objective function satisfying
A.α.

We finally oserve that the statement (made in the proof of Lemma 2.5) that ‖gk‖ is
bounded above immediately follows from this worst-case evaluation complexity bound.


