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Abstract

This paper discusses the practical use of the saddle variational formulation for the
weakly-constrained 4D-VAR method in data assimilation. It is shown that the method,
in its original form, may produce erratic results or diverge because of the inherent lack of
monotonicity of the produced objective function values. Convergent, variationaly coher-
ent variants of the algorithm are then proposed whose practical performance is compared
to that of other formulations. This comparison is conducted on two data assimilation
instances (Burgers equation and the Quasi-Geostrophic model), using two different as-
sumptions on parallel computing environment. Because these variants essentially retain
the parallelization advantages of the original proposal, they often — but not always —
perform best, even for moderate numbers of computing processes.

Keywords: data assimilation, variational methods, weakly-constrained 4D-VAR, saddle formula-

tion, parallel computing.

1 Introduction

Data assimilation has long been an integral and important part of weather forecasting, as new
(and often incomplete) meteorological observations are integrated in the ongoing process of
predicting the weather for the next few days [4]. The question here is that of using the data
to determine a “best” current state of the weather system from which elaborate models may
then be evolved in time, providing the desired predictions. Among the possible techniques
for this task, variational methods have been applied extensively, typically weighting the use
of a priori knowledge (often materialized by the specification of a background state xb) with
the quality of the fit to the observations. This is the case, in particular, for the well-known
4D-Var formulation [23, 7]. In recent years, it has also become necessary to take possible
model errors into account, thus weighting a priori knowledge, data fitting and model error
reduction, an approach which leads to the “weakly-constrained 4D-Var” formulation of the
relevant data assimilation problem [36, 31, 29, 30]. In one of the formulations, the total time
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horizon (assimilation window) considered is split into a number (Nsw) of time sub-windows,
and the problem can be be written as

min
x∈IRs
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def
= 1
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(1.1)

where

• x = (x(0), x(1), . . . , x(Nsw))T ∈ IRs (s = n(Nsw + 1)) is the control variable (with x(j) =
x(tj)),

• xb ∈ IRn is the background given at the initial time (t0).

• yj ∈ IRmj is the observation vector over a given time interval

• Hj maps the state vector xj from model space to observation space

• Mj represents an integration of the numerical model from time tj−1 to tj

• B, Rj and Qj are the positive-definite covariance matrices for background, observation
and model error, respectively.

The incorporation of possible model errors is achieved by the presence of the third term in
the objective function.

As it is the case for the standard 4D-Var (consisting of the first two terms in (1.1)),
the general unconstrained nonlinear least-squares problem is solved by applying the Gauss-
Newton algorithm [8, 18], which iteratively proceeds by linearizing H andM at the current
iterate and then, often very approximately, minimizing the resulting quadratic function. A
practically crucial question is then how to approximately perform this minimization. As this
is a main theme of the present paper, we immediately stress here that this aim (approximate
minimization) is often very different from approximate gradient/residual reduction (although
they coincide if the minimization is exact). Key factors for selecting a subproblem solver in-
clude the choice of a quadratic model (re)formulation (known as the variational formulation),
the choice of a preconditioner, the parallelization potential of the resulting algorithm.

Three formulations are available (state, forcing and saddle) and are detailed in the next
section. The “saddle formulation”, discussed in [13, 12, 11], has recently attracted interest
of practioners because of its appealing potential for parallel computing while still allowing a
wide choice of preconditioners. However it is fair to say that numerical experience with this
approach remains scarse so far, prompting for a more detailed assessment.

The purpose of the present paper is to propose such an assessment. It will be shown that,
left to its own devices, the original algorithm for the saddle formulation may produce erratic
results or diverge altogether. To circumvent this problem, a more elaborate variant of the
same approach will be proposed which, at the same time, guarantees convergence of the overall
Gauss-Newton algorithm and essentially retains the excellent parallelization features of the
original method. The numerical performance will be illustrated and compared to that of state
and forcing formulations on an assimilation example on the nonlinear Burgers equation and on
the two-layers Quasi-Geostrophic (QG) atmospheric model(1) provided within OOPS by the

(1)Quasi-geostrophic motion means that, in the horizontal direction of the atmospheric flow, the Coriolis
force caused by the rotation of the Earth, and the pressure gradient force are in approximate balance.
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European Centre for Medium Range Weather Forecasts (ECMWF). This model is widely used
in theoretical atmospheric studies, since it is simple enough for numerical experimentations
and yet adequately captures the most relevant large-scale dynamics in the atmosphere. For
more details on the QG model, see [11, 12]. This comparison will demonstrate that its parallel
computing features help to explain why the new variant often outperforms other approaches.
Influence of the choice of preconditioner, detailed operator cost and data organization will
also be discussed.

The paper is organized as follows. Section 2 provides the necessary background and nota-
tions for the three variational formulations mentioned above, including some of the associated
preconditioning issues and a discussion of the parallelization bottlenecks. The potentially
problematic behaviour of the original saddle method is then discussed and illustrated in Sec-
tion 3, and the new algorithmic variants described in Section 4. A comparison of these new
variants on the Burgers and QG examples is then proposed in Section 5 and 6, respectively.
The special case where the inverse of the correlation matrices is not available is briefly con-
sidered in Section 7, while conclusions and perspectives are outlined in Section 8.

Notations. The Euclidean product of the vectors x and y is denoted by yTx and the
induced Euclidean norm of x by ‖x‖.

2 Problem formulations and preconditioning

As indicated above, the formulation of the subproblem at each iteration of the Gauss-Newton
algorithm for solving (1.1) is crucial for good computational performance. If the operators
Mj are the linearizedMj and Hj are the linearized Hj , this subproblem can be expressed in
terms of the increment δx as

min
δx∈IRs

qst(δx)
def
= 1

2
‖Lδx− b‖2D−1 + 1

2
‖H δx− d‖2R−1 (2.1)
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, (2.2)

for suitable “misfit” vectors

d = (dT0 , d
T
1 , . . . , d

T
Nsw

)T and b = (bT0 , c
T
1 , . . . , c

T
Nsw

)T ,

and where
H = diag(H0, H1, . . . , HNsw), D = diag(B,Q1, . . . , QNsw) (2.3)

and
R = diag(R0, R1, . . . , RNsw).

(Note the incorporation of the background covariance matrix B in D. Also note that we have
eschewed correlation across time windows, as is often done in practice.) The approximate
minimization of the quadratic subproblem is itself carried out using a Krylov method (often
conjugate gradients [22], GMRES [28] or efficient specialized techniques such as RPCG [21]
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or RSFOM [19], see also [17]). These iterative methods typically requires preconditioning for
achieving reasonable computational efficiency.

Three variants of the above problem can then be defined. In the form presented above,
the formulation is called the “state formulation” and its optimality condition is given by the
linear system

(LTD−1L+HTR−1H) δx = LTD−1b+HTR−1d. (2.4)

Another version (called the “forcing formulation”) may be obtained by making the change of
variables δp = Lδx, then requiring the solution of the minimization problem

min
δp∈IRs

qfo(δp)
def
= 1

2
‖δp− b‖2D−1 + 1

2
‖HL−1 δp− d‖2R−1 (2.5)

whose optimality condition may now be written as

(D−1 + L−THTR−1HL−1) δp = D−1b+ L−THTR−1d
def
= bfo. (2.6)

We immediately note that (2.6) may be obtained as a two-sided preconditioning of (2.4) with
L−T and L−1. A third version (the “saddle” formulation) is obtained by transforming the
terms in (2.1) in a set of equality constraints and writing the Karush-Kuhn-Tucker conditions
for the resulting constrained problem, leading to the large “saddle” linear system





D 0 L
0 R H
LT HT 0









δλ
δµ
δx



 =





b
d
0



 (2.7)

where the control vector [δλT , δµT , δxT ]T is a (2s + m)-dimensional vector. For the sake of
brevity, we do not cover the details of this latter derivation here (see [12, 11]): it is enough
to view it as an algebraic “lifting” of condition (2.4) since this latter condition is recovered
by applying Gaussian block elimination to the first two rows and columns. Unfortunately,
this reformulation is only that of the optimality condition and it is unclear whether it can
be derived from an associated quadratic minimization problem. Unless exact minimization is
considered, this will turn out to be problematic, as we will see below.

We immediately observe that matrix-vector products u = L−1v are sequential, because
they are defined by the simple recurrence

u0 = v0, ui = vi +Miui−1 (i = 1, . . . , Nsw) (2.8)

(a similar recurrence holds for products with L−T ), which is a serious drawback in the context
of modern computer architectures for high-performance computing. In this respect, using the
forcing formulation can be computationally cumbersome and, even if the state and saddle
point formulations allow performing matrix-vector products with L in parallel, their suitable
(and often necessary) preconditioners involve the operator L̃−1, where L̃ is a block bi-diagonal
approximation of L within which the matrices Mi are replaced by approximations M̃i. The
choice of such preconditioners is thus restricted to use operators L̃ whose inversion can be
parallelized, or whose preconditioning efficiency is such that extremely few sequential products
are requested. Given the structure of L, this limits the possible options (see [15]). We have
chosen, for the present paper, to follow [12] and to focus on the two simplest choices:

M̃i = 0, and M̃i = I. (2.9)
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Once L̃ is determined, it remains to decide on the complete form of the (left(2)) preconditioner,
depending on which of the formulations (2.4)–(2.7) is used. For the state formulation (2.4),
we anticipate the background term to dominate and use the approximate inverse Hessian of
the first term, given by

S−1 = L̃−1DL̃−T . (2.10)

If the forcing formulation (2.6) is considered, an obvious choice is to use D as preconditioner
(thus yielding a system which can be viewed as a low-rank modification of the identity).
Its efficiency has been considered in [9, 10]. Finally, the choice is more open for the saddle
formulation (2.7). For the sequel of this paper, we consider the preconditioners given by the
inverse of the matrices

PM =





D 0 L̃
0 R 0

L̃T 0 0



 , PB =





D 0 0
0 R 0
0 0 −S



 and PT =





D 0 L̃
0 R H
0 0 S



 , (2.11)

PM being the inexact constraint preconditioner suggested in [2, 3] and used in [12], and PB

and PT being the triangular and block-diagonal ones inspired by [1] (see also [33]).

3 The original saddle method

Armed with these concepts and notation, we may now consider the original saddle technique
as discussed in [12] (and also used in [14]). It is outlined as Algorithm 3.1, where we define

r(δλ, δµ, δx) =





D 0 L
0 R H
LT HT 0









δλ
δµ
δx



−





b
d
0



 .

Algorithm 3.1: SADDLE-original (SAQ0)

An initial x0 is given as well as the correlation matrices D and R, a maximum number
of inner iterations ninner and a relative residual accuracy threshold ǫr ∈ (0, 1). Set k = 0.
While (not converged):

1. Compute J(xk) and gk = ∇xJ(xk).

2. Apply the preconditioned GMRES algorithm [28] to reduce ‖r(δλ, δµ, δx)‖ using
one of the left preconditioners given by (2.11). Terminate the GMRES iteration at
inner iteration j with (δλ, δµ, δx) if

‖r(δλ, δµ, δx)‖ ≤ ǫr

(

||b||+ ||d||
)

or j = ninner, (3.1)

yielding a step δxk = δx.

3. Set xk+1 = xk + δxk and increment k by one.

(2)Right preconditioning is also possible, but depends more on the detailed nature and discretizations of the
dynamical models, which is why it is not considered here.
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In practice the operational constraints often impose moderate values of ninner (a few tens)
as well as a small number of outer iterations (ten or less), and the improvement obtained by
this fast procedure is often sufficient for producing a reasonable forecast. Thus the concept of
convergence should be taken with a grain of salt in this context. However, the monotonicity
of the values of J(xk) underlying the convergence idea remains important as a theoretical
guarantee that the method is meaningful from the statistical and numerical points of view,
preventing the algorithm to produce unreliable results.

In the state formulation, the monotonic decrease of the J(xk) is promoted by the fact
that the method used to minimize (2.1) (conjugate gradient or one of its variants) is itself
a monotonic algorithm. As a consequence, any decrease obtained for (2.1) translates into a
decrease for (1.1) provided qst reasonably approximates J in the neighbourhood of xk, as is
often the case (or can be enforced by a trust-region scheme [6]). A similar argument applies
for the forcing formulation, where a monotonic algorithm is also used to minimize qfo(δp)
(remember that this formulation can be derived from the state one by suitable two-sided
preconditioning). However, the GMRES method used in Algorithm 3.1 merely reduces the
residual of the system (2.7) without any variational interpretation. If ninner is large enough
for the residual to become “sufficiently” small (producing a “sufficiently” accurate solution
of (2.7)), then the equivalence between the optimality conditions (2.4) and (2.7) implies that
the decrease in qst at the computed step is comparable to that which would be obtained
by minimizing this quadratic model exactly, thereby ensuring a suitable decrease in J . The
difficulty is to quantify what is meant by “sufficiently”.

To illustrate this point, let us consider an assimilation problem for the one-dimensional
nonlinear Burgers equation involving 100 discretization states over 3000 time steps in 50 time
sub-windows and 20 observations per subwindows (the complete description of this problem
is given in Appendix A1). We apply Algorithm 3.1 to this problem with the number of inner
iterations ninner fixed to 50 and using 10 major Gauss-Newton iterations, M̃i = 0 and the
preconditioners defined by (2.11). We use the abbreviation(3) SAQ0-P-M to denote the corre-
sponding algorithmic variants, where P is the choice of preconditioner type in (2.11) and M is
the particular choice of the model approximations M̃i, which can be either I or 0. Figure 3.1
shows the resulting evolutions of the values of qst (dashed curve) and J (continuous curve)
for SAQ0-M-0 and SAQ0-T-0 over all inner iterations(4), major iterations being indicated by
vertical dotted lines and the true minimum value of J by an horizontal thick black line.
Several important conclusions follow from the examining this figure.

1. None of the two methods achieves a significant reduction of the gap between J(x0) ≈
1.5× 105 and the optimal value (≈ 63.11), the version using PM even diverging slowly.

2. The curves for qst and J differ so little for iterations beyond the first that they are mostly
undistinguishable, indicating a good fit between qst and J for moderately small steps.
The observed stagnation/divergence may therefore not be blamed on the problem’s
nonlinearity.

3. The non-monotonic evolution of both qst and J along inner iterations is very obvious.
This is true for both SAQ0-M-0 and SAQ0-T-0 at the first iteration and for SAQ0-M-0
at all subsequent ones. We observe in particular that the value of qst (and that of

(3)The naming convention will become clearer in the sequel of the paper.
(4)The values of J at inner iterations have been computed for illustration purposes only: they are not needed

by the algorithm.
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Figure 3.1: Evolution of q (dashed) and J (continuous) as a function of the total number of
inner iterations for SAQ0-M-0 and SAQ0-T-0

J) often starts by increasing at the first inner iterations. A stopping rule based on a
maximum number of such iterations or on shortening the step therefore essentially relies
on luck to produce a decrease in either objectives.

4. A qualitatively similar picture is obtained when using M̃i = I, the only significant
difference being that SAQ0-T-I now (slowly) diverges, despite the fact that the model
approximations incorporates more information than for the (marginally more efficient)
SAQ0-T-0.

The numerical behaviour of for SAQ0-B-0 (the variant using the block diagonal precon-
ditioner PB from (2.11)) is not shown in Figure 3.1 because it would be barely visible. As
it turns out, it examplifies to an extreme the fundamental difference between reducing the
residual of the system (2.7) and obtaining a decrease in qst or J . In this particular case, the
preconditioner at iteration two is good enough to ensure, with a single step of GMRES, a
relative reduction of the residual norm of the order of 107, thereby triggering a successful
exit from the inner iteration loop. However, since the first step of GMRES is colinear with
the initial residual (bT , dT , 0)T (the right-and side of (2.7)), this seemingly excellent step does
not alter the values of the state variables at all. Thus δxk = 0 for all k ≥ 2, causing the
algorithm to stagnate (this would only show as short horizontal line in the figure). The same
undesirable behaviour is also observed for SAQ0-B-I.

Extensive numerical experience with the Burgers assimilation problem indicate that the
conclusions drawn from this example are typical of many other problems settings differing
by conditioning of the involved correlation matrices, number of time sub-windows or number
of observations. Although they obviously remain problem-dependent (as will be shown in
Section 5), they show that, in general, the original saddle method described in Algorithm 3.1
is potentially very inefficient or divergent and that its efficiency might decrease even if some
algorithm’s ingredients (such as model approximations) are improved(5).

(5)It is quite remarkable that some practical implementations of the original saddle method actually skip
Step 1 of Algorithm 3.1. Since nor the objective function values J nor those of its gradient are ever computed,
no convergence guarantee can possibly be given for this technique whose link with an optimization method
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4 The globalized SADDLE algorithm

Is it possible to fix this problematic behaviour of the original saddle algorithm? The answer
is fortunately positive. Since we know that the desired reduction in qst is obtained if we allow
GMRES to fully solve (2.7), the main idea is to adapt the GMRES termination rule so that
termination cannot occur before a minimal decrease in qst is obtained. We now detail this
strategy as Algorithm 4.1 where we use a generic non-negative sequence {θj} → 0.

Algorithm 4.1: Globalized SADDLE (SAQ1)

An initial x0 is given as well as the correlation matrices D and R, a target number of
inner iterations ninner and a relative residual accuracy threshold ǫr ∈ (0, 1). A model
check frequency ℓ ∈ IN and a model decrease threshold ǫq ∈ (0, 1) are also given. Set
k = 0.
While (not converged):

1. Compute J(xk) and gk = ∇xJ(xk).

2. Apply the preconditioned GMRES algorithm to (2.7), using one of the left precon-
ditioners given by (2.11). At inner iteration j, terminate with (δλ, δµ, δx) if

qst(0)− qst(δx) ≥ max
[

ǫq min
[

1, ‖gk‖2
]

, θj

]

(4.1)

or if (2.7) is solved to full accuracy, yielding a step δxk = δx.

3. Perform a backtracking linesearch [26, p. 37] on J along the direction δxk, yielding
xk+1 = xk + αδxk for some stepsize α > 0. Increment k by one.

It is clear that verifying (4.1) requires the (periodic) evaluation of the quadratic model qst(δx),
which is an additional computational cost: one needs to apply the L,D−1, H and R−1 op-
erators to obtain qst(δx). The GMRES algorithm may also need more than ninner iterations
to terminate, potentially increasing its cost further. Note also that the linesearch procedure
guarantees that J(xk+1) ≤ J(xk) for all k.

Observe now that, because the covariance matrices are positive-definite, the level set
{x ∈ IRn | J(x) ≤ J(x0)} is compact, and thus, using the monotonicity of the algorithm, that
there exists a constant κg ≥ 1 such that ‖gk‖ ≤ κg, for all k. On termination of GMRES, we
therefore obtain that

ǫqκ
−2
g ‖gk‖2 ≤ qst(0)− qst(δxk) = −gTk δxk − 1

2
(Lδxk)

TD−1(Lδxk)− 1
2
(Hδxk)

TR−1(Hδxk).

Using the positive-definite character of ∇2qst, the Hessian of qst, we deduce that

gTk δxk ≤ −ǫqκ−2
g ‖gk‖2. (4.2)

In addition, the strict convexity of qst ensures that

‖δxk‖ ≤
2

νmin
‖gk‖, (4.3)

becomes somewhat tenuous.
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where νmin > 0 is the smallest eigenvalue of ∇2qst. Thus (4.2) and (4.3) together guarantee
that δxk is “gradient related” in the sense that

gTk δxk ≤ −κ1‖gk‖2 and ‖δxk‖ ≤ κ2‖gk‖ (4.4)

for some positive constants 0 < κ1 ≤ κ2. In conjunction with the use of a linesearch, this well-
known property of minimization directions is then sufficient to ensure the monotonic decrease
of the sequence {J(xk)} and, assuming uniformly bounded condition numbers for ∇2qst(0)
at all major iterations, the theoretical convergence of the outer Gauss-Newton iteration (see
[26, Section 3.2], or [6, Section 10.1], for instance). For the test (4.1) to allow for early
GMRES termination, it is necessary that ǫq is chosen not too small. Yet it should be small
enough for (4.1) to be attainable. If it is chosen too large, it may (in the worst case) force
GMRES to solve the system (2.7) to full accuracy, in which case (4.1) is guaranteed with
ǫqκ

−2
g = ‖[∇2qst]

−1‖ [6, Section 10.1].
While obtaining convergence is often pratically out of reach or much too slow in practice,

the theoretical guarantee provides a strong reassurance against potentially erratic results.
Clearly, this argument also holds for the choice θj = 0 for all j. The introduction of that
sequence is therefore unnecessary for ensuring mere convergence, but other choices may be
instrumental in speeding up decrease. For our Burgers example, the choices

θj =
(

1
2
qst(0)

)max[1,
ninner

j
]
− 1 and ǫg = 1

100
(4.5)

appear to give reasonable results.
We illustrate the behaviour of SAQ1 on the example used in the previous section to

highlight the difficulties of SAQ0. Its performance for the three saddle preconditioners of
(2.11) is shown in Figure 4.2.

100 200 300 400 500 600
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10 4

10 5
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SAQ1-M-0 (q)
SAQ1-M-0 (J)
SAQ1-T-0 (q)
SAQ1-T-0 (J)
SAQ1-B-0 (q)
SAQ1-B-0 (J)

Figure 4.2: Evolution of q (dashed) and J (continuous) as a function of the total number of
inner iterations for SAQ1 (Burgers example)

Comparing with the performance of the SAQ0 variants (Fig. 3.1), we may verify that SAQ1
achieves a significant reduction in J in ten Gauss-Newton iterations, albeit at the price of more
inner iterations and the cost of one valuation of qst per inner iteration. SAQ1-M-0 oscillates
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most, but gets the best decrease, while the performance of SAQ1-T-0 remains disappointing
despite the theoretical guarantees and the introduction of the {θj}.

If the cost of additional evaluations of qst is high, one may try to space them out by
checking (4.1) only every ℓ > 1 inner iteration. The inner iteration termination rule (4.1)
then becomes

mod (j, ℓ) = 0 and qst(0)− qst(δx) ≥ max
[

ǫq min
[

1, ‖gk‖2
]

, θj

]

, (4.6)

and the resulting algorithms will be denoted by the abbreviation SAQℓ in what follows.
The performance of SAQ25-P-0 (that is SAQ25 with preconditioner P in (2.11) and

M̃i = 0) is reported in Figure 4.3 for different preconditioners. As it turns out, the rela-
tive performance of the methods including the preconditioners PT and PB is again poor. This
is unfortunately a constant in our experience and we therefore focus on the use of the more
successful PM only from now on(6).

We postpone the assessment of the sequential/parallel computational cost of SAQℓ as
a function of ℓ and the number of computing processes p to Section 5, but we immediately
notice that larger values of ℓ may cause SAQℓ to require more inner iterations (as termination
is checked less often), in turn leading to larger memory and orthogonalisation costs. Thus a
value of ℓ ≤ ninner seems most reasonable. However, more inner iterations may also result
in a better decrease of the quadratic model, and, if the problem is not too nonlinear, of the
overall objective function.

200 400 600 800 1000 1200

10 2

10 3

10 4

10 5

10 6

SAQ25-M-0 (q)
SAQ25-M-0 (J)
SAQ25-T-0 (q)
SAQ25-T-0 (J)
SAQ25-B-0 (q)
SAQ25-B-0 (J)

Figure 4.3: Evolution of q (dashed) and J (continuous) as a function of the total number of
inner iterations for SAQ25 (Burgers example)

If evaluating qst is so costly that it must be avoided altogether, it is still possible to cure
the defects of the original formulation by relaying directly on checking the gradient-related
property of δx stated by (4.4). However, the resulting algorithm then suffers more directly
from the need to estimate κ1 and κ2 a priori, and moreover appears to be significanlty slower

(6)We remark that this is not in contradiction with a comment in [33] that, for the symmetric case, extended
preconditioner formulations are unlikely to be efficient because of an alternating property in MINRES. Indeed,
the square root of P−1

M is not well defined because it is indefinite, and the left-preconditioned system matrix
is no longer symmetric (which is why GMRES is used).
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than the SAQℓ versions, mostly because it cannot incorporate the forcing sequence {θj}. It
will therefore not be discussed here.

5 Numerical comparisons on the Burgers example

We now turn to a comparative evaluation of the computational costs associated with the
SAQℓ algorithms, as well as state-of-the-art algorithms for the state and forcing variational
formulation. Our evaluation attempts to provide conclusions in a context where parallel
computing is available.

The comparison will involve several implementations of the state and forcing formulations.
The first set (which, for now, we call the ST algorithms) uses a standard Gauss-Newton
algorithm where the quadratic model qst is minimized at each outer iteration using the left-
preconditioned Full Orthogonalization Method (FOM) [27] expressed in the inner product
defined by the inverse preconditioner(7), which is in general preferable [19] to the conjugate-
gradient algorithm with reorthogonalization (the practioner’s most common choice so far).
The preconditioner used is given by S−1 = L̃−1DL̃−T , the approximate inverse of the Hessian
of the first term in (2.1). The implementations of the forcing formulation (which we call the
FO algorithms) use the same left-preconditioned FOM method to minimize qfo given by (2.5)
as a function of δp using D as a preconditioner and deduce δx from

δx = L−1δp. (5.1)

All these methods use a standard trust-region scheme [6] for ensuring theoretical convergence.
In these algorithms, the value of qst is readily available at the price of a single inner product
at the end of each inner iteration (remember that qfo(δp) = qst(L

−1δp)). It is therefore most
coherent to terminate the inner iterations when (4.6)-(4.5) holds or, in the worst case, if the
relevant system has been solved to full accuracy (i.e. residual norm below 10−12 in our tests).

This lead us to relatively large set of algorithms, which differ by four possible choices:
the variational formulation (SA, ST or FO), the frequency ℓ of the quadratic model check
for terminating inner iterations in (4.6), the type of preconditioner used (inexact constraint
M, triangular T or block-diagonal B for SA, the Schur complement S for ST, and the block-
diagonal D for FO), and finally the choice of model approximation M̃i used in defining L̃ (0 or
I, for SA and ST only). Using a naming convention coherent with that already introduced for
the SAQℓ algorithms, we will, in the sequel, consider the algorithmic variants whose names
are of the form AAQℓ-P-M, where AA denotes the variational formulation, Qℓ the frequency
of the check for quadratic decrease in (4.6), P the preconditioner type and M the choice of
M̃i, as summarized in Table 5.1.
Thus algorithm STQ15-S-0 uses the state formulation, checks for sufficient quadratic decrease
every 15-th inner iteration, uses the Schur complement preconditioner in which L̃ is defined
using M̃i = 0. In order to limit the number of variants, we have chosen ℓ ∈ {1, 15, 25, 50}.
We also introduced the ’n’ preconditioner type, which stands for not using preconditioning
at all. Altogether, we therefore obtain a set of 36 different algorithms(8).

(7)In order to handle the unsymmetric matrix resulting from left-preconditioning, see Algorithm A.1 in
Appendix A3.

(8)SAQ1-n, SAQ1-M-0, SAQ1-M-I, SAQ1-M-M, SAQ15-n, SAQ15-M-0, SAQ15-M-I, SAQ15-M-M, SAQ25-n,
SAQ25-M-0, SAQ25-M-I, SAQ25-M-M, SAQ50-n, SAQ50-M-0, SAQ50-M-I, SAQ50-M-M, STQ1-n, STQ1-S-
0, STQ1-S-I, STQ1-S-M, STQ15-n, STQ15-S-0, STQ15-S-I, STQ15-S-M, STQ25-n, STQ25-S-0, STQ25-S-I,
STQ25-S-M, STQ50-n, STQ50-S-0, STQ50-S-I, STQ50-S-M, FOQ1-D, FOQ15-D, FOQ25-D, FOQ50-D.
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Var. Form. quad. check freq. P type M̃i

(AA) ( Qℓ) (P) (M)

SA Q1, Q15, Q25, Q50 M, T, B, n 0, I, M
ST Q1, Q15, Q25, Q50 S, n 0, I, M
FO Q1, Q15, Q25, Q50 D, n

Table 5.1: Naming conventions for the considered algorithmic variants

Before we embark on the comparison of computational costs, some further comments
on the various methods are in order. The first is that the use of preconditioning with the
state formulation is not without risks. Indeed, [16] provides an analysis of the inherent
difficulty of preconditioning weighted least-squares problems, caused by the interplay between
the eigenstructures of L̃ and D. To illustrate how problematic this can be, we borrow the
following illustrative example from this latter paper: let α > 1 be a parameter and

L =

(

1 0
α 1

)

, L̃ =

(

1 0
2 + α 1

)

and D =

(

α 0
0 1

)

.

Then it can be verified that L̃−1L̃−T is a good preconditioner of LTL in the sense that the
condition number of L̃−1L̃−TLTL is finite for all α (its value is equal to 33.97 for all α > 1)
while that L̃−1DL̃−TLTD−1L tends to infinity when α grows. This discussion suggests that
a comparison between the various choices of M̃i within the state formulation can be useful
for each specific problem. Figure 5.4 and other tests not reported here indicate that using
the choice M̃i = I (STQ15-S-I) is, in the Burgers example, very inefficient compared with
the three other choices. By contrast, the choice of M̃i = Mi (STQ15-S-M) expectedly yields
maximal accuracy in a very small number of inner iterations.

100 200 300 400 500 600 700

10 2

10 3

10 4

10 5

STQ15-n
STQ15-S-0
STQ15-S-I
STQ15-S-M

Figure 5.4: Evolution of J as a function of the number of inner iterations for STQ15-n,
STQ15-S-0, STQ15-S-I, and STQ15-S-M (Burgers example)

Other significant differences exist between STQℓ and FOQℓ algorithms on one hand, and
SAQℓ algorithms on the other hand.
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1. At each inner iteration, the STQℓ algorithm compute a matrix-vector product with the
Hessian of qst, which involve using the D−1 operator. The situation is better for the
FOQℓ-D variants, since (formally) the D−1 term in the Hessian of (2.5) is in this case
premultiplied by D, which is readily simplified not to involve D−1 at all.

2. The FOQℓ-D methods also require products with L−1 and L−T at each inner itera-
tion. Unfortunately, these products are inherently sequential (see [15]) and therefore
potentially very costly. However, the quantity L−1δp can be recurred within the FOM
algorithm itself at marginal cost, making the backsolve (5.1) unnecessary. A descrip-
tion of the resulting FOM algorithm (stripped from its trust-region enforcing features)
is given as Algorithm A.2 in Appendix A3.

3. The use of the preconditioners S−1 = L̃−1DL̃−T for the STQℓ methods is fully paral-
lelizable, given our simple choices for M̃i.

Note that all methods use the D−1 operator for jointly computing the values of J(xk) and gk
(once per major iteration) as well as for the periodic evaluations of qst every ℓ-th inner itera-
tion. These remarks suggest that the two main parameters influencing the parallel computing
costs of the considered methods are the (parallelizable) cost of computing D−1 and that the
purely sequential ones of computing L−1 and L−T . Due to the form of L in (2.2), the two
latter costs are bounded by a small multiple of that of integrating the full nonlinear model
over the complete assimilation window. Our objective is therefore to assess the efficiency of
the various algorithms in a parametric study varying the cost of applying D−1.

The model used for the execution of parallel tasks is fairly simple, but it hoped that it
can nevertheless be sufficient for the broad type of analysis presented. Let us denote by cop
the cost of evaluating (possibly in parallel) the operator op. Then the cost of evaluating the
tasks of costs c1, . . . , ck in parallel on p parallel computing processes is approximated by

πp(c1, . . . , ck) = max





⌈

k

p

⌉

1

k

k
∑

j=1

cj , max
j=1,...,k

cj



 .

Taken alone, this approximation is not enough to provide the description of a parallel
computing environment, as it is crucial to consider the impact of communications, which is
beyond the scope of the present paper. In what follows, we consider two complementary
cases, and discuss their associated parallel computing costs successively.

5.1 A fully MPI approach

A first, if somewhat restrictive, setting is to assume that the computation is performed in p
MPI processes allowing the parallelizable operators to be executed simultaneously for different
time windows. In particular, this implies that parallel products with Li, L

T
i , L

−1
i , L−T

i , Di,
D−1

i and Hi are excluded because each of them already uses the full available paralellism. By
the same argument, parallel products with Ri, R

−1
i and HT

i are also banned.
In this framework, the cost of evaluating qst is given by

cq = cL + cD−1 + cH + cR−1 , (5.2)

while that of evaluating J and its gradient is

cJ = cM + cH + cLT + cD−1 + cHT + cR−1 . (5.3)
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Note that the quantities D−1b and R−1d are both available once J and its gradient have been
evaluated. We first investigate the computational costs of the components of GMRES, for
which it can be verified that the cost of a Krylov iteration for (2.7) is

cK,sa = cL + cD + cLT + cH + cHT + cR (5.4)

while that of applying the saddle preconditioner PM of (2.11) involves

cS−1 = cL̃−T + cD + cL̃−1 , (5.5)

(the cost of applying S−1 = L̃−1DL̃−T ) and is

cPM
= cS−1 + cR−1 . (5.6)

The cost of applying no outer iterations of SAQℓ-M for a total of ni inner iterations may then
be approximated by

cSAQℓ−M ≈ no(cJ + cPM
) + ni(cK,sa + cPM

) +
ni

ℓ
cq, (5.7)

the second term in the first bracket of the right-hand side accounting for the preconditioning,
at each outer iteration, of the initial inner-iteration residual, and the last term accounting for
the periodic evaluations of qst within the termination criterion. Similarly, it can be verified
that, for the state formulation,

cK,st = cL + cD−1 + cLT + cH + cHT + cR−1 (5.8)

and thus, using (5.5) and
crhs,st = cLT + cHT (5.9)

the cost of computing the right-hand side of (2.4), that

cSTQℓ−S ≈ no(cJ + crhs,st + cS−1) + ni(cK,st + cS−1). (5.10)

Finally, for the forcing formulation,

cK,fo = cD + cL−1 + cH + cR−1 + cHT + cL−T , crhs,fo = cL−T + cHT (5.11)

and
cFOQℓ ≈ no(cJ + crhsfo + cD) + nicK,fo. (5.12)

We next assign approximate costs for all building blocks other than D−1, where one unit
of cost is given by the integration of the modelM on the complete time window(9). Assuming
p computing processes are available and defining eNsw to be the vector of all ones and length
Nsw, let

cM = 1, cH =
1

20Nsw
πp

(

eNsw

)

, cD =
1

2Nsw
πp

(

eNsw

)

, cR =
1

100Nsw
πp

(

eNsw

)

,

(5.13)

cR−1 =
1

100Nsw
πp

(

eNsw

)

, cH =
1

10Nsw
πp

(

eNsw

)

, cHT =
1

10Nsw
πp

(

eNsw

)

, (5.14)

(9)The cost values are based on discussions with practitioners.
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cL =
2

Nsw
πp

(

eNsw

)

, cLT =
4

Nsw
πp

(

eNsw

)

, cL−1 = 2, and cL−T = 4, (5.15)

where we have used the block-diagonal structure of D, R, R−1, H, HT , L and LT to allow
their costs to decrease with p. Using these admittedly fairly rough approximations, we may
re-analyze the behaviour of the SAQℓ algorithms this time as a function of computational
effort.

For the specific choice cD−1 = 0.5, Figure 5.5 corresponds to Figure 4.2 where the horizon-
tal axis now indicates sequential computational costs, respectively (instead of inner-iteration
counts) and where the evolution of the nonlinear cost J is only shown (in thicker lines) be-
tween major iterations. The linesearch is active at the first major iteration for all reported
variants except SAQ1-M-0, as is shown by the nearly vertical lines in the top left of the graph.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

10 2

10 3

10 4

10 5

10 6

SAQ1-M-0 (J)
SAQ15-M-0 (J)
SAQ25-M-0 (J)
SAQ50-M-0 (J)

Figure 5.5: Evolution of J as a function of the sequential computational cost, for SAQℓ-M-0,
(ℓ = 1, 15, 25, 50) using cD−1 = 1

2
(Burgers example, fully MPI model)

If we are now interested in plotting the parallel computational cost for the same algorithms,
the picture looks entirely similar (as all SAQℓ-M-0 scale in the same way), but the maxi-
mal total cost appearing on the horizontal axis shrinks from 11475 to 542 for 50 computing
processes, a 21-fold speedup. This illustrates the excellent parallelization potential of the
SAQℓ-M-I methods, despite the chaotic (but controlled) evolution of the quadratic model’s
values. Similar plots and number could be presented for the SAQℓ-M-I and STQℓ-S algo-
rithms, all showing reasonable parallelization potential. As expected due to the use of the
inherently sequential operators L−1 and L−T , no such gains can be obtained with the FOQℓ-D
variants, whose costs only vary marginally with p.

We are now left with the question of choosing a solution algorithm among our 36 SAQℓ,
STQℓ and FOQℓ variants (ℓ = 1, 15, 25, 50), depending on the relative costs of applying D−1.
To answer this question, we first applied each of the 36 methods to the Burgers example for
cD−1 ∈ [ 1

2
, 10]. We then discarded all methods for which the total decrease in J differed by a

factor more than ρ ∈ (0, 1) of the optimal decrease, that is

J(x0)− J(xf ) > ρ(J(x0)− J(x∗))

where J(x∗) was obtained by running STQ1-S-M to full accuracy and xf denotes the final
value of x resulting from the application of the algorithm. We finally selected the method for
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which the computational cost was least for p = 1, 10, 25, 50. The maps indicating the winning
method for each pair (cD−1 , ρ) with ρ ∈ [10−1, 10−3] and each p are given in Figures 5.6. Each
such map is accompanied with a picture of the surface of the minimum computational costs
over all (cD−1 , ρ) pairs. The legend provides a correspondance between colors on the maps
(the left graph in each box) and the algorithmic variants(10).
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Figure 5.6: Best algorithmic variants as a function of cD−1 the number of computing processes
p and the reliability factor ρ (Burgers example, fully MPI model)

Several conclusions for the Burgers example may be drawn from these maps and cost
surfaces.

1. Using the forcing formulation dominates all other variants when computations are se-
quential, for a computing cost with maximal values close of 313.5. We note the pro-
portionnally faster increase of the total cost with cD−1 compared to requiring higher
accuracy . It is interesting that the variant FOQ15-D is best, indicating that termi-
nating the inner iterations as soon as possible (as is the case with FOQ1-D) may be
sub-optimal when the preconditiner is excellent.

The usefulness of the forcing formulation clearly decreases when the number of com-
puting processes increases, as expected.

2. Using a saddle-based algorithm clearly supposes a high value of cD−1 and the availablility
of several computing processes. The frequency ℓ = 50 = ninner appears to provide the

(10)The colors used by MATLAB c© for the minimum cost surfaces at the right of each box are meaningless
here.
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best compromise between good decrease on the quadratic model and excessive number
of inner iterations.

3. When p = 25 or p = 50 and cD−1 is moderate, the algorithms using the state formulation
dominate with a frequency ℓ diminishing for increasing accuracy, the unpreconditioned
version being suitable for maximum accuracy. This is coherent with our comments in
the beginning of this section and Figure 5.4, as is the fact that none of the STQℓ-S-I
variants ever appears on the podium of best methods.

4. Compared to the sequential case, the most parallel of our scenarii (p = 50) provides a
reduction of computational costs from 315 to 119, which corresponds to a speed-up of
approximately 2.6.

5. The additional computing cost necessary for obtaining improved accuracy is negligible,
irrespective of the number of computing processes.

5.2 An hybrid MPI/OpenMP approach

Let us now assume that a more elaborate parallel computing environment is considered, such
as an hybrid MPI/OpenMP system, where we assume that p processes are available, each
of which with two computing cores. This means that we may now apply two time-parallel
operators simultaneously. Then the computing costs (5.2)-(5.10) may be rewritten as

cq = π2

(

cL + cD−1 , cH + cR−1

)

, (5.16)

cJ = cM + cH + π2

(

cLT + cD−1 , cHT + cR−1

)

, (5.17)

cK,sa = π2

(

cL + cD + cH , cLT + cR + cHT

)

, (5.18)

cS−1 = cL̃−T + cD + cL̃−1 , cPM
= π2

(

cS−1 , cR−1

)

. (5.19)

cSAQℓ−M ≈ no(cJ + cPM
) + ni(cK,sa + cPM

) +
ni

ℓ
cq, (5.20)

cK,st = π2

(

cL + cD−1 + cLT , cH + cR−1 + cHT

)

, crhs,st = π2(cLT , cHT ), (5.21)

cSTQℓ−S ≈ no(cJ + crhs,st + cS−1) + ni(cK,st + cS−1), (5.22)

cK,fo, crhs,fo and cFOQℓ−D being unmodified.
We may then repeat our experiments in this new setting, which allows further gains

compared to the fully MPI case, as shown in Figure 5.7 (note the doubly logarithmic axis).
Although the improvement by switching from the fully MPI model to the hybrid MPI/OpenMP
model is far from negligible, we neverthless note that most of the advantage obtained by par-
allel processing is due to the parallelization in time, with a very strong correlation with Nsw,
the number of subwindows (see (5.13)(5.15)). This already apparent at the very beginning
of the computation, as evaluating J(x0) already makes a significant difference (both parallel
runs of the algorithm are completed before J(x0) is evaluated in the sequential mode). Fig-
ure 5.8 then illustrates how these gains in computational costs are translated in the new ’best
method’ maps/minimum cost surfaces.
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Figure 5.7: Evolution of J as a function of computational cost for SAQ25-M-0 for cD−1 = 1
2

in the sequential, fully MPI and hybrid MPI/OpenMP settings (Burgers example)
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Figure 5.8: Best algorithmic variants as a function of cD−1 the reliability factor ρ and the
number of computing processes p (Burgers example, hybrid MPI/OpenMP model)
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This figure broadly confirms and amplifies the trends already present in Figure 5.6, with the
SAQ50-M-I method becoming more important especially when p grows. The reduction of
total computational cost is also noticeable, the smallest cost now being approximately 80
(which corresponds to a speed-up close to 4).

6 Numerical comparisons on the QG example

We now turn to the results obtained for the two-layers ECMWF QG example, also using
ninner = 50 and at most 5 Gauss-Newton iterations (see Appendix A2 for a more complete
description of the problem). We first observe in Figure 6.9 that the fields of interest do
evolve (relatively) slowly over the complete assimilation time, and thus even more so within
each of the 48 subwindows considered. Hence we may expect M̃i = I to be a reasonable
approximation of Mi, at variance with the Burgers case (see Figure A.14). In particular, the
caveat on using STQℓ-S-I may no longer apply.
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Figure 6.9: Initial (left) and final (right) forecasts using the QG model

Keeping this in mind, we next examine the performance of the original saddle methods
SAQ0-M and SAQ0-M and compare them, first in terms of number of inner iterations, for
the parellizable preconditioners (2.9), to competing variants such as SAQ15 or STQ15. The
outcome is presented in Figure 6.10 for the choice M̃i = 0 and Figure 6.11 for the choice
M̃i = I .
We see in the first of these figures that the simply preconditioned SAQ0-M-0 performs rela-
tively well, albeit a bit slowly compared to the globalized saddle SAQ15-M-0 and the state
algorithm STQ15-S-0. The dominance of this latter formulation with STQ15-S-I is even more
obvious in the second figure, SAQ15-M-I and SAQ0-M-I following the same initial curve, the
latter then levelling off and diverging slowly.
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Figure 6.10: Evolution of q (dashed) and J (continuous) as a function of the number of inner
iterations for SAQ0-M-0, SAQ15-M-0 and STQ15-S-0 (QG example)
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Figure 6.11: Evolution of q (dashed) and J (continuous) as a function of the number of inner
iterations, for SAQ0-M-I, SAQ15-M-I and STQ15-S-I (QG example)
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We may now again compute the same ’best method’ maps and minimum cost surfaces,
mimicking our analysis for the Burgers case, yielding Figures 6.12 for the fully MPI model,
and Figure 6.13 for the hybrid MPI/OPenMP one.
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Figure 6.12: Best algorithmic variants as a function of cD−1 the number of computing pro-
cesses p and the reliability factor ρ (QG example, fully MPI model)

The situation is much more intricate here than for the Burgers example. In particular,
the competition between state and forcing formulations is very tight in the sequential case.
As above, the latter stops being advantageous when the number of computing processes
increases. The maximal computational costs now range from approximately 1977 (p = 1) to
65 (p = 50), giving an excellent speed-up of 30. Looking at the “best-method” maps in more
detail, we see that state-based algorithms seems to obtain a better decrease quickly, then being
outperformed by saddle-based methods, for finally nevertheless taking over (using M̃i = I)
for the more stringent accuracy requirements. We also note by looking at the minimum-cost
surfaces that such requirements come at a significant computational cost (irrespective of p),
in contrast with what was observed for the Burgers example. The original saddle algorithm,
which we kept in the comparison here, is never the best method.

7 Avoiding the use of D−1

As already noted, the cost of the D−1 operator may vary considerably from application
to application. In some oceanographic models, D is computed using a diffusion operator
which is integrated using an implicit scheme [34, 25, 20, 35]. This makes the cost of D−1

very comparable to that of D. In some other applications, such as atmospheric modelling
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Figure 6.13: Best algorithmic variants as a function of cD−1 the number of computing pro-
cesses p and the reliability factor ρ (QG example, hybrid MPI/OpenMP model)
and weather forecasting, the D operator may involve more complicated elements, such as
localization schemes [32, 5, 24], which makes applying D−1 potentially more costly. The
authors are aware of the strong reluctance of practitioners in these areas to even provide the
D−1 operator at all. If that is the case, and if one nevertheless desires to enjoy the security of a
solid global convergence theory at an acceptable cost, it is possible to use an approximate D−1

operator, for instance by computing y = D−1x by approximately solving the linear system
Dy = x. Various iterative methods can be considered for this task, including conjugate-
gradients or FOM, which should already be available in the data assimilation system. In
addition, as in the Burgers and QG examples, parallelism can often be exploited to make
this computation efficient. We have however met two difficulties when experimenting with
the idea. The first is that a very inaccurate solution of the linear system may result in an
unsymmetric D−1 operator, which then empties the very state formulation of its meaning
(in addition to causing numerical havoc). The second is that too inexact solutions may also
slow down the convergence of STQℓ significantly, although the saddle-based algorithms seem
more robust. We have however found that a relatively modest number of conjugate gradient
iterations is very often sufficient to reach this accuracy level. In preliminary tests on the
Burgers example with 25 unpreconditoned CG iterations, the SAQ50-M-I algorithm turned
out to be the best choice for both parallel computing models, and the parallel computing
cost (p = 50) increased by less than a factor three compared to using the exact D−1 (with
cD−1 = cD ∈ [ 1

2
, 10]). Very similar conclusions can be reached when applying the same

strategy (with 20 unpreconditioned CG iterations) to the QG example. As number of outer
and inner iterations differ only very marginally from that observed when using the exact D−1

and since the cost of 20 products with D brings cD−1 = 10 to the top of the range considered
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for exactD−1, the results are essentially identical to those obtained for cD−1 = 10 in Section 6.
There is little doubt that preconditioning and problem specific tuning would reduce the

cost of the approximate D−1 even further. Our experiments therefore show that, even if
the D−1 operator is unavailable, considering the SAQℓ or STQℓ algorithms may be the best
option, irrespective of the number of computing processes and of the parallel computing
model.

We finally note that using the forcing formulation makes it possible to avoid using B−1

(not D−1) altogether by starting the Gauss-Newton algorithm with x0 = xb and recurring
B−1(xk−xb) over successive major iterations from by-products of the FOM or CG algorithms.
This technique however suffers from the same parallelization problems as the standard FOM
and does not avoid using the (possibly approximate) Q−1

i operators (see (2.3)). This is why
we haven’t considered this variant in detail in our parallel computing assessment.

8 Conclusion and perspectives

In this paper, we have exposed the problematic behaviour of the original saddle formulation
as a general method for solving the weakly constrained 4D-Var problem. Its undesirable
features are caused by the very poor correlation, for approximate solutions, between quadratic
model decrease (the objective) and reduction of the residual of the associated optimality
conditions (the mean). This mismatch in turn causes the values of the cost function(s) to
behave chaotically and makes terminating the inner iteration too much dependent on chance,
potentially resulting in divergence of the whole process. We have nevertheless proposed a
strategy (and a corresponding class of algorithms) which cures the problem and for which
strong global convergence results can be proved.

We have then experimented with this new class of saddle-based algorithms and compared
their performance with that of methods associated with alternative variational formulations
of the problem. This comparison was conducted on two different and complementary exam-
ples of data assimilation, taking into account not only performance in terms of number of
iterations, but also considering two more elaborate approximations of computational costs in
a two different parallel computing models. A parametric study of the sequential and parallel
computing cost as a function of the costs of applying the D−1 operator and the accuracy
obtained has been conducted, showing the relative merits of the new saddle algorithms and
the more classical CG/FOM solvers for the state formulation. Both appear to have their
place in the data assimilation toolbox. We have also provided a preliminary discussion of the
application of both classes of algorithms in the case where the D−1 operator is unavailable,
indicating that similar conclusions hold if it is approximated.

Several issues remain to be explored further, one of which is the use of approximate op-
erators: we only briefly touched the question in our discussion of the use of the approximate
D−1, and further elaboration including preconditioning and the possible use of inexact prod-
ucts [17] might be of interest. The second and most important one is the translation of our
conclusions, drawn in a relatively controlled context, to the more complex environments of
truly parallel operational systems.
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A1. The Burgers assimilation problem

We consider the one-dimensional Burgers equation on the spatio-temporal domain Ω = [0, T ]×
[0, 1] whose governing equation is

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= g on Ω (A.1)

with Dirichlet boundary conditions

u(0, t) = u(1, t) = 0 ∀t ≥ 0. (A.2)

The forcing term is then given by

g(x, t) = πk[x+ k(t+ 1) sinπ(1− x)(t+ 1)] cosπx(t+ 1) sinπ(1− x)(t+ 1)
+πk[1− x− k(t+ 1) sinπx(t+ 1)] sinπx(t+ 1) cosπ(1− x)(t+ 1)
+2νk2π2(t+ 1)2[sinπx(t+ 1) sinπ(1− x)(t+ 1)

+ cosπx(t+ 1) cosπ(1− x)(t+ 1)]

(A.3)

The discretization uses a first-order upwind scheme in time and a second-order centered
scheme in space. With a space step ∆x and a time step ∆t, this gives

1

∆t
(un+1

i − uni ) +
uni
2∆x

(uni+1 − uni−1)−
ν

(∆x)2
(uni+1 − 2uni + uni−1) = g(i∆x, n∆t) (A.4)
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Figure A.14: Reference trajectory and observations at the end of the first (left) and last
(right) subwindow

with uni = u(i∆x, n∆t). We choose ∆x = 0.01 leading to a state vector of dimension n = 100,
∆t = 10−5 and a diffusion coefficient ν = 0.25. The length of the assimilation window T is
equal to 0.03. It is divided into Nsw = 50 subwindows of equal length.

The reference solution is built by running the model with the initial condition

utrue(x, 0) = k sin(2πx), ∀x ∈ [0, 1] (A.5)

with k = 0.1 as for the forcing function g, and by adding a Gaussian random variable at the
end of each subwindow:

xtj =Mj(x
t
j−1) + ǫmj , ǫmj ∼ N (0, σ2

mIn) (j = 1, . . . , Nsw)

with xtj = [uj1, · · · , ujn]T the state vector at time tj , andMj the integration of the numerical

model from time tj−1 to tj . We choose σ2
m = 1.10−4T/Nsw.

At the end of each subwindow (time tj), mj = 20 observations are built by randomly
selecting components of the reference solution and then adding a Gaussian random variable:

∀j = 1 : Nsw yj = Hj(x
t
j) + ǫoj , ǫoj ∼ N (0, σ2

oImj
)

with Hj the observation operator at time tj (basically the random selection of mj components
of the reference solution). We choose σ2

o = 10−3. This strategy results in a total of 1000
assimilated observations for the whole assimilation window. The reference solution and the
observations at the end of the first and last subwindows are shown in Figure 8.

The observation error covariance matrices Rj , with j = 1 : Nsw, introduced in the defini-
tion of the 4D-Var cost function are diagonal and their diagonal entries are chosen such that
they are positive, the largest one is equal to one and the condition number of Rj is equal to
103.

The background solution xb corresponds to the sum of the reference solution at initial time
(A.5) and a random variable ǫb ∼ N (0, σ2

b In), with σ2
b = 10−2. A model error is introduced

during the numerical integration of the model by adding a Gaussian random variable at the
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end of each subwindow as for the reference solution. The background error covariance matrix
corresponds to the weighted sum of the squared exponential covariance and the identity matrix
given by

B = σ2
b (αIn + (1− α)B̃), with B̃i,j = e−

d(i,j)2

L2 (A.6)

with d(i, j) the distance between the spatial grid points i and j, L = 0.25 a specified length
scale, and α ∈ [0, 1] the weight associated with both matrices. This last parameter is a
simple way to allow variation in the condition number of the matrix B. We choose α = 0.001
which results in a condition number of 1.105. The model error covariance matrices Qj , with
j = 1 : Nsw, are built using the same strategy except that L = 0.05 and α = 0.01. The
condition number of these matrices is close to 1.65 103.

A2. The ECMWF QG problem

In the quasi Geostrophic (QG) problem, a reference stream function is generated from a model
with layer depths of H1 = 6000m and H2 = 4000m, and the time step is set to 600 s, whereas
the assimilating model has layer depths of H1 = 5500m and H2 = 4500m, and the time step
is set to 3600 s. These differences in the layer depths and the time steps provide a source of
model error.

Observations of the non-dimensional stream function, vector wind and wind speed were
taken from the reference of the model at 100 points randomly distributed over both levels
for each hour. Observation errors were assumed to be independent from each others and
uncorrelated in time, the standard deviations were chosen to be 0.4 for the stream function
observation error, 0.6 for the vector wind and 1.2 for the wind speed. The observation operator
is the bi-linear interpolation of the model fields to horizontal observation locations.

The background error covariance matrix (B matrix) and the model error covariances
(matrices Qi) correspond to vertical and horizontal correlations. The vertical and horizon-
tal structures are assumed to be separable. In the horizontal plane, covariance matrices
correspond to isotropic, homogeneous correlations of stream function with Gaussian spatial
structure. For the background error covariance matrix B, the standard deviation and the
horizontal correlation length scale are set to 0.8 and 106m respectively. For the model error
covariance matrices Qi, the standard deviation and the horizontal correlation length scale are
set to 0.6 and 2× 105m respectively. The vertical correlation is assumed to be constant over
the horizontal grid and the correlation coefficient value between the two layers was taken as
0.2 for B and 0.5 for Qi.

The length of the assimilation window is set to 48 hours, divided into 48 equal sub-windows
of 1 hour each.

A3. The left-preconditioned FOM algorithm and its application
to the forcing formulation

We first state, as Algorithm A.1 on the following page the left-preconditioned FOM algo-
rithm for general symmetric positive definite system Ax = b with symmetric positive definite
preconditioning matrix M . This algorithm uses the inner product induced by M−1. In the
description, we use the notation 1:k as a short-hand for {1, . . . , k}.
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Algorithm A.1: Left-preconditioned FOM algorithm for solving MAx = Mb

1. Initialization. Symmetric positive definite matrices A,M ∈ IRn×n are given, as well
as a right-hand side b ∈ IRn.

1.1 w ←Mb

1.2 β ←
√
bTw

1.3 U1:n,1 ← w/β

1.4 Q1:n,1 ← b/β

1.5 z1 ← UT
1:n,1b

2. Main loop. For i = 1, . . . ,maxit,

2.1 w ← AU1:n,k

2.2 v ←Mw

2.3 for j = 1, . . . , k

2.3.1 Hj,k ← QT
1:n,jv

2.3.2 v ← v − U1:n,jHj,k

2.3.3 w ← w −Q1:n,jHj,k

2.4 Hk+1,k ←
√
wT v

2.5 y ← βH−1
1:k,1:ke1

2.6 γk ← |Hk+1,kyk|
2.7 qk ← − 1

2
zT y

2.8 In view of qk and γ, terminate with x = Uy?

2.9 U1:n,k+1 ← v/Hk+1,k

2.10 Q1:n,k+1 ← w/Hk+1,k

2.11 zk+1 ← UT
1:n,k+1b
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Note that Steps 1.5, 2.7 and 2.11 are only necessary if the value of the model quadratic
q(x) = 1

2
xTAx−bTx must be tracked in the course of the inner iterations. If this is the case qk

is the value of q(x) = q(Uy) at iteration k, while γk = ‖∇xq(x)‖M (the preconditioned norm
of the system’s residual). These values may then be used to decide on termination in Step 2.8
(for instance according to (4.6)). Also note that the operator M−1 is only used implictly and
never appears in the algorithm.

We next consider applying this algorithm (with M = D) to find δx = L−1δp, where δp
(approximately) solves (2.6). This gives Algorithm A.2 on the next page. Storing the matrix
P in Step 2.1 of this algorithm allows avoiding the backsolve (5.1) by returning δx = Py
instead of δp = Uy.
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Algorithm A.2: Specialized FOM algorithm for (2.6)-(5.1)

1. Initialization. The matrices L,D,H,R ∈ IRn×n are given, as well as a right-hand
side r = D−1b+ L−THTR−1d ∈ IRn.

1.1 w ← Dr

1.2 β ←
√
wT r

1.3 U1:n,1 ← w/β

1.4 Q1:n,1 ← r/β

1.5 z1 ← UT
1:n,1r

2. Main loop. For i = 1, . . . ,maxit,

2.1 P1:n,k ← L−1U1:n,k

2.2 v ← L−THTR−1HP1:n,k

2.3 w ← Q1:n,k + v

2.4 v ← U1:n,k +Dv

2.5 for j = 1, . . . , k

2.6.1 Tj,k ← QT
1:n,jv

2.6.2 v ← v − U1:n,jTj,k

2.6.3 w ← w −Q1:n,jTj,k

2.7 Tk+1,k ←
√
wT v

2.8 y ← βT−1
1:k,1:ke1

2.9 γk ← |Tk+1,kyk|
2.10 qk ← − 1

2
zT y

2.11 In view of qk and γ, terminate with δx = Py?

2.12 U1:n,k+1 ← v/Tk+1,k

2.13 Q1:n,k+1 ← w/Tk+1,k

2.14 zk+1 ← UT
1:n,k+1r


