
Multilevel Objective-Function-Free Optimization

with an Application to Neural Networks Training

Serge Gratton∗, Alena Kopaničáková†, Philippe L. Toint‡

3 II 2023

Abstract

A class of multi-level algorithms for unconstrained nonlinear optimization is presented
which does not require the evaluation of the objective function. The class contains the
momentum-less AdaGrad method as a particular (single-level) instance. The choice of avoid-
ing the evaluation of the objective function is intended to make the algorithms of the class
less sensitive to noise, while the multi-level feature aims at reducing their computational cost.
The evaluation complexity of these algorithms is analyzed and their behaviour in the pres-
ence of noise is then illustrated in the context of training deep neural networks for supervised
learning applications.

Keywords: nonlinear optimization, multilevel methods, objective-function-free optimization (OFFO),

complexity, neural networks, deep learning.

1 Introduction

In many cases, optimization problems involving a large number of variables do exhibit some
kind of structure, be it sparsity of derivatives [3, 5, 17, 37, 48, 49], specific invariance properties
[10, 19, 21, 28, 40] or implicit spectral properties [4, 20, 26, 27, 36, 39, 41], to cite three cases
of interest. If the problem arises from the discretization of an underlying infinite-dimensional
setting, it has long been known that considering different discretizations of the same problem using
different mesh sizes and carefully using them in what is called a multi-level or multigrid algorithm
can bring substantial computational benefits. When this is the case, the remarkable numerical
performance is typically obtained by exploiting the natural hierarchy between these discretizations
to successively eliminate the various frequency components of the error (or residual) [6] while, at
the same time, using the fact that evaluations of functions and derivatives are typically cheaper
for coarse discretizations than for fine ones. Multigrid methods are now a well-researched area of
numerical analysis and are viewed as a crucial tool for the solution of linear and nonlinear systems
resulting from the solution of elliptic partial-differential equations. Similar ideas have also made
their way in nonlinear optimization, where both the MG-Opt [39, 41] and RMTR [26] multi-level
frameworks have been designed to exploit the same properties, often very successfully (see [38, 25],
for instance).

Another approach of optimization for large problems has recently been explored extensively,
promoting the use of very simple first-order methods (see, among many others, [14, 47, 33, 45, 52,
24]). These methods have a very low computational cost per iterations, but typically require a
(sometimes very) large number of them. Their popularity relies on several facts. The first is that

∗Université de Toulouse, INP, IRIT, Toulouse, France. Work partially supported by 3IA Artificial and Natu-
ral Intelligence Toulouse Institute (ANITI), French “Investing for the Future - PIA3” program under the Grant
agreement ANR-19-PI3A-0004. Email: serge.gratton@enseeiht.fr.

†Division of Applied Mathematics, Brown University, Providence, USA. Email: alena kopanicakova@brown.edu.
‡Namur Center for Complex Systems (naXys), University of Namur, Namur, Belgium. Email:

philippe.toint@unamur.be.

1

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 2

they can be shown to be convergent with a global rate which is sometimes comparable to that of
more complicated methods. The second is that simplicity is achieved by avoiding the computation
of the objective-function values and, most commonly, of other derivatives than gradients (hence
their name). This in turn has made them very robust in the presence of noise on the function and
its derivatives [22], an important feature when the problem is so large that these quantities can
only be realistically estimated (typically by sampling) rather than calculated exactly. The context
in which optimization is performed with computing function values is sometimes denoted by OFFO
(Objective-Function-Free Optimization). A very large number of first-order OFFO methods have
been investigated, but, for the purpose of this paper, we will focus on AdaGrad [14], one of the
best-known provably-convergent members of this class.

The purpose of this paper is to demonstrate that it is possible, theoretically sound, and prac-
tically efficient to combine multi-level and OFFO algorithms. We achieve these objectives by
presenting our contributions in three steps.

• We first describe a novel class of multi-level OFFO algorithms (of which AdaGrad can be
viewed as a single-level realization) (Section 2).

• We then analyze the global rate of convergence of algorithms in this class, showing results
matching the state of the art (Sections 3 and 4).

• We finally illustrate the use and advantages of the proposed methods in the context of noisy
optimization problems resulting from the training of deep neural nets (DNNs) for supervised
learning applications (Section 5).

A brief conclusion is then proposed in Section 6.

Notation. The symbol ‖ · ‖ stands for the standard Euclidean norm. If x is a vector, |x| is the
vector whose j-th component is |xj |. The singular values of the matrix M are denoted by σi[M].

2 The class of multilevel OFFO algorithms

We now present an idealized multilevel OFFO framework merging ideas from [23] and [26] and its
analysis. The problem we consider is a structured version of smooth unconstrained optimization,
that is

min
x∈IRn

f(x) (1)

for a twice continuously differentiable function f from IRn into IR. The problem is structured
in that we assume that we know a collection of functions which provide a “hierarchical” set of
approximations of the objective function f . As indicated above, this is typically the case when
considering a function of a continuous problem’s discretization (the hierarchy being then given by
varying the discretization mesh) or when the objective function involves a graph whose description
may vary in its level of detail. More specifically, we assume that we know a collection of functions
{f`}r`=1 such that each f` is a twice-continuously differentiable function from IRn` to IR, the
connection with our original problem being that nr = n and fr(x) = f(x) for all x ∈ IRn. We
also assume that, for each ` = 2, . . . , r, f` is “more costly” to evaluate/minimize than f`−1.
This may be because f` has more variables than f`−1 (as would typically be the case if the f`
represent increasingly finer discretizations of the same infinite-dimensional objective), or because
the structure (in terms of partial separability, sparsity or eigenstructure) of f` is more complex
than that of f`−1, or for any other reason. To fix terminology, we will refer to a particular ` as a
level. However, for f`−1 to be useful at all in minimizing f`, there should be some relation between
the variables of these two functions. We thus assume that, for each ` = 2, . . . , r, there exist a
full-rank linear operator R` from IRn` into IRn`−1 (the restriction) and another full-rank operator
P` from IRn`−1 into IRn` (the prolongation) such that

ωP` = RT` (2)

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 3

for some known constant∗ ω > 0. In the context of multigrid algorithms, P` and R` are interpreted
as restriction and prolongation between a fine and a coarse grid (see [6, 41, 26, 25], for instance).

Before going into further details, we establish an important convention on indices. Since we
will have to identify, sometimes simultaneously, a level, an iteration of our algorithm and a vector’s
component, we associate the index ` with levels, i with iterations and j with components. For
instance, x`,i,j stands for the j-th component of the vector x at iteration i within level `. The
iteration index i will be reset to zero each time a level is entered†.

Because our proposal is to extend the ASTR1 objective-function-free framework of [23] to the
multilevel context, we now review the main concepts of this algorithm and establish some notation.
As the TR in the name suggests, ASTR1 is a trust-region optimization algorithm. This class of
algorithms is well-known to be both theoretically sound (see [11] for an in-depth presentation and
[51] for a more recent survey) and practically very efficient. As in all trust-region methods, the
next iterate at level ` is found by minimizing a model of a level-dependent objective function h`
within a region where the model is trusted. In our multilevel framework, this model can be either
the (potentially quadratic) Taylor-like

m`,i(s) = gT`,is+ 1
2s
TB`,is, (3)

where g`,i
def
= ∇1

xh`(x`,i) and B`,i is a bounded Hessian approximation, or the lower level model
defined by

h`−1(x`−1,0 + s`−1)
def
= f`−1(x`−1,0 + s`−1) + vT`−1s`−1, (4)

where
v`−1 = R`g`,i −∇f`−1(x`−1,0). (5)

By convention, we set vr = 0, so that, for all sr,

hr(xr,0 + sr) = fr(xr,0 + sr) = f(xr,0 + sr) and gr,k = ∇1
xhr(xr,k) = ∇1

xf(xr,k). (6)

The model h` therefore corresponds to a modification of f` by a linear term that enforces the
“linear coherence” relation

g`−1,0 = ∇1
xh`−1(x`−1,0) = R`g`,i. (7)

This first-order modification (4) is commonly used in multigrid applications in the context of the
full approximation scheme [6], but also in other contexts [16, 41, 1, 38, 26, 34]. We call it “linear
coherence” because it crucially ensures that the first-order behaviours of h` and h`−1 are coherent
in a neighbourhood of x`,i and x`−1,0, respectively. To see this, one checks that, if s` and s`−1

satisfy s` = P`s`−1, then, using (2) and (7),

gT`,is` = gT`,iP`si−1 =
1

ω
R`g

T
`,is`−1 =

1

ω
gT`−1,0s`−1. (8)

Once the model is defined/chosen, the typical iteration of a trust-region method proceeds by
minimizing it in a ball centered at the current iterate, whose radius is adaptively computed by the
algorithm, depending on past performance. This ball can be defined in different norms, but we
will focus here on a scaled version of the “infinity norm” where the absolute value of each vector
component is measured individually. In the ASTR1 context, the trust-region radius is computed
using the size of the current gradient and a component-wise strictly positive vector of weights,
which we do not fully define now, but which will be specified later in our analysis. Since our
multilevel algorithm is recursive, it is also necessary to force termination at a given level when the
Euclidean norm of the prolongation of the overall step to the previous level becomes too large,
that is when the inequality

‖P`+1(x`,i − x`,0)‖ ≤ δ` (9)

∗For simplicity, we choose to make ω independent of `, which can always be achieved by scaling.
†We are well aware that this creates some ambiguities, since a sequence of indices `, i can occur more than once

if level ` (` < r) is used more than once, implying the existence of more than one starting iterate at this level. This
ambiguity is resolved by the context.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 4

fails, where δ` ≥ 0 is a bound on norm of the step at level `+ 1 if ` < r or +∞ otherwise.
In order to specify the algorithm, we finally define, for a vector of weights w` of size n`, the

diagonal matrices

D({w`})
def
= diag

(
1

w`,1
, . . . ,

1

w`,n`

)
. (10)

We will assume that, for j ∈ {1, . . . , n`}, there exists a constant ςj ∈ (0, 1], such that w`,j ≥ ςj for
each ` ∈ {1, . . . , r}. The Multilevel Objective-Function-Free Trust-Region (MOFFTR) algorithm is
then specified on the following page.

Solving the original problem (1) is then obtained by calling

MOFFTR(r, f, xr,0, εr, i
(max)
r , +∞, ς), (11)

where i
(max)
r is the maximum number of top level iterations and ς denotes the vector of weights’

lower bounds. In order to fix terminology, we say that iterations at which the step is computed
by Step 4 of the algorithm are Taylor iterations, while iterations at which the step results from
the recursive call (17) are called recursive iterations.

Some comments are useful at this stage to further explain and motivate the details of the
algorithm.

1. Note that the iterations at any level are terminated in Step 1 if a level-dependent accuracy

threshold ε` is achieved or if a level-dependent maximum number of iterations i
(max)
` is

reached. Also note that (12) enforces (9).

2. The componentwise trust-region radius is defined in (13). Observe that this choice prevents
nonzero components of the step whenever the corresponding component of the gradient is
zero. Observe also that (13) avoids large steps which would cause (12) to fail for i + 1.
Indeed, if ` < r, (13) and (19) imply that

‖P`+1(x`,i+1 − x`,i)‖ = ‖P`+1s`,i‖ ≤ 2δ`.

Thus any x`,i+1 which would violate this inequality would not satisfy (12) (for i + 1) since
then

‖P`+1(x`,i+1 − x`,0)‖ ≥ ‖P`+1(x`,i+1 − x`,i)‖ − ‖P`+1(x`,i − x`,0)‖ > 2δ` − δ` = δ`,

where we used (12) (for i) to derive the last inequality.

The choice of model (end of Step 2) is not formally determined and left to the user. In a
typical pattern, known in the multigrid literature as a “V-cycle”, the tasks to perform at a
given level ` is as follows. A set of standard Taylor iterations is first performed. Then, if
` > 1 (that is the current level is not the lowest one) and significant progress is likely on
level `−1 (in the sense of (16) failing), one then recursively calls the algorithm at level `−1.
A second set of Taylor iterations is then performed at level `. The “V” shape suggested
by the name results from the recursive application of this pattern at all levels. While it
is customary to specify the number of Taylor iterations in both sets (the “pre-smoothing”
and “post-smoothing” in multigrid parlance), this is not required in MOFFTR. Indeed the
algorithm allows for a wide variety of iteration patterns, fixed or adaptive.

3. We next review the mechanism of Step 3 and start by noting that δ`,i is the Euclidean norm
of the step that would be allowed at iteration (`, i), had this iteration been been a Taylor one
(see (13)). We then select a set of weights w`−1,0 to be used at the lower level. Beyond being
bounded below by their respective ςj , these weights have to satisfy two further conditions.
The first, (14), is expressed in a very generic way for now and ensures that these weights

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 5

Algorithm 2.1: x+ = MOFFTR(`, h`, x`,0, ε`, i
(max)
` , δ`, w`,0)

Step 0: Initialization. The constants κR ∈ (0, 1), α ≥ 1, τ ∈ (0, 1], κB ≥ 1 and ςj ∈ (0, 1]
(j ∈ {1, . . . , n`}) are given. Set i = 0.

Step 1: Termination test. If ` < r and

‖P`+1(x`,i − x`,0)‖ > δ` (12)

return with x+ = x`,i−1. Otherwise, compute g`,i
def
= ∇1

xh`(x`,i). If ‖g`,i‖ ≤ ε` or

i = i
(max)
` , return with x+ = x`,i.

Step 2: Define the trust-region. Set

∆̂`,i = D({w`,i})|g`,i| and ∆`,i =

 ∆̂`,i if ` = r,

min

[
2δ`

‖P`+1‖ ‖∆̂`,i‖
, 1

]
∆̂`,i if ` < r.

(13)

If i > 0, define w`,i ∈ IRn` such that w`,i,j ≥ ςj for j ∈ {1, . . . , n`}. If a Taylor step is
required at iteration i, go to Step 4.

Step 3: Recursive step. Select w`−1,0 ∈ IRn`−1 such that w`−1,0,j ≥ ςj for j ∈
{1, . . . , n`−1},

“the lower-level weights are large enough” (14)

and
‖D({w`−1,0}) |R`g`,i|‖ ≤

α‖∆`,i‖
‖P`‖

. (15)

If either ` = 1 or n`−1∑
j=1

[R`g`,i]
2
j

w`−1,0,j
< κR

n∑̀
j=1

g2
`,i,j

w`,i,j
(16)

then go to Step 4. Otherwise (i.e. if ` > 1 and (16) fails), compute

s`,i = P`

[
MOFFTR(`− 1, h`−1, R`x`,i, ε`−1, i

(max)
`−1 , α‖∆`,i‖, w`−1,0)−R`x`,i

]
, (17)

where h`−1 is given by (4).

Step 4: Taylor step. Select a symmetric Hessian approximation B`,i such that

‖B`,i‖ ≤ κB. (18)

Compute a step s`,i such that

|s`,i,j | ≤ ∆`,i,j (j ∈ {1, . . . , n`}), (19)

and gT`,is`,i + 1
2s
T
`,iB`,is`,i ≤ τ

(
gT`,is

Q
`,i + 1

2 (sQ`,i)
TB`,is

Q
`,i

)
, (20)

where sL`,i,j = −sign(g`,i,j)∆`,i,j (j ∈ {1, . . . , n`}), (21)

sQ`,i = γ`,is
L
`,i, with γ`,i =

 min

[
1,

|gT`,isL`,i|
(sL`,i)

TB`,is
L
`,i

]
if (sL`,i)

TB`,is
L
`,i > 0,

1 otherwise.
(22)

Step 5: Update. Set
x`,i+1 = x`,i + s`,i, (23)

Increment i by one and return to Step 1.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 6

cannot be small if the weights at level ` are large. How this is achieved will depend on
the specific choice of weights, as we will see below. The second is the seemingly obscure
condition (15), which simply ensures that the global bound on the Euclidean norm on the
total step at level `− 1 is large enough to allow at least one iteration at the lower level. It
states that the Euclidean length of the prolongation P` of the first lower level step is at most
some multiple α ≥ 1 of the Euclidean length of the (hypothetical) step at level `. Condition
(16) then compares the decrease in a linear approximation of h`−1 at R`x`,i with that of
the linear approximation of h` at x`,i. If the former is less than a fraction κR of the latter,
this suggests that “significant progress at the lower level is unlikely”, and we then resort to
continue minimization at the current level. If significant progress is likely, we then choose
to minimize h`−1 at the lower level (recursive iteration) using the weights w`−1,0, starting
from R`x`,i and within a Euclidean ball of radius α‖∆`,i‖.
We observe that (15) is quite easy to satisfy. Indeed, one readily checks that it is guaranteed
if

w`−1,0,j ≥ max

[
ςj ,
‖P`‖ |R`g`,i|j
α‖∆`,i‖

]
. (24)

4. The step at Taylor iterations is computed in Step 4 using a technique borrowed from the
ASTR1 algorithm [23]. The reader familiar with trust-region theory will recognize in sQ`,i a
variant the “Cauchy point” obtained by minimizing the quadratic model on the intersection
of the negative gradient’s span and the trust-region (see [11, Section 6.3.2]), while sL`,i is

minimizer of the simpler linear model gT`,is within the trust-region.

5. Neither the objective function fr or its approximations {f`}r−1
`=1 are ever evaluated and the

optimization method combining them is therefore truly “Objective-Function-Free”.

3 Convergence Analysis

Our convergence analysis is based on the following standard assumptions.

AS.1: For each ` ∈ {1, . . . , r}, the function f` is continuously differentiable.

AS.2: For each ` ∈ {1, . . . , r}, the gradient ∇1
xf`(x) is Lipschitz continuous with Lipschitz con-

stant L ≥ 0, that is
‖∇1

xf`(x)−∇1
xf`(y)‖ ≤ L‖x− y‖

for all x, y ∈ IRn and all ` ∈ {1, . . . , r}.

AS.3: There exists a constant flow such that, for all x, f(x) ≥ flow.

In what follows, we use the notation

Γ0
def
= f(x0)− flow (25)

for the gap between the objective function at the starting point and its lower bound. Note that
there is no assumption that the gradients of the f` remain bounded.

Before considering more specific choices for the weights, we first derive a fundamental property
of the Taylor steps and strengthen [23, Lemma 2.1] quantifying the “linear decrease” (that is the
decrease in the simple linear model of the objective) for Taylor iterations.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 7

Lemma 3.1 Suppose that AS.1 and AS.2 hold. Consider a Taylor iteration i at level `.
Then

gT`,is`,i ≤ −
τςmin

2κB

n∑̀
j=1

g2
`,i,j

w`,i,j
+
κB

2
‖∆`,i‖2 (26)

where ςmin
def
= minj∈{1,...,n`} ςj ∈ (0, 1].

Proof. First note that, because of (21) and the definition of w`,i,j ,

|gT`,isL`,i| =
n∑̀
j=1

w`,i,jg
2
`,i,j

w2
`,i,j

≥
n∑̀
j=1

ςjg
2
`,i,j

w2
`,i,j

≥ ςmin‖sL`,i‖2. (27)

Suppose now that (sL`,i)
TB`,is

L
`,i > 0 and γ`,i < 1. Then, in view of (20), (22), (27) and (18),

gT`,is
Q
`,i+

1
2 (sQ`,i)

TB`,is
Q
`,i = γ`,ig

T
`,is

L
`,i+

1
2γ

2
`,i(s

L
`,i)

TB`,is
L
`,i = −

(gT`,is
L
`,i)

2

2(sL`,i)
TB`,isL`,i

≤ −
ςmin|gT`,isL`,i|

2κB

.

Combining this inequality with (22) then gives that

gT`,is
Q
`,i + 1

2 (sQ`,i)
TB`,is

Q
`,i ≤ −

ςmin

2κB

n∑̀
j=1

g2
`,i,j

w`,i,j
. (28)

Alternatively, suppose that (sL`,i)
TB`,is

L
`,i ≤ 0 or γ`,i = 1. Then, using (22), (21) and bounds

κB ≥ 1 and ςmin ≤ 1,

gT`,is
Q
`,i + 1

2 (sQ`,i)
TB`,is

Q
`,i = gT`,is

L
`,i + 1

2 (sL`,i)
TB`,is

L
`,i ≤ 1

2g
T
`,is

L
`,i ≤ −

ςmin

2κB

n∑̀
j=1

g2
`,i,j

w`,i,j
. (29)

We thus obtain from (28), (29) and (20) that

gT`,i,s`,i + 1
2s
T
`,iB`,is`,i ≤ −

τςmin

2κB

n∑̀
j=1

g2
`,i,j

w`,i,j
.

As a consequence, we deduce from (28), (29), (20) and (18) that

gT`,is`,i ≤ −τςmin

n∑̀
j=1

g2
`,i,j

2κBw`,i,j
+ 1

2 |sT`,iB`,is`,i| ≤ −τςmin

n∑̀
j=1

g2
`,i,j

2κBw`,i,j
+
κB

2

n∑̀
j=1

s2
`,i,j ,

and (26) results from (19). 2

We also prove the following easy lemma.

Lemma 3.2 Consider iteration (`, i) in the course of the MOFFTR algorithm. Then

‖s`,i‖ ≤ α‖D({w`,i})|g`,i|‖. (30)

Proof. If iteration (`, i) is a Taylor iteration, (30) results from (13), (19) and the bound
α ≥ 1. If it is a recursive iteration, we have, from (17) and (19), that

‖s`,i‖ = ‖P`(x`−1,i − x`−1,0)‖ ≤ δ`−1 = α‖D({w`,i})|g`,i|‖,

yielding (30). 2

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 8

We now consider what can happen at a recursive iteration.

Lemma 3.3 Consider an recursive iteration (`, i). Then

‖∆`−1,0‖ ≤
α

‖P`‖
‖∆`,i‖, (31)

the iterate x`−1,1 is accepted in Step 1 of the algorithm and at least one iteration is completed
at level `− 1.

Proof. Because of (13), (15) and the calling sequence of MOFFTR, we have that

‖∆`−1,0‖ ≤ ‖∆̂`−1,0‖ = ‖D({w`−1,0})|g`−1,0|‖ = ‖D({w`−1,0})|R`g`,i|‖ ≤
α

‖P`‖
‖∆`,i‖

and hence, using (19), that

‖P`(x`−1,1 − x`−1,0)‖ ≤ ‖P`‖ ‖x`−1,1 − x`−1,0‖ ≤ ‖P`‖ ‖∆`−1,0‖ ≤ α‖∆`,i‖ = δ`−1.

Thus (12) fails at iteration (` − 1, 1), the iterate x`−1,1 is thus accepted and the desired
conclusion follows. 2

Lemma 3.4 Consider an recursive iteration (`, i) and suppose that i`−1 ≥ 1 iterations of the
algorithm have been completed at level `− 1. Then∣∣∣∣∣gT`,is`,i − 1

ω

i`−1−1∑
k=0

gT`−1,ks`−1,k

∣∣∣∣∣ ≤ 2i
(max)
`−1 Lδ2

`−1

ωσmin[P`]2
. (32)

Proof. Using (17) and (2) (see also (8)), we deduce that

gT`,is`,i = gT`,i

i`−1−1∑
k=0

P`s`−1,k =
1

ω

i`−1−1∑
k=0

gT`,iR
T
` s`−1,k =

1

ω

i`−1−1∑
k=0

gT`−1,0s`−1,k. (33)

Now

gT`−1,0s`−1,k = gT`−1,ks`−1,k + (g`−1,0 − g`−1,k)T s`−1,k
def
= gT`−1,ks`−1,k + ν`−1,k, (34)

where, using the Cauchy-Schwarz inequality, (4), AS.2 and (9),

|ν`−1,k| ≤ ‖g`−1,0 − g`−1,k‖ ‖s`−1,k‖

= ‖∇1
xf`(x`−1,0)−∇1

xf`(x`−1,k)‖ ‖s`−1,k‖

≤ L‖x`−1,k − x`−1,0‖ ‖s`−1,k‖

≤ L
σmin[P`]

2 ‖P`(x`−1,k − x`−1,0)‖ ‖P`s`−1,k‖

≤ 2Lδ2
`−1

σmin[P`]
2 .

(35)

Combining (33), (34), (35) and the bound i`−1 ≤ i(max)
`−1 then yields (32). 2

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 9

This crucial lemma allows us to quantify what can be said of the “linear decrease” at recursive
iterations, and, as a consequence of Lemma 3.1, at all iterations of the MOFFTR algorithm.

Lemma 3.5 Suppose that AS.1 and AS.2 hold. Then, for all ` ∈ {1, . . . , r} and all i ≥ 0,

gT`,is`,i ≤ −β1,r

n∑
j=1

g2
`,i,j

w`,i,j
+ β2,r

n∑
j=1

g2
`,i,j

w2
`,i,j

(36)

for some constants β1,r > 0 and β2,r > 0 independent of ` and i.

Proof. We first apply Lemma 3.4 to deduce that (32) holds. We also apply Lemma 3.3 to
conclude that (31) holds and that i`−1 ≥ 1. Suppose first that iteration (`, i) is a recursive
iteration and that ` is one plus the index of lowest level reached by the call to MOFFTR in (17).
Then each iteration of the MOFFTR algorithm at level `− 1 is a Taylor iteration and inequality
(26) in Lemma 3.1 applies. Thus, using (32) and (13), we derive that

gT`,is`,i = −τςmin

2κBω

i`−1−1∑
k=0

n`−1∑
j=1

g2
`−1,k,j

w`−1,k,j
+
κB

2ω

i`−1−1∑
k=0

‖∆`−1,k‖2 +
2i

(max)
`−1 Lδ2

`−1

ωσmin[P`]
2

≤ −τςmin

2κBω

i`−1−1∑
k=0

n`−1∑
j=1

g2
`−1,k,j

w`−1,k,j
+
κB

2ω

i`−1−1∑
k=0

4δ2
`−1

σmin[P`]2
+

2i
(max)
`−1 Lδ2

`−1

ωσmin[P`]
2

= −τςmin

2κBω

i`−1−1∑
k=0

n`−1∑
j=1

g2
`−1,k,j

w`−1,k,j
+

2i
(max)
`−1 (κB + L)

ωσmin[P`]
2 δ2

`−1. (37)

Taking now into account the fact that i`−1 ≥ 1, ignoring now the terms for k ∈ {1, . . . , i`−1−1}
in the first sum of the right-hand side, using the definition of δ` from the call (17), the failure
of (16) and (13), we obtain that

gT`,is`,i ≤ −
τςmin

2κBω

n`−1∑
j=1

g2
`−1,0,j

w`−1,0,j
+

2i
(max)
`−1 (κB + L)

ωσmin[P`]
2 α2‖∆`,i‖2 (38)

≤ −τςminκR

2κBω

n∑̀
j=1

g2
`,i,j

w`,i,j
+

2α2i
(max)
`−1 (κB + L)

ωσmin[P`]
2 ‖∆̂`,i‖2

≤ −τςminκR

2κBω

n∑̀
j=1

g2
`,i,j

w`,i,j
+

2α2i
(max)
`−1 (κB + L)

ωσmin[P`]
2

n∑̀
j=1

g2
`,i,j

w2
`,i,j

. (39)

Alternatively, if iteration (`, i) is a Taylor iteration, (26) and (13) give that

gT`,is`,i ≤ −
τςminκR

2κB

n∑̀
j=1

g2
`,i,j

w`,i,j
+ κB

n∑̀
j=1

g2
`,i,j

w2
`,i,j

. (40)

Combining (39) and (40), we obtain that, for all iterations at level ` (recursive and Taylor),

gT`,is`,i ≤ −
κR

max[ω, 1]

[
τςmin

2κB

] n∑̀
j=1

g2
`,i,j

w`,i,j

+ max

{
[κB] ,

2α2i
(max)
`−1

max[ω, 1]σmin[P`]
2

(
[κB] + L

)} n∑̀
j=1

g2
`,i,j

w2
`,i,j

.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 10

Note that the terms in square brackets correspond to the bound (40) with ` replaced by `− 1
(because level `− 1 contains Taylor iterations only). We may then recursively define

β1,1
def
=

τςmin

2κB

and β1,`+1
def
=

κR

max[ω, 1]
β1,`, (41)

β2,1
def
= κB and β2,`+1

def
= max

{
β2,`,

2α2i
(max)
`−1

max[ω, 1]σmin[P`]
2

(
β2,` + L

)}
(42)

for ` ∈ {1, . . . , r} and obtain the desired conclusion. 2

We may now deduce a central bound on the decrease of the objective function.

Lemma 3.6 Suppose that AS.1 and AS.2 hold. Then, for ` ∈ {1, . . . , r},

h`(x`,i)− h`(x`,i+1) ≥
n∑̀
j=1

g2
`,i,j

w`,i,j

[
β1,r −

β2,r + 1
2α

2L

w`,i,j

]
. (43)

Proof. Successively using AS.1, AS.2, (30), (13) and (36), we obtain that

h`(x`,i+1) ≤ h`(x`,i) + gT`,is`,i + 1
2L‖s`,i‖2

≤ h`(x`,i) + gT`,is`,i + 1
2Lα

2‖D({w`,i})|g`,i|‖2

= h`(x`,i) + gT`,isr,i + 1
2α

2L

n∑̀
j=1

g2
`,i,j

w2
`,i,j

≤ h`(x`,i)− β1,r

n∑̀
j=1

g2
`,i,j

w`,i,j
+
(
β2,r + 1

2α
2L
) n∑̀
j=1

g2
`,i,j

w2
`,i,j

(44)

giving (43). 2

3.1 Divergent Weights

For our approach to be coherent and practical, we now have to specify how the weights are chosen,
and also make condition (14) more explicit. We start by considering “divergent weights” defined
as follows. We assume, in this section, that the weights wi,k are chosen such that, for some power
parameter 0 < ν ≤ µ < 1, all i ∈ {1, . . . , n} and some constants ςi ∈ (0, 1],

max[ςi, vi,j] (i+ 1)ν ≤ wr,i,j ≤ max[ςi, vi,j] (i+ 1)µ (j ≥ 0), (45)

where, for each i, the vi,j are such that

vi+1,j > vi,j implies that vi+1,j ≤ |gr,i+1,j | (46)

and
vi,j ≥ |gr,i,j |/a(i) (47)

for some positive function a(i) only depending on i. Using weights of the form

vi,j = max
t∈{0,...,i}

|gr,t,j | (48)

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 11

has resulted in good numerical performance when applied to noisy examples in the single-level
case (see [23]). This particular choice, referred to as the MAXGI update rule, satisfies (46) and (47)
(with a(i) = 1). The associated condition (14) is now specified as the requirement that

min
j∈{1,...,n`−1}

w`−1,0,j ≥ min
j∈{1,...,n`}

w`,i,j . (49)

Taking (24) into account, we see that the definition

w`−1,0,j = max

[
ςj ,
‖P`‖ |R`g`,i|j
α‖∆`,i‖

, min
j∈{1,...,n`}

w`,i,j

]
implies both (15) and (49). Note that we only need (45)-(47) for level r, the necessary growth of
the weights for lower levels being guaranteed by (49).

Lemma 3.5 and (47) may be used to immediately deduce a lower bound on the change in the
objective function’s value obtained at each iteration at level r.

Lemma 3.7 Suppose that AS.1 and AS.2 hold. Then

f(xi)− f(xi+1) = hr(xr,i)− hr(xr,i+1) ≥ −n(β2,r + 1
2α

2L)a(i)2 (50)

for all i ≥ 0.

Proof. Ignoring negative terms in (43) with ` = r and using (45) and (47), we deduce that

hr(xr,i+1) ≤ hr(xr,i) +
(
β2,r + 1

2α
2L
) n∑
j=1

g2
r,i,j

w2
r,i,j

≤ hr(xr,i) +
(
β2,r + 1

2α
2L
) n∑
j=1

g2
r,i,j

max[ς, vi,j]2(j + 1)ν

≤ hr(xr,i) +
(
β2,r + 1

2α
2L
) n∑
j=1

g2
r,i,j

v2
i,j(j + 1)ν

and (50) follows from (6). 2

We are now ready to state our main result for the MOFFTR algorithm using (45)-(47) and (49).

Theorem 3.8 Suppose that AS.1–AS.3 hold and that the MOFFTR algorithm is applied to
problem (1) in a call of the form (11), where the weights w`,i,j are chosen according to (45)-
(47) and the condition (14) is instantiated as (49). Then, for any ϑ ∈ (0, β1,r), there exists a
subsequence {it} ⊆ {i}∞iϑ such that

min
k∈{iς+1,...,it}

‖∇1
xf(xr,k)‖2 = min

k∈{iς+1,...,it}
‖gr,k‖2 ≤ κ�

(it + 1)µ

it − iϑ
≤ 2κ�(iϑ + 1)

i1−µt

(51)

where

iϑ
def
=

(
β2,r + 1

2α
2L

ςmin(β1,r − ϑ)

) 1
ν

− 1, iς
def
=

(
2(iϑ + 1)κ�

ςmin

) 1
1−µ

(52)

and

κ�
def
=

2

ϑ

[
f(x0)− flow + n(β2,r + 1

2α
2L)

iϑ∑
k=0

a(k)2

]
.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 12

Proof. See Appendix A. 2

Some comments on this result are in order.

1. Theorem 3.8 provides useful information on the rate of convergence of the MOFFTR algorithm
beyond iteration of index iς , which can computed a priori. Indeed iς only depends on µ,
ν and problem’s constants. If {it} = {i}∞iς , the complexity bound to reach an iteration
satisfying the accuracy requirement ‖gk‖ ≤ ε is then

O
(
ε−

2
1−µ
)

+ iς(µ, ν), (53)

which, for small values of ν and µ, can be close to O(ε−2) (albeit at the price of a larger
iς). This rate is also achieved by some variants of the single-level ASTR1 algorithm (see
[23, Theorem 4.1]. If {it} ⊂ {i}∞iς , one may have to wait for the next iteration in {it}
beyond (53) for the gradient bound to be achieved. Note that the rate of decay of the right-
hand side of (51) depends on the index it (in the complete sequence) rather than on t (the
subsequence index). Interestingly, it is possible to prove that {it} = {i}∞iϑ if one assumes
that the objective-function’s gradients remain uniformly bounded (see [23, Theorem 4.1]).

2. As all worst-case bounds, the bound (51) is pessimistic. In this context it is especially the
case because we have only considered the case where all iterations before iϑ generate an
increase in the objective function which is as large as allowed by our assumptions. This is
extremely unlikely in practice.

3. It is also possible to relax condition (49) by only requiring that the right-hand side is at
least a fixed fraction of the left-hand side. The arguments are essentially unmodifed, but
involve yet another constant which percolates though the proofs. We haven’t included this
possibility to avoid further notational burden.

4. It was proved in [23, Theorem 4.2] that the above complexity bound is sharp for a single-level.
It is therefore also sharp for the multilevel case.

5. Note that the requirement (45) allows a variety of choices for the weights. The specific choice
(48) will be explored from the numerical point of view in the next section.

3.2 AdaGrad-like weights

Instead of focusing on (45), we now consider a choice of weights inspired by the popular AdaGrad
method, where the necessary growth in weight size is obtained by accumulating squared gradient
components. Interestingly, this will allow us to prove a complexity result for the complete sequence
of iterates (no subsequence is involved). More specifically, given ς ∈ (0, 1] and µ ∈ (0, 1), we define
the weights for all ` ∈ {1, . . . , r}, all i ≥ 0 and j ∈ {1, . . . , n`} by

w`,i,j
def
=

(
ς +

j∑
i=0

g2
`,i,j

)µ
. (54)

The AdaGrad weights are recovered for µ = 1
2 . The condition (14) is then specified as the

requirement that
‖w`−1,0‖ ≥ ‖w`,i‖. (55)

Taking again (24) into account, we verify that the definition

w`−1,0,j = max

[
1,
‖w`,i‖
‖ŵ`−1,0‖

]
ŵ`−1,0,j where ŵ`−1,0,j = max

[
ςj ,
‖P`‖ |R`g`,i|j
α‖∆`,i‖

]
(56)

is sufficient to ensure both (15) and (55).

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 13

We now state our complexity result for the variant of the MOFFTR algorithm using (54) and (55).
This result parallels [23, Theorem 3.2] but uses the more complex multilevel version of the linear
decrease given by Lemma 3.6.

Theorem 3.9 Suppose that AS.1–AS.3 hold and that the MOFFTR algorithm is applied to
problem (1) in a call of the form (11), where the weights are chosen according to (54) and
(14) is instantiated as (55). Then

average
k∈{0,...,i}

‖∇1
xf(xr,k)‖2 = average

k∈{0,...,i}
‖gr,k‖2 ≤

κ∗
i+ 1

, (57)

where

κ∗
def
=

max

[
ς,

(
4n(β2,r + 1

2L)
β1,r(1− 2µ)

) 1
µ

, 1
2

(
(1− 2µ)Γ0

n(β2,r + 1
2L)

) 1
1−2µ

]
if 0 < µ < 1

2 ,

max

[
ς, 1

2e
2Γ0

n(β2,r+
1
2L) ,

ςψ2

2

∣∣∣W−1

(
− 1
ψ

)∣∣∣2] if µ = 1
2 ,

max

[
ς,

[
2µ

β1,r

(
Γ0 +

n(β2,r + L)ς1−2µ

2µ− 1

)] 1
1−µ
]

if 1
2 < µ < 1,

(58)

where β1,r and β2,r are the constants defined by (41) and (42), respectively,

ψ
def
=

4 max[3
2βr,1, n(βr,2 + 1

2L)]

β1,r
√
ς

(59)

and W−1 is the second branch of the Lambert function [12].

Proof. See Appendix B. 2

We conclude this analysis section with a few brief comments on Theorem 3.9.

1. It results from this theorem that, for any ε > 0, at most O(ε−2) iterations of the MOFFTR

algorithm are needed to reduce ‖gr,k‖ below ε. This result is thus stronger than that of
Theorem 3.8, unless {it} = {i}∞iϑ . It is also equivalent (in order) to that known for single-
level trust-region algorithms (see [7, Theorem 2.3.7]).

2. An exact momentum-less version of AdaGrad is obtained by choosing r = 1 and µ = 1
2 . The-

orem 3.9 therefore provides a convergence analysis for both single- and multi-level versions
of this method.

3. It was shown in [23, Theorem 3.4] that the global rate of convergence of the single-level
(r = 1) algorithm using AdaGrad-like weights cannot be better than O(1/

√
i). This is

therefore also the case for r ≥ 1.

4. The bound (57) may be refined (although not improved in order) if one is ready to assume
that the gradients are uniformly bounded. We refer the reader to [23] for a proof in the
single-level case.

5. As noted in this last reference, the bound involving the Lambert function can be replaced
by a weaker but more explicit one by using the inequality∣∣W−1(−e−x−1)

∣∣ ≤ 1 +
√

2x+ x for w > 0 (60)

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 14

[9, Theorem 1]. Remembering that, for γ1 and γ2 given by (83), log
(
γ2

γ1

)
≥ log(3) > 1 and

setting x = log
(
γ2

γ1

)
− 1 > 0 in (60) then yields that

∣∣∣∣W−1

(
−γ1

γ2

)∣∣∣∣ ≤ log

(
γ2

γ1

)
+

√
2

(
log

(
γ2

γ1

)
− 1

)
.

6. The strict monotonicity of the weights implied by (54) can also be relaxed to provide further
algorithmic flexibility. In turns out that (54) may be replaced by

w`,i,j ∈ [χ v`,i,j , v`,i,j] with v`,i,j
def
=

(
ς +

j∑
i=0

g2
`,i,j

)µ

for some (fixed) χ ∈ (0, 1] without altering the nature of Theorem 3.9, in that only the
constant κ∗ is modified to explicitly involve χ. Again, see [23] for a proof in the single-level
case.

4 Extensions

The above theory can be extended is a number of practically useful and/or theoretically interesting
ways.

4.1 Iteration-dependent algorithmic elements

There is much flexibility in the implementation of the MOFFTR algorithm than the statement on
page 5 suggests, in part because we have considered certain algorithm’s parameters as constant.
While this is an advantage in many circumstances, it may happen that performance can be en-
hanced on specific problems by allowing these parameters to vary in a fixed range. This is for
instance the case for α, the factor by which the lower-level trust-region radius can exceed the
upper-level one. This is also the case of the definition of f` which is never used explicitly in our
analysis, or of factor 2 in the right-hand side of the second part of (13). Thus, it is fair to say that
our analysis covers a whole class of possible algorithms.

4.2 Exploiting lower-level iterations

The multilevel theory we have presented so far is limited‡ to exploiting the first iteration of each
level (see the transition between (37) and (38)). This approach is fairly coarse in the sense that
it does not give any indication on why performing more than a single iteration at a lower level
can be beneficial for convergence. To improve our understanding, we need to say more about
how h`−1 provides an approximation to h`. At iteration (`, i), ∆`,i is meant to represent the
radius of the ball around x`,i in which the first-order Taylor model approximates h` sufficiently
well. If f`−1 in turn approximates f` somehow, we expect the linear decreases in h`−1 (that is
the terms

∑n`−1

j=1 g2
`−1,k,j/w`−1,k,j) to be consistent with the linear decrease at level ` (that is∑n`

j=1 g
2
`−1,k,j/w`−1,k,j) within the ball whose prolongation is of radius ∆`,i. In what follows, we

consider what can be said if one assumes (or imposes) that condition (16) fails for all iterations
(`− 1, k) rather than just for (`− 1, 0), that is if

n`−1∑
j=1

g2
`−1,k,j

w`−1,k,j
≥ κR

n∑̀
j=1

g2
`,i,j

w`,i,j
for k ∈ {0, . . . , i`−1}. (61)

‡We ignore in this discussion the fact that evaluating gradients at the lower level is typically significantly cheaper
computationally than computing them at the upper level, an advantage sometimes crucial in practice.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 15

(Compared to (16), we may need to use a smaller κR.)
Returning to Lemma 3.5 with this strengthened assumption, we obtain the following result.

Lemma 4.1 Suppose that AS.1, AS.2 and (61) hold. Then, for all ` ∈ {1, . . . , r} and all
i ≥ 0,

gT`,is`,i ≤ −i
(low)
` β1,r

n∑
j=1

g2
`,i,j

w`,i,j
+ β2,r

n∑
j=1

g2
`,i,j

w2
`,i,j

(62)

for some constants β1,r > 0 and β2,r > 0 independent of ` and i, and where i
(low)
` is the total

number of Taylor iterations from iteration (`, i) to (and excluding) iteration (`, i+ 1).

Proof. We first follow the proof of Lemma 3.5 up to (37). Then, instead of ignoring terms
to obtain (38), we keep them and use (61) and (13) to deduce that

gT`,is`,i ≤ −i`−1
τςmin

2κBω

n`−1∑
j=1

g2
`−1,0,j

w`−1,0,j
+

2i
(max)
`−1 (κB + L)

ωσmin[P`]
2 α2‖∆`,i‖2

≤ −i`−1
τςminκR

2κBω

n∑̀
j=1

g2
`,i,j

w`,i,j
+

2α2i
(max)
`−1 (κB + L)

ωσmin[P`]
2 ‖∆̂`,i‖2

≤ −i`−1
τςminκR

2κBω

n∑̀
j=1

g2
`,i,j

w`,i,j
+

2α2i
(max)
`−1 (κB + L)

ωσmin[P`]
2

n∑̀
j=1

g2
`,i,j

w2
`,i,j

, (63)

where, as in Lemma 3.5, we used the failure of (16) and (13) to obtain the last two inequalities.
As in Lemma 3.5, (40) still holds if iteration (`, i) is a Taylor iteration (in which case i`−1 = 0).
Combining (63) and (40), we obtain that, for all iterations at level `,

gT`,is`,i ≤ −max[1, i`−1]
κR

max[ω, 1]

[
τςmin

2κB

] n∑̀
j=1

g2
`,i,j

w`,i,j

+ max

{
[κB] ,

2α2i
(max)
`−1

max[ω, 1]σmin[P`]
2

(
[κB] + L

)} n∑̀
j=1

g2
`,i,j

w2
`,i,j

.

We may then recursively define β1,` and β1,` using (41) and (42) and (62) finally follows from

the definition of i
(low)
` . 2

Observe that (62) is the same as (36), except that β1,r is now multiplied by i
(low)
` . This modification

percolates through all proofs, resulting in improved§ constants in (52) and (58). We finally note
that requiring (61) can be viewed as one way to improve the balance between negative and positive
terms in (62), but may not be the only one.

4.3 Weak coherence

It is possible to relax somewhat the linear coherence requirement between high and low levels
models. Examination of the above theory shows that it is only used in (33). If we were to assume
that ωPT` = R` + E` instead of (2), then it is easy to verify that an error matrix E` satisfying

‖E`g`,i‖ ≤ κEδ`−1 (64)

§In particular, by offsetting the effect of the i
(max)
`−1 constants in β2,r.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 16

for some fixed κE ≥ 0 ensures that, for each t in (33),

gT`,iP`s`−1,t =
1

ω
(R`g`,i)

T s`−1,t +
κEδ`−1‖s`−1,t‖

ω
≤ 1

ω
gT`−1,is`−1,t +

2κE
ωσmin[P`]

δ2
`−1,

where we used (9) to derive the last inequality. This adds a term in O(δ2
`−1) in the right-hand

side of (32), allowing the argument to be continued with different constants. The condition (64) is
implementable because δ`−1 is known before R` or P` is used at iteration (`, i) and may be quite lax
in the early iterations where ‖g`,i‖ is still relatively large. That linear coherence often only needs
to be preserved approximately is of particular relevance when the algorithm is applied to problems
whose gradient is noisy. In that case, insisting on exact linear coherence would merely propagate
the error in the gradient at the upper level to the lower level, which is clearly undesirable.

5 Numerical results

In this section, we illustrate the numerical performance of the proposed MOFFTR algorithms in
the context of deep neural networks’ training with a particular focus on supervised learning ap-
plications. Let D = {(ys, cs)}nss=1 be a dataset of labeled data, where ys ∈ IRnin represents input
features and cs ∈ IRnout denotes a desirable target. Our goal is to learn the parameters of DNNs,
such that they can approximate cs for a given ys. In what follows, we exploit a continuous-in-depth
approach to DNNs, the forward propagation of which can be interpreted as a discretization of a
nonlinear ordinary differential equation (ODE) [44, 8, 50]. This approach allows us to construct a
multilevel hierarchy and transfer operators required by the MOFFTR framework in a fairly natural
way (see Section 5.1).

Using a continuous-in-depth approach, the supervised learning problem can be formulated as
the following continuous optimal control problem [29]:

min
Q,q,θ,WT ,bT

1

ns

ns∑
s=1

h(P(WT qs(T) + bT), cs) +

T∫
0

R(θ(t)) dt+ S(WT , bT),

subject to ∂tqs(t) = F(qs(t), θ(t)), ∀t ∈ (0, T), (65)

qs(0) = Qys,

where q denotes time-dependent states from IR into IRnfp and θ denotes the time-dependent
control parameters from IR into IRnc . The constraint in (65) continuously transforms an in-
put feature ys into final state qs(T), defined at the time T . This is achieved in two steps.
Firstly, the input ys is mapped into the dimension of the dynamical system as qs(0) = Qys,
where Q ∈ IRnfp×nin . Secondly, the nonlinear transformation of the features is performed using
a ”residual block” F from IRnfp × IRnc into IRnfp . We consider two types of such blocks: dense
and convolutional. A dense residual block is defined as F(qs(t), θ(t)) := σ(W (t)qs(t) + b(t)),
where θ(t) = (flat(W (t)),flat(b(t))), σ is an activation function from IRnfp into IRnfp , b(t) ∈ IRnfp

is the ”bias” and W (t) ∈ IRnfp×nfp is a dense matrix. A convolutional residual block has the
form F(qs(t), θ(t)) := σ(BN(t,W (t)qs(t) + b(t))), where W (t) now stands for a sparse convolu-
tional operator and BN denotes continuous-in-time batch-normalization [32, 44] from IR × IRnfp

into IRnfp .
The objective function in (65) is defined such that the deviation, measured by the loss func-

tion h from IRnout×nout into IR, between the desirable target cs and predicted output ĉs ∈ IRnout

is minimized. Here, the predicted output is obtained as ĉs := P(WT qs(T) + bT) ∈ IRnout , where P
denotes a hypothesis function from IRnout into IRnout . The linear operators WT ∈ IRnout×nfp , and
bT ∈ IRnfp are used to perform an affine transformation of the extracted features qs(T), i.e., fea-
tures obtained as an output of the dynamical system at time T . The regularizers R and S with
parameters β1, β2 > 0 are defined as follows. A Tikhonov regularization is used to penalize the

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 17

magnitude of WT and bT , i.e., S(WT , bT) := β1

2 ‖WT ‖2F + β1

2 ‖bT ‖
2, where ‖ · ‖F denotes the Frobe-

nius norm. For the time-dependent control parameters, we use R(θ(t)) := β1

2 ‖θ(t)‖
2+ β2

2 ‖∂tθ(t)‖
2,

where the second term ensures that the parameters vary smoothly in time, see [29] for details.
To solve the problem (65) numerically, we follow the first-discretize-then-optimize approach.

The discretization is performed using equidistant grid 0 = τ0 < · · · < τK−1 = T , consisting of K
points. The states and controls are then approximated at a given time τk as qk ≈ q(τk), and
θk ≈ θ(τk), respectively. Note, each θk and qk now corresponds to parameters and states associated
with the k-th layer of the DNN. Our time-discretization uses the forward Euler scheme, which gives
rise to the well-known ResNet architecture with identity skip connections [31]. Alternatively, one
could employ more advanced, and perhaps more numerically stable, time integration schemes, see
for example [29]. In the case of the explicit Euler scheme considered here, we ensure numerical
stability by employing a sufficiently small time-step ∆t = T/(K − 1).

5.1 Implementation and algorithmic setup

Our implementation of ResNets is based on the deep-learning library Keras [15], while the MOFFTR

framework is implemented using the library NumPy. We consider four different variants of first-
order MOFFTR algorithms (i.e. B`,i = 0 for all (`, i)). The first variant employs divergent weights,
specified by the MAXGI update rule given by (45) and(48) with µ = 0.1. All other variants use
AdaGrad-like weights, specified by (54) and (56), with µ ∈ {0.1, 0.5, 0.9}. The selected update
rules are used to update weights at all levels. The MOFFTR algorithms are implemented as a V-cycle
with one pre-smoothing step and zero post-smoothing steps. For the ResNets with dense residual

blocks, we perform 10 iterations on the lowest level, i.e., i
(max)
1 = 10 and employ κR = 0.01, and

α = 5. For the convolutional ResNets, we use i
(max)
1 = 5 , κR = 0.001 and α = 25. Parameters ν

and ς are set as ν = 0.1, and ς = 0.01 for all numerical examples. Moreover, we take our discussion
of Section 4.3 into account and do not impose the first-order coherence relation (7), as we apply the
MOFFTR framework in stochastic settings where subsampling noise is present. In our realization
of the MOFFTR algorithm, the subsampled derivatives are used at all (`, i).

The hierarchy of objective functions {f}r`=1 required by the MOFFTR framework is obtained by
discretizing the problem (65) with varying discretization parameter ∆t. Each f` is then associated
with a network of different depth. Unless stated otherwise, all numerical examples considered
below take advantage of three levels, which we obtain using uniform refinement with a factor of
two. The operators {P}r−1

`=1 are constructed using piecewise linear interpolation in 1D (in time),
see [18, 35] for details. Note that similar approaches for assembly of prolongation operators were
also employed in the context of multilevel parameter initialization in [30, 13, 8]. We define the
restriction operators {R}r−1

`=1 from (2), choosing ω = 1
2 and ω = 1 for networks with dense and

convolutional residual blocks, respectively.
In order to assess the performance of the MOFFTR method, we provide a comparison with

the single-level ASTR1 methods, which we obtain by calling the corresponding MOFFTR algorithm
with r = 1. Our comparison also includes the baseline stochastic gradient (SGD) [46], ADAM [33]
and AdaGrad¶ methods. The learning rate of all methods is chosen by thorough hyper-parameter
search, performed individually for each dataset, network, and batch size. More precisely, we
consider learning rates from the set {0.0001, 0.00025, 0.0005, 0.00075, 0.001, 0.0025, 0.005, 0.0075,
0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1.0}. The learning rate, which gave rise to the
best generalization results (averaged over five independent runs), is then used in the presented
numerical experiments. In the context of the MOFFTR method, the same learning rate is employed
on all levels.

In what follows, the comparison between single and multilevel methods is performed by an-
alyzing their dominant computational cost, i.e., that associated with gradient evaluations. Let
Cr be a computational cost associated with an evaluation of the gradient on the uppermost level
using a full dataset D. Using the definition of Cr and taking advantage of the fact that the cost
of the back-propagation scales linearly with the number of layers and the number of samples, we

¶AdaGrad is obtained by calling the MOFFTR algorithm with r = 1, weights given by (54) and µ = 1
2
.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 18

define the total computational cost C as follows:

C =

r∑
`=1

2`−r]` Cr, (66)

where the scaling factor‖ 2`−r accounts for the difference between the cost associated with level `
and level r. The symbol]` describes a number of gradient evaluations performed on a level `
using full dataset D. For instance, if we evaluate gradient three times on level ` using nb samples,
then]` = 3nb/|D|.

All presented experiments were obtained using XC50 compute nodes (Intel Xeon E5-2690 v3
processor, NVIDIA Tesla P100 graphics card) of the Piz Daint supercomputer from the Swiss
National Supercomputing Centre (CSCS).

5.2 Numerical examples

We investigate the convergence properties and the efficacy of the proposed MOFFTR algorithms
using three numerical examples from the field of classification and regression.

5.2.1 Hyperspectral image segmentation using Indian Pines dataset

Our first example arises from soil segmentation using hyperspectral images provided by the Indian
Pines dataset [2]. The input data was gathered by an Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor and consist of 145 × 145 pixels with 200 spectral bands in the range
from 400 to 2500 nm. Out of all pixels, only 10, 249 contain labeled data, which we split into 7, 174
for training and 3, 075 for validation. Each pixel is assigned to one of the 16 classes, representing
the type of land cover, e.g., corn, soybean, etc. Segmentation is performed using ResNet with
dense residual blocks of width 50, and the ReLu activation function σ. Parameters K,T, β1, β2

are set to K = T = 3 and β1 = β2 = 10−3. Moreover, we employ the softmax hypothesis
function together with the cross-entropy loss function, defined as h(ĉs, cs) := cTs log(ĉs). To train
ResNet, we run variants of MOFFTR, ASTR1 and SGD methods without momentum. All methods
are terminated as soon as acctrain > 0.98 or accval > 0.98. Termination also occurs as soon as∑15
i=1(acctrain)e− (acctrain)e−i < 0.001 or

∑15
i=1(accval)e− (accval)e−i < 0.001, where (acctrain/val)e

is defined as the ratio between the number of correctly classified samples from the train/validation
dataset and the total number of samples in the train/validation dataset for a given epoch e.

0 100 200
0.70

0.75

0.80

0.85

0.90
0.92

C

a
c
c
v
a
l

MAXGI

0 100 200 300

C

AdaGrad (µ = 0.1)

0 100 200 300

C

AdaGrad (µ = 0.5)

0 100 200 300 400

C

AdaGrad (µ = 0.9)

ASTR1 MOFFTR SGD

Figure 1: Indian Pines example: The validation accuracy as a function of the total computational
cost C. The run with the highest validation accuracy is reported among 10 independent runs.
The experiments were performed using a batch size of 1, 024.

Table 1 reports the total computational cost and validation accuracy required by all solution
strategies, for increasing noise (i.e., decreasing batch size). As can be seen in this table, all

‖Uniform coarsening in 1D by a factor of two is assumed.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 19

Method
Batch-size (batch-size/|D|)

512 (6%) 1,024 (12%) 4,096 (50%) 8,100 (100%)
C accval C accval C accval C accval

SGD 359 92.5% 369 91.7% 1,230 92.2% 3,093 92.1%

A
S
T
R
1

AdaGrad(µ = 0.1) 230 92.6% 379 91.8% 979 92.3% 2,748 92.4%
AdaGrad(µ = 0.5) 143 92.4% 295 91.8% 853 92.3% 3,171 91.9%
AdaGrad(µ = 0.9) 232 91.4% 404 91.6% 976 92.0% 2,626 91.7%
MAXGI 195 92.4% 281 91.7% 884 92.2% 2,719 91.8%

M
O
F
F
T
R AdaGrad(µ = 0.1) 125 92.4% 183 91.7% 422 92.3% 1,683 92.3%

AdaGrad(µ = 0.5) 113 92.1% 145 92.1% 412 92.2% 1,394 92.3%
AdaGrad(µ = 0.9) 118 91.5% 217 91.9% 453 92.1% 1,760 91.9%
MAXGI 96 92.3% 174 91.7% 334 91.9% 1,292 92.4%

Table 1: Indian Pines example: The total computational cost C and validation accuracy accval

required to train ResNet. The best result in terms of validation accuracy is reported among 10
independent runs.

solution strategies achieve comparable validation accuracy for a given batch size. However, the
computational cost of all variants of MOFFTR is smaller than that of their single-level counterparts
and of the SGD method, see also Figure 1. Compared to ASTR1, the speedup factor fluctuates from
1.2 to 2.6. Compared to SGD method, the speedup is higher as it ranges from 1.7 to 3.7. Moreover,
our results suggest that the speedup can be consistently observed even for small batch sizes. This
empirically confirms that the proposed algorithmic framework retains enhanced convergence of
the multilevel methods and at the same time is insensitive to the subsampling noise as a majority
of OFFO methods.

5.2.2 Surrogate modelling of parametric neutron diffusion-reaction (NDR)

Our second example considers the construction of a surrogate model for a parametric neutron
diffusion-reaction problem with spatially-varying coefficients and an external source. The goal is
to construct a surrogate that can predict the average neutron flux for a given set of parameters.
To this aim, we generate a dataset of 3, 000 samples, which we split into 2, 600 samples for training
and 400 for testing. Following [43], the computational domain Ω = (0, 170)2 is heterogeneous and
consists of four different material regions, denoted by Ω1, . . . ,Ω4 (see the left panel of Figure 2).

Figure 2: Left: Computational domain used for the creation of the NDR dataset. Each subdomain
is illustrated by a different color. Middle-Right: Example of samples contained in the NDR dataset.

The strong form of the problem is given as

∇ · [D(x)∇ψ(x)] + α(x)∇ψ(x) = q(x), in Ω,

ψ(x) = 0, on Γ1 := [0, 170]× {1} ∪ {0} × [0, 170], (67)

D(x)∇ψ(x) · n(x) = 0, on Γ2 := [0, 170]× {0} ∪ {1} × [0, 170],

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 20

where x denotes the spatial coordinates and ψ is the neutron flux from Ω to IR. Functions D,α, q
are defined as D(x) =

∑4
i=1 1Ωi(x)Di, q(x) =

∑3
i=1 1Ωi(x)qi, and α(x) =

∑4
i=1 1Ωi(x)αi, respec-

tively (1Ωi denotes the indicator function of the domain Ω). Problem (67) is then parametrized
using 11 parameters, which we sample from a uniform distribution U(a, b), specified by lower (a)
and upper (b) bounds. More precisely, diffusion coefficients {Di}3i=1 are sampled from U(0.15, 0.6),
whileD4 is sampled from U(0.2, 0.8). Reaction coefficients α1, . . . , α4 take on values from U(0.0425, 0.17),
U(0.065, 0.26), U(0.04, 0.16), U(0.005, 0.02), respectively. The values of sources {qi}3i=1 are sam-
pled from U(5, 20), while the value value of q4 is set to 0. For each set of parameters/input
features, we create a target cs =

∫
Ω
ψ(x) dx/

∫
Ω
dx by solving (67) numerically using the finite

element method with a quadrilateral mesh (500 elements in both spatial dimensions).
To build the desired surrogate, we train ResNet with dense residual blocks of width 10, tanh

activation function σ and parameters T = K = 3 and β1 = β2 = 10−4. The identity hypothesis
function and mean square loss functional are defined as h(ĉs, cs) := ‖cs − ĉs‖22.

As common for regression problems, we train ResNet using variants of the MOFFTR, ASTR1, SGD
and ADAM methods with momentum. The details of how to handle the momentum in the multilevel
framework can be found in [35, Appendix A]. The training is performed for a fixed computational
budget, i.e., all solution strategies terminate as soon as C > Cmax, where we set Cmax to 2, 000.

Method
Batch-size (batch-size/|D|)

256 (25%) 1,024 (100%)
ftrain(×103) fval(×103) ftrain(×103) fval(×103)

SGD 0.61± 0.30 3.57± 1.44 1.87± 1.32 6.87± 1.09
ADAM 0.39± 0.23 5.77± 0.79 0.47± 0.50 5.35± 0.23

A
S
T
R
1

AdaGrad(µ = 0.1) 0.56± 0.13 5.41± 0.72 1.01± 0.37 5.72± 1.18
AdaGrad(µ = 0.5) 0.47± 0.32 4.62± 2.71 0.79± 0.12 7.04± 4.93
AdaGrad(µ = 0.9) 0.54± 0.17 7.43± 2.48 0.86± 0.10 4.93± 2.56
MAXGI 0.53± 0.35 5.67± 1.23 1.04± 0.29 4.98± 1.28

M
O
F
F
T
R AdaGrad(µ = 0.1) 0.48± 0.29 0.89± 0.31 0.48± 0.73 1.02± 0.42

AdaGrad(µ = 0.5) 0.39± 0.31 0.95± 0.29 0.63± 0.45 1.29± 0.53
AdaGrad(µ = 0.9) 0.45± 0.25 1.06± 0.36 0.62± 0.41 1.36± 0.49
MAXGI 0.51± 0.14 0.91± 0.30 0.73± 0.47 1.38± 0.45

Table 2: NDR example: The mean and standard deviation of the value of train (ftrain) and
validation (fval) loss function achieved by training ResNet for 2, 000 epochs. The statistics is
obtained from 10 independent runs.

We observe in Table 2 that all solution strategies, except SGD, achieve comparable values of
the training loss (ftrain). Interestingly, we also notice that all variants of the MOFFTR algorithm
generalize better, i.e., reach a lower value of the validation loss (fval) than all single-level methods.
This phenomenon can be also observed in Figure 3. The results presented in Table 2 suggest that
the MOFFTR methods preserve good generalization properties in the presence of noise, a property
of particular interest in surrogate modeling and other scientific applications that require reliable
solutions.

5.2.3 Image classification using the SVNH dataset

Our last numerical example is associated with an image classification using SVNH dataset [42].
Each image is represented by 32× 32 pixels and contains overlapping digits from 0 to 9. This
dataset consists of 99, 289 samples, from which 73, 257 are used for training and 26, 032 for testing
purposes. We pre-process all samples by standardizing the images, so that pixel values lie in
the range [0, 1], and by subtracting the mean from each pixel. In addition, we use standard data
augmentation techniques, in particular image rotation, horizontal and vertical shift, and horizontal
flip. The image classification is performed using ResNet with convolutional residual blocks (32

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 21

100

10−1

10−2

10−3

10−4

f
t
r
a
in

MAXGI AdaGrad (µ = 0.1) AdaGrad (µ = 0.5) AdaGrad (µ = 0.9)

0 500 1,000 1,500 2,000

100

10−1

10−2

10−3

10−4

C

f
v
a
l

0 500 1,000 1,500 2,000

C

0 500 1,000 1,500 2,000

C

0 500 1,000 1,500 2,000

C

ASTR1 MOFFTR SGD ADAM

Figure 3: NDR example: The history of train (ftrain) and validation (fval) loss function obtained
while training ResNet for 2, 000 epochs with batch size 1, 024 (full dataset). The result with lowest
fval among 10 independent runs is reported.

filters), ReLu activation function and parameters T = 3, K = 5, β1 = 10−3, β2 = 0.005. Moreover,
we use the softmax hypothesis function with the cross-entropy loss function.

The training of ResNets is performed using a batch size of 512 and the same stopping criterion
as that used for the Indian Pines example in Section 5.2.1. For this experiment, we consider the
MOFFTR, ASTR1 and SGD methods without momentum. Table 3 reports the computational cost and
validation accuracy achieved by all methods. The study is performed with respect to an increasing
number of refinement levels∗∗.

0 100 200 300
0.84

0.86

0.88

0.90

0.92

0.94

C

a
c
c
v
a
l

MAXGI

0 100 200 300

C

AdaGrad (µ = 0.1)

0 100 200 300

C

AdaGrad (µ = 0.5)

0 100 200 300

C

AdaGrad (µ = 0.9)

ASTR1 MOFFTR SGD

Figure 4: SVNH example: The validation accuracy as a function of total computational cost
obtained while training ResNet with 17 residual block (three refinement levels). The run with the
highest validation accuracy is selected among 10 independent runs.

These results suggest that increasing the network depth enhances its representation capacity,
which in turn justifies a higher computational cost. We also notice that all variants of the MOFFTR

method require lower computational cost than single-level solution strategies while achieving com-
parable accuracy. The obtained computational gains vary from the factor of 1.7 to 3.4. This can
be observed independently of the refinement level, which indicates that the MOFFTR algorithm
has a clear potential to speed up the training of large-scale networks, such as the ones used in
real-life applications. We also note that, among all variants of the MOFFTR framework, the choice
of the MAXGI weights yields higher validation accuracy than that obtained with the AdaGrad-like

∗∗The number of levels utilized by the MOFFTR algorithms increases linearly with refinement level.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 22

Method
Levels (residual blocks)

2 (9) 3 (17) 4 (33)
C accval C accval C accval

SGD 280 92.4% 313 92.7% 336 92.9%
A
S
T
R
1

AdaGrad(µ = 0.1) 325 92.4% 361 92.6% 341 92.8%
AdaGrad(µ = 0.5) 334 92.3% 333 92.4% 328 92.7%
AdaGrad(µ = 0.9) 351 92.1% 358 92.4% 369 92.6%
MAXGI 313 92.3% 317 92.7% 325 92.8%

M
O
F
F
T
R AdaGrad(µ = 0.1) 134 92.3% 105 92.7% 139 92.9%

AdaGrad(µ = 0.5) 148 92.2% 135 92.6% 144 92.8%
AdaGrad(µ = 0.9) 169 92.1% 171 92.6% 151 92.8%
MAXGI 158 92.5% 146 92.9% 143 93.1%

Table 3: SVNH example: The total computational cost C and validation accuracy accval, which
were required to train ResNet with increasing depth (refinement level). The best result in terms
of validation accuracy is reported among 10 independent runs.

variants. We finally observe that, among all AdaGrad-like variants, the configuration with µ = 0.1
achieves the highest validation accuracy as well as the lowest computational cost. The fact that
a similar observation can be made also for the corresponding single-level ASTR1 methods suggests
that exploring values of µ other than the traditional µ = 0.5 might be beneficial in practice.

6 Conclusion

We have presented a class of multilevel algorithms for unconstrained minimization which do not
require the computation of the objective function’s value. We have also shown that the perfor-
mance of algorithms of the class is competitive in the presence of noise-induced by subsampling in
the context of deep neural network training. The convergence theory of two interesting subclasses
has been analyzed and shown to match the state of the art. Our experiments also indicate that,
although currently not covered by our theory, the benefits of the multilevel approach are preserved
when momentum is added to the framework. The authors are well aware that only continued ex-
perimentation will reveal the true practical value of the present proposal, but they note that the
first numerical tests are encouraging.

Acknowledgements

A. Kopaničáková gratefully acknowledges support of the Swiss National Science Foundation through the project
”Multilevel training of DeepONets — multiscale and multiphysics applications” (grant no. 206745), and partial
support of Platform for Advanced Scientific Computing (PASC) under the project EXATRAIN. Ph. L. Toint
acknowledges the continued and friendly partial support of ANITI.

References
[1] N. M. Alexandrov and R. L. Lewis. An overview of first-order model management for engineering optimization.

Optimization and Engineering, 2:413–430, 2001.

[2] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe. 220 band AVIRIS Hyperspectral Image Data Set:
June 12, 1992 Indian Pine TeSite 3. Purdue University Research Repository, 10(7):991, 2015.

[3] A. Beck and N. Hallak. Optimization problems involving group sparsity terms. Mathematical Programming,
2018. online.

[4] A. Borzi and K. Kunisch. A globalisation strategy for the multigrid solution of elliptic optimal control problems.
Optimization Methods and Software, 21(3):445–459, 2006.

[5] A. Bouaricha and R. B. Schnabel. Tensor methods for large sparse systems of nonlinear equations.
Mathematical Programming, 82(3):377–412, 1998.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 23

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, Philadelphia, USA, 2nd
edition, 2000.

[7] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity of algorithms for nonconvex optimization.
Number 30 in MOS-SIAM Series on Optimization. SIAM, Philadelphia, USA, June 2022.

[8] B. Chang, L. Meng, E. Haber, F. Tung, and D. Begert. Multi-level residual networks from dynamical systems
view. arXiv:1710.10348, 2017.

[9] I. Chatzigeorgiou. Bounds on the Lambert function and their application to the outage analysis of user
cooperation. IEEE Communications Letters, 17(8):1505–1508, 2013.

[10] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear
optimization (Release A). Number 17 in Springer Series in Computational Mathematics. Springer Verlag,
Heidelberg, Berlin, New York, 1992.

[11] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Number 1 in MOS-SIAM Optimization
Series. SIAM, Philadelphia, USA, 2000.

[12] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function.
Advances in Computational Mathematics, 5:329––359, 1996.

[13] E. C. Cyr, S. Günther, and J. B. Schroder. Multilevel initialization for layer-parallel deep neural network
training. International Journal of Computing and Visualization in Science and Engineering, 2021.

[14] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research, 12, July 2011.

[15] F. Chollet et al. Keras, 2015. https://keras.io.

[16] M. Fisher. Minimization algorithms for variational data assimilation. In Recent Developments in Numerical
Methods for Atmospheric Modelling, pages 364–385, Reading, UK, 1998. European Center for Medium-Range
Weather Forecasts.

[17] K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-point methods for semidef-
inite programming. Mathematical Programming, Series B, 79(1–3):235–253, 1997.

[18] L. Gaedke-Merzhäuser, A. Kopaničáková, and R. Krause. Multilevel minimization for deep residual networks.
In ESAIM. Proceedings and Surveys. 71:131-144, 2021.

[19] D. M. Gay. Automatically finding and exploiting partially separable structure in nonlinear programming
problems. Technical report, Bell Laboratories, Murray Hill, New Jersey, USA, 1996.

[20] E. Gelman and J. Mandel. On multilevel iterative methods for optimization problems. Mathematical
Programming, 48(1):1–17, 1990.

[21] D. Goldfarb and S. Wang. Partial-update Newton methods for unary, factorable and partially separable
optimization. SIAM Journal on Optimization, 3(2):383–397, 1993.

[22] S. Gratton, S. Jerad, and Ph. L. Toint. Convergence properties of an objective-function-free optimization
regularization algorithm, including an O(ε−3/2) complexity bound. arXiv:2203.09947, 2022.

[23] S. Gratton, S. Jerad, and Ph. L. Toint. First-order objective-function-free optimization algorithms and their
complexity. arXiv:2203.01757, 2022.

[24] S. Gratton, S. Jerad, and Ph. L. Toint. Parametric complexity analysis for a class of first-order Adagrad-like
algorithms. arXiv:2203.01647, 2022.

[25] S. Gratton, M. Mouffe, A. Sartenaer, Ph. L. Toint, and D. Tomanos. Numerical experience with a recursive
trust-region method for multilevel nonlinear bound-constrained optimization. Optimization Methods and
Software, 25(3):359 – 386, 2010.

[26] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear optimiza-
tion. SIAM Journal on Optimization, 19(1):414–444, 2008.

[27] S. Gratton and Ph. L. Toint. Approximate invariant subspaces and quasi-Newton optimization methods.
Optimization Methods and Software, 25(4):507–529, 2010.

[28] A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially separable functions. In M. J. D.
Powell, editor, Nonlinear Optimization 1981, pages 301–312, London, 1982. Academic Press.

[29] E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):014004,
2017.

[30] E. Haber, L. Ruthotto, E. Holtham, and S.-H. Jun. Learning across scales—multiscale methods for convolution
neural networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European conference
on computer vision, pages 630–645, Heidelberg, Berlin, New York, 2016. Springer Verlag.

[32] S. Ioffe and Ch. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv:1502.03167, 2015.

https://keras.io

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 24

[33] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings in the International
Conference on Learning Representations (ICLR), 2015.

[34] A. Kopaničáková. On the use of hybrid coarse-level models in multilevel minimization methods.
arXiv:2211.15078, 2022.

[35] A. Kopaničáková and R. Krause. Globally convergent multilevel training of deep residual networks. SIAM
Journal on Scientific Computing, 0:S254–S280, 2022.

[36] R. Kornhuber. Adaptive monotone multigrid methods for some non-smooth optimization problems. In
R. Glowinski, J. Périaux, Z. Shi, and O. Widlund, editors, Domain Decomposition Methods in Sciences and
Engineering, pages 177–191. J. Wiley and Sons, Chichester, England, 1997.

[37] J. B. Lasserre. Convergent semidefinite relaxation in polynomial optimization with sparsity. Technical report,
LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse, France, November 2005.

[38] M. Lewis and S. G. Nash. Practical aspects of multiscale optimization methods for VLSICAD. In Jason Cong
and Joseph R. Shinnerl, editors, Multiscale Optimization and VLSI/CAD, pages 265–291, Dordrecht, The
Netherlands, 2002. Kluwer Academic Publishers.

[39] M. Lewis and S. G. Nash. Model problems for the multigrid optimization of systems governed by differential
equations. SIAM Journal on Scientific Computing, 26(6):1811–1837, 2005.

[40] J. Mareček, P. Richtárik, and M. Takáč. Distributed block coordinate descent for minimizing partially separable
functions. Technical report, Department of Mathematics and Statistics, University of Edinburgh, Edinburgh,
Scotland, 2014.

[41] S. G. Nash. A multigrid approach to discretized optimization problems. Optimization Methods and Software,
14:99–116, 2000.

[42] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng. Reading digits in natural images with
unsupervised feature learning, 2011.

[43] Z. M. Prince and J. C. Ragusa. Parametric uncertainty quantification using proper generalized decomposition
applied to neutron diffusion. International Journal for Numerical Methods in Engineering, 119(9):899–921,
2019.

[44] A. F. Queiruga, N. B. Erichson, D. Taylor, and M. W. Mahoney. Continuous-in-depth neural networks.
arXiv:2008.02389, 2020.

[45] S. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In Proceedings in the International
Conference on Learning Representations (ICLR), 2018.

[46] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics,
22(3):400––407, 1951.

[47] T. Tieleman and G. Hinton. Lecture 6.5-RMSPROP. COURSERA: Neural Networks for Machine Learning,
2012.

[48] Ph. L. Toint. A note on sparsity exploiting quasi-Newton methods. Mathematical Programming, 21(2):172–
181, 1981.

[49] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. In I. S. Duff, editor,
Sparse Matrices and Their Uses, pages 57–88, London, 1981. Academic Press.

[50] E. Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics and
Statistics, 5(1):1–11, 2017.

[51] Y. Yuan. Recent advances in trust region algorithms. Mathematical Programming, Series A, 151(1):249–281,
2015.

[52] D. Zhou, J. Chen, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. On the convergence of adaptive gradient methods
for nonconvex optimization. arXiv:2080.05671, 2020.

A Proof of Theorem 3.8

We first recall a useful technical result.

Lemma A.1 [23, Lemma 3.5] Consider and arbitrary i ∈ {1, . . . , n} and suppose that there
exists a jς such that

min

[
g2
i,j

ςi
,
g2
i,j

vi,j

]
≤ ςi for j ≥ jς . (68)

Then

min

[
g2
i,j

ςi
,
g2
i,j

vi,j

]
≥
g2
i,j

2ςi
for j ≥ jς . (69)

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 25

Proof of Theorem 3.8 We obtain from (43) and (6) that, for i ≥ iϑ,

f(xr,iϑ)− f(xr,i+1) ≥ 1

2

i∑
k=iϑ+1

n∑
j=1

g2
r,k,j

wr,k,j

[
β1,r −

β2,r + 1
2α

2L

w`,k,j

]
.

Moreover, (45) and (52) also ensure that, since i ≥ iϑ,

β1,r −
β2,r + 1

2α
2L

w`,k,j
≥ ϑ

for all j ∈ {1, . . . , n}, so that

f(xr,iϑ + 1)− f(xr,i+1) ≥ ϑ

2

i∑
k=iϑ+1

n∑
j=1

g2
r,k,j

wr,k,j

≥ ϑ

2

i∑
k=iϑ+1

n∑
j=1

g2
r,k,j

max[ςj , vr,k](k + 1)µ

≥ ϑ

2(i+ 1)µ

i∑
k=iϑ+1

n∑
j=1

min

[
g2
r,k,j

ςj
,
g2
r,k,j

vr,k

]

≥ ϑ(i− iϑ)

2(i+ 1)µ
min

k∈{iϑ,...,i}

 n∑
j=1

min

[
g2
r,k,j

ςj
,
g2
r,k,j

vr,k

] .

But, using (50) in Lemma 3.7,

f(x0)− f(xiϑ+1) = f(xr,0)− f(xiϑ+1) ≥ −n(β2,r + 1
2α

2L)

iϑ∑
k=0

a(k)2. (70)

Combining these two last inequalities with AS.3 then gives that

min
k∈{iϑ,...,i}

 n∑
j=1

min

[
g2
r,k,j

ςj
,
g2
r,k,j

vr,k

] ≤ 2(i+ 1)µ

ϑ(i− iϑ)

(
f(xiϑ+1)− f(xi+1)

)
=

2(i+ 1)µ

ϑ(i− iϑ)

(
f(x0)− f(xi+1) + f(xiϑ+1)− f(x0)

)
≤ 2(i+ 1)µ

ϑ(i− iϑ)

(
Γ0 + n(β2,r + 1

2α
2L)

iϑ∑
k=0

a(k)2
)

from which we obtain that there exists a subsequence {it} ⊆ {i}∞iϑ such that

n∑
j=1

min

[
g2
r,it,j

ςj
,
g2
r,it,j

vr,it

]
≤ 2(it + 1)µ

ϑ(it − iϑ)

[
Γ0 + n(β2,r + 1

2α
2L)

iϑ∑
k=0

a(k)2

]
. (71)

Now,
(it + 1)µ

it − iϑ
<

2µiµt
it − iϑ

<
2iµt

it − iϑ
=

2iµt it
(it − iϑ)it

=
it

it − iϑ
· 2

i1−µt

≤ 2(iϑ + 1)

i1−µt

, (72)

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 26

where we used the facts that µ < 1 and that it
it−iϑ is a decreasing function for it ≥ iϑ + 1. As a

consequence, we obtain from (71) that

n∑
j=1

min

[
g2
r,it,j

ςj
,
g2
r,it,j

vr,it

]
≤ 4(iϑ + 1)

ϑi1−µt

[
Γ0 + n(β2,r + 1

2α
2L)

iϑ∑
k=0

a(k)2

]
.

If we now define

iς
def
=

4(iϑ + 1)
[
Γ0 + 1

2n(β2,r + 1
2α

2L)
∑iϑ
k=0 a(k)2

]
ϑςmin

1

1−µ

,

we see that, for all it ≥ iς ,

min

[
g2
r,it,j

ςj
,
g2
r,it,j

vr,it

]
≤ ςmin.

We then apply Lemma A.1 to deduce from (71) that, for all it ≥ iς ,

n∑
j=1

g2
r,it,j

2ςj
≤ 2(it + 1)µ

ϑ(it − iϑ)

[
Γ0 + n(β2,r + 1

2α
2L)

iϑ∑
k=0

a(k)2

]

and therefore, because ςj ≤ 1, that

‖gr,it‖2 ≤
(it + 1)µ

it − iϑ

(
2

ϑ

)[
Γ0 + n(β2,r + 1

2α
2L)

iϑ∑
k=0

a(k)2

]

for all it ≥ iς . This then gives (51), the last inequality following from (72) and (6). 2

B Proof of Theorem 3.9

Again, we first recall a useful technical lemma.

Lemma B.1 [23, Lemma 3.1] Let {ak}k≥0 be a non-negative sequence, α > 0, ξ > 0 and

define, for each k ≥ 0, bk =
∑k
t=0 at. Then

i∑
k=0

ak
(ξ + bk)α

≤

1

(1− α)
((ξ + bi)

1−α − ξ1−α) if α 6= 1,

log
(
ξ + bi
ξ

)
if α = 1.

(73)

Proof of Theorem 3.9 We first note that (54) implies that

ςµ ≤ max
j∈{1,...,n}

wr,i,j ≤

(
ς +

i∑
k=0

‖gr,k‖2
)µ

(74)

for all i ≥ 0. We also deduce from (6) and (43) in Lemma 3.6 with ` = r that, for i ≥ 0,

f(xi+1) ≤ f(x0)− β1,r

i∑
k=0

‖gr,k‖2

max
j∈{1,...,n}

wr,k,j
+ (β2,r + 1

2L)

n∑
j=1

i∑
k=0

g2
r,k,j

w2
r,k,j

. (75)

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 27

Case (i). Suppose first that µ ∈ (0, 1
2). For each j ∈ {1, . . . , n}, we then apply (73) in Lemma B.1

with ak = g2
r,k,j , ξ = ς and α = 2µ < 1, and obtain from (13) and (54) that,

i∑
k=0

g2
r,k,j

w2
r,k,j

≤ 1

1− 2µ

(ς +

i∑
k=0

g2
r,k,j

)1−2µ

− ς1−2µ

 ≤ 1

1− 2µ

(
ς +

i∑
k=0

g2
r,k,j

)1−2µ

. (76)

Now substituting this bound in (75) and using AS.3 gives that

β1,r

i∑
k=0

‖gr,k‖2

max
j∈{1,...,n}

wr,k,j
≤ Γ0 +

n(β2,r + 1
2L)

1− 2µ

(
ς +

i∑
k=0

‖gr,k‖2
)1−2µ

. (77)

Suppose now that
i∑

k=0

‖gr,k‖2 ≥ max

{
ς,

1

2

[
(1− 2µ)Γ0

n(β2,r + 1
2L)

] 1
1−2µ

}
, (78)

implying

ς +

i∑
k=0

‖gr,k‖2 ≤ 2

i∑
k=0

‖gr,k‖2 and Γ0 ≤
n(β2,r + 1

2L)

1− 2µ

(
2

i∑
k=0

‖gr,k‖2
)1−2µ

.

Then, using (77) and (74),

β1,r

2µ
[∑i

k=0 ‖gr,k‖2
]µ i∑

k=0

‖gr,k‖2 ≤
22(1−µ)n(β2,r + 1

2L)

1− 2µ

(
i∑

k=0

‖gr,k‖2
)1−2µ

.

Solving this inequality for
∑i
k=0 ‖gr,k‖2 and using the fact that 22(1−µ) < 4 gives that

i∑
k=0

‖gr,k‖2 <
[

4n(β2,r + 1
2L)

β1,r(1− 2µ)

] 1
µ

and therefore

average
k∈{0,...,i}

‖gr,k‖2 <
[

4n(β2,r + 1
2L)

β1,r(1− 2µ)

] 1
µ

· 1

i+ 1
. (79)

Alternatively, if (78) fails, then

average
k∈{0,...,i}

‖gr,k‖2 < max

{
ς,

1

2

[
(1− 2µ)Γ0

n(β2,r + 1
2L)

] 1
1−2µ

}
· 1

i+ 1
. (80)

Combining (79), (80) and (6) gives (57) for 0 < µ < 1
2 .

Case (ii). Let us now consider the case where µ = 1
2 . For each j ∈ {1, . . . , n}, we apply (73) in

Lemma B.1 with ak = g2
r,k,j , ξ = ς and α = 2µ = 1 and obtain that,

n∑
j=1

i∑
k=0

g2
r,k,j

w2
r,k,j

≤
n∑
j=1

log

(
1

ς

(
ς +

i∑
k=0

g2
r,k,j

))
≤ n log

(
1 +

1

ς

i∑
k=0

‖gr,k‖2
)

and substituting this bound in (75) then gives that

β1,r

i∑
k=0

‖gr,k‖2

max
j∈{1,...,n}

wr,k,j
≤ Γ0 + 1

2n(β2,r + 1
2L) log

(
1 +

1

ς

i∑
k=0

‖gr,k‖2
)
.

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 28

Suppose now that
i∑

k=0

‖gr,k‖2 ≥ max

[
ς, e

2Γ0

n(β2,r+
1
2L)

]
, (81)

implying that

ς +

i∑
k=0

‖gr,k‖2 ≤ 2

i∑
k=0

‖gr,k‖2 and Γ0 ≤ 1
2n(βr,2 + 1

2L) log

(
2

ς

i∑
k=0

‖gr,k‖2
)
.

Using (74) for µ = 1
2 , we obtain then that

β1,r

√
2

√√√√ i∑
k=0

‖gr,k‖2

i∑
k=0

‖gr,k‖2 ≤ n(βr,k + 1
2L)

and thus that

βr,1

√√√√ i∑
k=0

‖gr,k‖2 ≤ 2
√

2 max[3βr,1, n(βr,2 + 1
2L)] log

√√√√2

ς

i∑
k=0

‖gr,k‖2
 . (82)

Now define

γ1
def
= βr,1

√
ς

2
, γ2

def
= 2
√

2 max[3
2βr,1, n(βr,2 + 1

2L)] and u
def
=

√√√√2

ς

i∑
k=0

‖gr,k‖2 (83)

and observe that γ2 > 3γ1 by construction, because ς ≤ 1. The inequality (82) can then be
rewritten as

γ1u ≤ γ2 log(u). (84)

Let us denote by ψ(u)
def
= γ1u−γ2 log(u). Since γ2 > 3γ1, the equation ψ(u) = 0 admits two roots

u1 ≤ u2 and (84) holds for u ∈ [u1, u2]. The definition of u2 then gives that

log(u2)− γ1

γ2
u2 = 0.

Setting z = −γ1

γ2
u2, we obtain that

zez = −γ1

γ2
.

Thus z = W−1(−γ1

γ2
) < 0, where W−1 is the second branch of the Lambert function defined over

[− 1
e , 0). As −γ1

γ2
≥ − 1

3 , z is well defined and thus

u2 = −γ2

γ1
z = −γ2

γ1
W−1

(
−γ1

γ2

)
> 0 = −ψW−1

(
− 1

ψ

)
> 0,

where ψ = γ2

γ1
is given by (59). As a consequence, we deduce from (84) and (83) that

i∑
k=0

‖gr,k‖2 =
ς

2
u2

2 =
ςψ2

2

∣∣∣∣W−1

(
− 1

ψ

)∣∣∣∣2
and

average
k∈{0,...,i}

‖gr,k‖2 ≤
ςψ2

2

∣∣∣∣W−1

(
− 1

ψ

)∣∣∣∣2 · 1

i+ 1
. (85)

If (81) does not hold, we have that

average
k∈{0,...,i}

‖gr,k‖2 < max

[
ς, e

2Γ0

n(β2,r+
1
2L)

]
· 1

i+ 1
. (86)

Combining (85), (86) and (6) gives (57) for µ = 1
2 .

Gratton, Kopaničáková, Toint: Multilevel OFFO and neural net training 29

Case (iii). Finally, suppose that 1
2 < µ < 1. Once more, we apply (73) in Lemma B.1 for each

j ∈ {1, . . . , n} with ak = g2
r,k,j , ξ = ς and α = 2µ > 1 and obtain that, for j ∈ {1, . . . , n},

i∑
k=0

g2
r,k,j

w2
r,k,j

≤ 1

1− 2µ

((
ς +

i∑
k=0

g2
r,k,j

)1−2µ

− ς1−2µ

)
≤ ς1−2µ

2µ− 1
. (87)

Substituting the bound (87) in (75) and using (74) and AS.3 gives that

βr,1

i∑
k=0

1

(ς +
∑i
t=0 ‖gr,t‖2)µ

‖gr,k‖2 ≤ Γ0 +
n(β2,r + 1

2L)ς1−2µ

2µ− 1
.

If we now suppose that
i∑

k=0

‖gr,k‖2 ≥ ς, (88)

then

average
k∈{0,...,i}

‖gr,k‖2 ≤
[

2µ

βr,1

(
Γ0 +

n(β2,r + 1
2L)ς1−2µ

2µ− 1

)] 1
1−µ

· 1

i+ 1
. (89)

If (88) does not hold, we derive that

average
k∈{0,...,i}

‖gr,k‖2 ≤
ς

(i+ 1)
. (90)

Thus, (89), (90) and (6) finally imply (57) for 1
2 < µ < 1. 2

	Introduction
	The class of multilevel OFFO algorithms
	Convergence Analysis
	Divergent Weights
	AdaGrad-like weights

	Extensions
	Iteration-dependent algorithmic elements
	Exploiting lower-level iterations
	Weak coherence

	Numerical results
	Implementation and algorithmic setup
	Numerical examples

	Conclusion
	Proof of Theorem 3.8
	Proof of Theorem 3.9

