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Abstract

An adaptive regularization algorithm for unconstrained nonconvex optimization is
presented in which the objective function is never evaluated, but only derivatives are used.
This algorithm belongs to the class of adaptive regularization methods, for which optimal
worst-case complexity results are known for the standard framework where the objective
function is evaluated. It is shown in this paper that these excellent complexity bounds are
also valid for the new algorithm, despite the fact that significantly less information is used.
In particular, it is shown that, if derivatives of degree one to p are used, the algorithm

will find a ε1-approximate first-order minimizer in at most O(ε
−(p+1)/p
1 ) iterations, and an

(ε1, ε2)-approximate second-order minimizer in at most O(max[ε−(p+1)/p, ε
−(p+1)/(p−1)
2 ])

iterations. As a special case, the new algorithm using first and second derivatives, when
applied to functions with Lipschitz continuous Hessian, will find an iterate xk at which

the gradient’s norm is less than ε1 in at most O(ε
−3/2
1 ) iterations.

Keywords: nonlinear optimization, adaptive regularization methods, evaluation complexity,

objective-function-free optimization (OFFO).

1 Introduction

This paper is about the (complexity-wise) fastest known optimization method which does not
evaluate the objective function. Such methods, coined OFFO for Objective-Function-Free
Optimization, have recently been very popular in the context of noisy problems, in particular
in deep learning applications (see [24, 17, 30, 29] among many others), where they have shown
remarkable insensitivity to the noise level. This is a first motivation to consider them, and it is
our point of view that their deterministic (noiseless) counterparts are good stepping stones to
understand their behaviour. Another motivation is the observation that other more standard
methods (using objective function evaluations) have been proposed in the noisy case, but

∗Université de Toulouse, INP, IRIT, Toulouse, France. Email: serge.gratton@enseeiht.fr. Work partially
supported by 3IA Artificial and Natural Intelligence Toulouse Institute (ANITI), French ”Investing for the
Future - PIA3” program under the Grant agreement ANR-19-PI3A-0004”
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typically require the noise on the function values to be tightly controlled at a level lower than
that allowed for derivatives [12, 13, 6, 15, 4, 3, 2, 1]

The convergence anaysis of OFFO algorithms is not a new subject, and has been considered
for instance in [16, 29, 21, 20, 18, 30]. However, as far as the authors are aware, the existing
theory focuses on the case where only gradients are used (with the exception of [23]) and
establish a worst-case iteration complexity of, at best, O(ε−2) for finding an ε-approximate
first-order stationary point [26] . It is already remarkable that this bound is, in order and
for the same goal, identical to that of standard methods using function values. But methods
using second-derivatives have proved to be globally more efficient in this latter context, , and
the (complexity-wise) fastest such method is known to have an O(ε−3/2) complexity bound
[27, 14, 28, 8, 5, 11]. Moreover, this better bound was shown to be sharp and optimal among
a large class of optimization algorithms using second-derivatives for the noiseless case [9].
Is such an improvement in complexity also possible for (noiseless) OFFO algorithms? We
answer this question positively in what follows.

The theory developed here combines elements of standard adaptive regularization methods
such as ARp [5] and of the OFFO approaches of [30] and [18]. We exhibit an OFFO regu-
larization method whose iteration complexity is identical to that obtained when objective
function values are used. In particular, we consider convergence to approximate first-order
and second-order critical points, and provide sharp complexity bounds depending on the
degree of derivatives used.

The paper is organized as follows. After introducing the new algorithm in Section 2,
we present a first-order worst-case complexity analysis in Section 3, while convergence to
approximate second-order minimizers is considered in Section 4. The results are then discussed
in Section 5 and some conclusions and perspectives outlined in Section 6.

2 An OFFO adaptive regularization algorithm

We now consider the problem of finding approximate minimizers of the unconstrained non-
convex optimization problem

min
x∈IRn

f(x), (2.1)

where f is a sufficiently smooth function from IRn into IR. As motivated in the introduction,
our aim is to design an algorithm in which the objective function value is never computed.
Our approach is based on regularization methods. In such methods, a model of the objective
function is build by “regularizing” a truncated Taylor expansion of degree p ≥ 1. We now
detail the assumption on the problems that ensure this approach makes sense.
AS.1 f is p times continuously Fréchet differentiable.
AS.2 There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.
AS.3 The pth derivative of f is globally Lipshitz continuous, that is, there exist a non-negative
constant Lp such that

‖∇pxf(x)−∇pxf(y)‖ ≤ Lp‖x− y‖ for all x, y ∈ IRn, (2.2)

where ‖.‖ denotes the usual Euclidean norm in IRn.
AS.4 If p > 1, there exists a constant κhigh ≥ 0 such that

min
‖d‖≤1

∇ixf(x)[d]i ≥ −κhigh for all x ∈ IRn and i ∈ {2, . . . , p}, (2.3)
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where ∇ixf(x) is the ith derivative tensor of f computed at x, and where T [d]i denotes the
i-dimensional tensor T applied on i copies of the vector d. (For notational convenience, we
set κhigh = 0 if p = 1.)

We note that AS.4 is weaker than assuming uniform boundedness of the derivative tensors
of degree two and above (there is no upper bound on the value of ∇ixf(x)[d]i), or, equivalently,
Lipschitz continuity of derivatives of degree one to p− 1.

2.1 The OFFARp algorithm

Adaptive regularization methods are iterative schemes which compute a step from an iterate
xk to the next by approximately minimizing a pth degree regularized model mk(s) of f(xk+s)
of the form

mk(s)
def
= Tf,p(xk, s) +

σk
(p+ 1)!

‖s‖p+1, (2.4)

where Tf,p(x, s) is the pth order Taylor expansion of functional f at x truncated at order p,
that is,

Tf,p(x, s)
def
= f(x) +

p∑
i=1

1

i!
∇ixf(x)[s]i. (2.5)

In (2.4), the pth order Taylor series is “regularized” by adding the term σk
(p+1)!‖s‖

p+1, where

σk is known as the “regularization parameter”. This term guarantees that mk(s) is bounded
below and thus makes the procedure of finding a step sk by (approximately) minimizing mk(s)
well-defined. Our proposed algorithm follows the outline line of existing ARp regularization
methods [8, 5, 11], with the significant difference that the objective function f(xk) is never
computed, and therefore that the ratio of achieved to predicted reduction (a standard feature
for these methods) cannot be used to accept or reject a potential new iterate and to update
the regularization parameter. Instead, such potential iterates are always accepted and the
regularization parameter is updated in a manner independent of this ratio. We now state the
resulting OFFARp algorithm in detail.

The test (2.9) follows [22] and extends the more usual condition where the step sk is chosen
to ensure that

‖∇1
smk(sk)‖ ≤ θ1‖sk‖p.

It is indeed easy to verify that (2.9) holds at a local minimizer of mk with θ1 ≥ 1 (see [22] for
details).

3 Evaluation complexity for the OFFARp algorithm

Before discussing our analysis of evaluation complexity, we first restate some classical lemmas
of ARp algorithms, starting with Lipschitz error bounds.



Gratton, Jerad, Toint: Adaptive Regularization Methods for OFFO 4

Algorithm 2.1: OFFO adaptive regularization of degree p (OFFARp)

Step 0: Initialization: An initial point x0 ∈ IRn, a regularization parameter v0 =
σ0 > 0 and a requested final gradient accuracy ε1 ∈ (0, 1] are given, as well as the
parameters

θ1 > 1 and ϑ ∈ (0, 1]. (2.6)

Set k = 0.

Step 1: Check for termination: Evaluate gk = ∇1
xf(xk). Terminate with xε = xk

if
‖gk‖ ≤ ε1. (2.7)

Else, evaluate {∇ixf(xk)}pi=2.

Step 2: Step calculation: Compute a step sk which sufficiently reduces the model
mk defined in (2.4) in the sense that

mk(sk)−mk(0) < 0 (2.8)

and
‖∇1

sTf,p(xk, sk)‖ ≤ θ1
σk
p!
‖sk‖p. (2.9)

Step 3: Updates. Set
xk+1 = xk + sk, (2.10)

vk+1 = vk + vk‖sk‖p+1 (2.11)

and select
σk+1 ∈ [ϑvk+1, vk+1] . (2.12)

Increment k by one and go to Step 1.
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Lemma 3.1 Suppose that AS.1 and AS.3 hold. Then

|f(xk+1)− Tf,p(xk, sk)| ≤
Lp

(p+ 1)!
‖sk‖p+1, (3.1)

and

‖gk+1 −∇1
sTf,p(xk, sk)‖ ≤

Lp
p!
‖sk‖p. (3.2)

Proof. This is a standard result (see [10, Lemma 2.1] for instance). 2

We start by stating a simple lower bound on the Taylor series’ decrease.

Lemma 3.2

∆Tf,p(xk, sk)
def
= Tf,p(xk, 0)− Tf,p(xk, sk) ≥

σk
(p+ 1)!

‖sk‖p+1. (3.3)

Proof. The bound directly results from (2.8) and (2.4). 2

This and AS.2 allow us to establish a lower bound on the decrease in the objective function
(although it is never computed).

Lemma 3.3 Suppose that AS.1 and AS.3 hold and that σk ≥ 2Lp. Then

f(xk)− f(xk+1) ≥
σk

2(p+ 1)!
‖sk‖p+1. (3.4)

Proof. From (3.1) and (3.3), we obtain that

f(xk)− f(xk+1) ≥
σk − Lp
(p+ 1)!

‖sk‖p+1

and (3.4) immediately follows from our assumption on σk. 2

The next lemma provides a useful lower bound on the step length, in the spirit of [5,
Lemma 2.3] or [22].

Lemma 3.4 Suppose that AS.1 and AS.3 hold. Then

‖sk‖p >
p!

Lp + θ1σk
‖g(xk+1)‖. (3.5)
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Proof. Successively using the triangle inequality,condition (2.9) and (3.2), we deduce
that

‖g(xk+1)‖ ≤ ‖g(xk+1)−∇1
sTf,p(xk, sk)‖+ ‖∇1

sTf,p(xk, sk)‖ ≤
1

p!
Lp‖sk‖p + θ1

σk
p!
‖sk‖p.

The inequality (3.5) follows by rearranging the terms. 2

Inspired by [18, Lemma 7], we now establish an upper bound on the number of iterations
needed to enter the algorithm’s phase where Lemma 3.3 applies and thus all iterations produce
a decrease in the objective function.

Lemma 3.5 Suppose that AS.1 and AS.3 hold, and that the OFFARp algorithm does not
terminate before or at iteration of index

k ≥ k∗
def
=

⌈(
2Lp(Lp + θ1σ0)

p!ϑσ0ε1

) p+1
p

⌉
. (3.6)

Then,

vk ≥
2Lp
ϑ

(3.7)

which implies that
σk ≥ 2Lp. (3.8)

Proof. Note that (3.8) is a direct consequence of (2.12) if (3.7) is true. Suppose the

opposite and that for some k ≥ k∗, vk <
2Lp
ϑ . Since vk is a non-decreasing sequence, we

have that vj <
2Lp
ϑ for j ∈ {0, . . . , k}. Successively using the form of the vk update rule

(2.11), (3.5), (2.12) and the fact that, if the algorithm has reached iteration k∗, it must
be that (2.7) has failed for all iterations of index at most k∗, we derive that

vk >
k−1∑
j=0

vj‖sj‖p+1 ≥
k−1∑
j=0

vj

(
p!‖g(xj+1)‖
Lp + θ1σj

) p+1
p

≥
k−1∑
j=0

vj

(
p!‖g(xj+1)‖
Lp + θ1vj

) p+1
p

=
k−1∑
j=0

v
− 1
p

j

p!‖g(xj+1)‖
Lp
vj

+ θ1


p+1
p

>
k−1∑
j=0

v
− 1
p

j

(
p!‖g(xj+1)‖
Lp
σ0

+ θ1

) p+1
p

=

k−1∑
j=0

v
− 1
p

j

(
p!σ0‖g(xj+1)‖
Lp + θ1σ0

) p+1
p

>
k∗ ϑ

1
p (p!σ0ε1)

p+1
p

(2Lp)
1
p (Lp + θ1σ0)

p+1
p

.

Substituting the definition of k∗ in the last inequality, we obtain that

2Lp
ϑ

< vk∗ <
2Lp
ϑ
,

which is impossible. Hence no index k ≥ k∗ exists such that vk <
2Lp
ϑ and (3.7) and (3.8)

hold. 2
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We now define

k1 = min

{
k ≥ 1 | vk ≥

2Lp
ϑ

}
, (3.9)

the first iterate such that significant objective function decrease is guaranteed. The next
series of Lemmas provide bounds on f(xk1) and σk1 , which in turn will allow establishing an
upper bound on the regularization paremeter. We start by proving an upper bound on sk
generalizing those proposed in [7, 22] to the case where p is arbitrary.

Lemma 3.6 Suppose that AS.1 and AS.4 holds. At each iteration k, we have that for

‖sk‖ ≤ 2η + 2

(
(p+ 1)!‖gk‖

σk

) 1
p

, (3.10)

where

η =

p∑
i=2

[
max[0,−κhigh](p+ 1)!

i!ϑv0

] 1
i

. (3.11)

Proof. If p = 1, we obtain from (2.8) and the Cauchy-Schwarz inequality that

1
2
σk‖sk‖2 < −gTk sk ≤ ‖gk‖ ‖sk‖

and (3.10) holds with η = 0. Suppose now that p > 1. Again (2.8) gives that

σk
(p+ 1)!

‖sk‖p+1 ≤ −gTk sk −
p∑
i=2

∇ixf(xk)[sk]
i ≤ ‖gk‖‖sk‖+

p∑
i=2

max[0,−κhigh]

i!
‖sk‖i.

Applying now the Lagrange bound for polynomial roots [31, Lecture VI, Lemma 5] with
x = ‖sk‖, n = p + 1, a0 = 0, a1 = ‖gk‖, ai = max[0,−κhigh]/i! i ∈ {2, . . . , p} and
ap+1 = σk/(p + 1)!, we know from (2.8) that the equation

∑n
i=0 aix

i = 0 admits at least
a strictly positive root, and we may thus derive that

‖sk‖ ≤ 2

(
(p+ 1)!‖gk‖

σk

) 1
p

+ 2

p∑
i=2

[
max[0,−κhigh](p+ 1)!

i!σk

] 1
i

≤ 2

(
(p+ 1)!‖gk‖

σk

) 1
p

+ 2

p∑
i=2

[
max[0,−κhigh](p+ 1)!

i!ϑvk

] 1
i

≤ 2

(
(p+ 1)!‖gk‖

σk

) 1
p

+ 2

p∑
i=2

[
max[0,−κhigh](p+ 1)!

i!ϑv0

] 1
i

,

and (3.10) holds with (3.11). 2

Our next step is to prove that vk1 is bounded by constants only depending on the problem
and the fixed algorithmic parameters.
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Lemma 3.7 Suppose that AS.1, AS.3 and AS.4 hold. Let k1 be defined by (3.9). We
have that,

vk1 ≤ vmax = max

σ0 + σ0

(
2η + 2

(
(p+ 1)!‖g0‖

σ0

) 1
p

)p+1

, κ1
2Lp
ϑ

 (3.12)

where

κ1
def
= 1 + 22p+1ηp+1 + 22p+1

(p+ 1)
(
θ1 +

Lp
ϑσ0

)
ϑ


p+1
p

. (3.13)

Proof. if k1 = 1, we have that

v1 = σ0 + σ0‖s0‖p+1.

Using Lemma 3.6 to bound ‖s0‖p+1, we derive the first part of (3.12). Suppose now that
k1 ≥ 2. Successively using (2.11), Lemma 3.6, the fact that (x+ y)p+1 ≤ 2p(xp+1 + yp+1),
the updates rule of vk (2.11) and σk (2.12) and Lemma 3.4, we derive that,

vk1 = vk1−1 + vk1−1‖sk1−1‖p+1

≤ vk1−1 + vk1−1

(
2

(
(p+ 1)!

‖gk‖
σk

) 1
p

+ 2η

)p+1

≤ vk1−1 + 2pvk1−1

[
2p+1ηp+1 + 2p+1

(
(p+ 1)!‖gk1−1‖

σk1−1

) p+1
p

]

≤ vk1−1 + 22p+1vk1−1

[
ηp+1 +

(
(p+ 1)!‖gk1−1‖

ϑvk1−1

) p+1
p

]

≤ vk1−1 + 22p+1vk1−1η
p+1 + 22p+1

(
(p+ 1)!

ϑ

) p+1
p ‖gk1−1‖

p+1
p

vk1−1
1
p

≤ vk1−1 + 22p+1vk1−1η
p+1

+ 22p+1

[
(p+ 1)!(Lp + θ1σk1−2)

ϑp!

] p+1
p

v
− 1
p

k1−1‖sk1−2‖
p+1.
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Now vk is a non decreasing sequence, and therefore

vk1 ≤ vk1−1 + 22p+1vk1−1η
p+1

+ 22p+1

[
(p+ 1)!(Lp + θ1σk1−2)

ϑp!

] p+1
p

v
− 1
p

k1−2‖sk1−2‖
p+1

≤ vk1−1 + 22p+1vk1−1η
p+1

+ 22p+1

(p+ 1)!
(
θ1 +

Lp
σk1−2

)
ϑp!


p+1
p

v
− 1
p

k1−2σ
p+1
p

k1−2 ‖sk1−2‖
p+1

≤ vk1−1 + 22p+1vk1−1η
p+1 + 22p+1

(p+ 1)!
(
θ1 +

Lp
ϑσ0

)
ϑp!


p+1
p

vk1−2‖sk1−2‖p+1

≤ vk1−1 + 22p+1vk1−1η
p+1 + 22p+1

(p+ 1)!
(
θ1 +

Lp
ϑσ0

)
ϑp!


p+1
p

(vk1−1 − vk1−2)

≤ vk1−1 + 22p+1vk1−1η
p+1 + 22p+1

(p+ 1)!
(
θ1 +

Lp
ϑσ0

)
ϑp!


p+1
p

vk1−1.

We then obtain the second part of (3.12) by observing that vk1−1 ≤
2Lp
ϑ . 2

This result allows us to establish an upperbound on f(xk1) as a function of vmax.

Lemma 3.8 Suppose that AS.1, AS.3 and AS.4 hold. Then

f(xk1) ≤ f(x0) +
Lpvmax + ϑσ20

(p+ 1)!σ0
. (3.14)

Proof. From (3.1) and (3.3), we know that

f(xj+1)− f(xj) ≤ (Lp − σj)
‖sj‖p+1

(p+ 1)!
. (3.15)

Using now (2.11) and the fact that vk is a non-decreasing function, we derive that

vk1 ≥ σ0 + σ0

k1−1∑
j=0

‖sj‖p+1. (3.16)

Summing the inequality (3.15) for j ∈ {0, . . . , k1 − 1} and using (3.16), (2.11) and (2.12),
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we deduce that

f(xk1) ≤ f(x0) +
Lp

(p+ 1)!

k1−1∑
j=0

‖sj‖p+1 − 1

(p+ 1)!

k1−1∑
j=0

σj‖sj‖p+1

≤ f(x0) +
Lp

(p+ 1)!

(
vk1 − σ0
σ0

)
− 1

(p+ 1)!

k1−1∑
j=0

ϑvj‖sj‖p+1

≤ f(x0) +
Lp

(p+ 1)!

(
vk1 − σ0
σ0

)
− ϑ

(p+ 1)!
(vk1 − σ0).

We then obtain (3.14) by ignoring the negative terms in the right-hand side of this last
inequality and using Lemma 3.7 to bound vk1 . 2

The two bounds in Lemma 3.8 and Lemma 3.7 are useful in that they now imply an upper
bound on the regularization parameter, a crucial step in standard theory for regularization
methods.

Lemma 3.9 Suppose that AS.1, AS.3 and AS.4 hold. Suppose also that k ≥ k1. Then

σk ≤ σmax
def
=

2(p+ 1)!

ϑ

(
f(x0)− flow +

Lpvmax + ϑσ20
(p+ 1)!σ0

)
+ vmax. (3.17)

Proof. Let j ∈ {k1, . . . , k}. By the definition of k1 in (3.9), σj ≥ 2Lp. From Lemma 3.3,
we then have that

f(xj)− f(xj+1) ≥
σj

2(p+ 1)!
‖sj‖p+1 ≥ ϑ vj

2(p+ 1)!
‖sj‖p+1.

Summing the previous inequality from j = k1 to k− 1 and using the vj update rule (2.11)
and AS.2, we deduce that

f(xk1)− flow ≥ f(xk1)− f(xk) ≥
ϑ

2(p+ 1)!
(vk − vk1).

Rearranging the previous inequality and using Lemma 3.7,

vk ≤
2(p+ 1)!

ϑ
(f(xk1)− flow) + vmax.

Combining now Lemma 3.8 (to bound f(xk1)) and the fact that σj ≤ vj gives (3.17). 2

We may now resort to the standard “telescoping sum” argument to obtain the desired evalu-
ation complexity bound.
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Theorem 3.10 Suppose that AS.1–AS.4 hold. Then the OFFARp algorithm requires at
most[

κOFFARp

(
f(x0)− flow +

Lpvmax + ϑσ20
(p+ 1)!σ0

)
+

(
2Lp(Lp + θ1σ0)

p!ϑσ0

) p+1
p

]
ε
− p+1

p

1 + 2

iterations and evaluations of {∇ixf}
p
i=1 to produce a vector xε ∈ IRn such that ‖g(xε)‖ ≤

ε1, where

κOFFARp

def
= 2(p+ 1)!σ1/pmax

(
Lp + ϑθ1σ0
ϑp!σ0

) p+1
p

where σmax is defined in Lemma 3.9 and vmax is defined in Lemma 3.7.

Proof. Suppose that the algorithm terminates at an iteration k < k1, where k1 is given
by (3.9). The desired conclusion then follows from the fact that, by this definition and
Lemma 3.5,

k1 ≤ k∗ ≤
(

2Lp(Lp + θ1σ0)

p!ϑσ0ε1

) p+1
p

+ 1. (3.18)

Suppose now that the algorithm has not terminated at iteration k1 and consider an iter-
ation j ≥ k1. From k1 definition (3.9) and Lemma 3.9, we have that 2Lp ≤ σj ≤ σmax.
Since σj ≥ 2Lp, Lemma 3.3 is valid for iteration j. But σj ∈ [ϑσ0, σmax] because of
Lemma 3.9 and ‖g(xj+1)‖ ≥ ε1 before termination, and we therefore deduce that

f(xj)− f(xj+1) ≥
σj‖sj‖p+1

2(p+ 1)!
≥ σj(p!)

p+1
p ‖g(xj+1)‖

p+1
p

2(p+ 1)!(Lp + θ1σj)
p+1
p

≥ (p!)
p+1
p ε

p+1
p

1

2(p+ 1)!σ
1
p
max

(
Lp
ϑσ0

+ θ1

) p+1
p

.

(3.19)
Summing this inequality from k1 to k ≥ k1 and using AS.3, we obtain that

f(xk1)− flow ≥ f(xk1)− f(xk) ≥
(k − k1)
κOFFARp

ε
p+1
p

1 . (3.20)

Rearranging the terms of the last inequality and using (3.18) and Lemma 3.8 then yields
the desired result. 2

While this theorem covers all model’s degrees, it is worthwhile to isolate the most commonly
used cases.
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Corollary 1 Suppose that AS.1–AS.4 hold and that p = 1. Then the OFFAR1 algorithm
requires at most[

4σmax

(
L1 + ϑθ1σ0

ϑσ0

)2(
f(x0)− flow +

L1vmax + ϑσ20
2σ0

)
+

(
2L1(L1 + θ1σ0)

ϑσ0

)2
]
ε−21 + 2

iterations and evaluations of the gradient to produce a vector xε ∈ IRn such that
‖g(xε)‖ ≤ ε1, where σmax is defined in Lemma 3.9 and vmax is defined in Lemma 3.7. If
p = 2, the OFFAR2 algorithm requires at most[

12σ1/2max

(
L2 + ϑθ1σ0

2ϑσ0

) 3
2
(
f(x0)− flow +

L2vmax + ϑσ20
6σ0

)
+

(
2L2(L2 + θ1σ0)

2ϑσ0

) 3
2

]
ε
− 3

2
1 +2

iterations and evaluations of the gradient and Hessian to achieve the same result.

We now prove that the complexity bound stated by Theorem 3.10 is sharp in order.

Theorem 3.11 Let ε1 ∈ (0, 1] and p ≥ 1. Then there exists a p times continuously
differentiable function fp from IR into IR such that the OFFARp applied to fp starting

from the origin takes exactly kε = dε
− p+1

p

1 e iterations and derivative’s evaluations to
produce an iterate xkε such that |∇1

xfp(xkε)| ≤ ε1.

Proof. To prove this result, we first define a sequence of function and derivatives’ values
such that the gradients converge sufficiently slowly and then show that these sequences can
be generated by the OFFARp algorithm and also that there exists a function fp satisfying
AS.1–AS.4 which interpolate them.

First select ϑ = 1 (implying that σk = vk for all k), some σ0 = v0 > 0 and define, for all
k ∈ {0, . . . , kε},

ωk = ε1
kε − k
kε

∈ [0, ε1] (3.21)

and
gk = −(ε1 + ωk) and Di,k = 0, (i = 2, . . . , p), (3.22)

so that
|gk| ∈ [ε1, 2ε1] ⊂ [0, 2] for all k ∈ {0, . . . , kε}. (3.23)

We then set, for all k ∈ {0, . . . , kε},

sk =

(
p!|gk|
σk

) 1
p

, (3.24)
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so that

σk
def
= σ0 +

k−1∑
j=0

σj |sj |p+1 (3.25)

= σ0 +
k−1∑
j=0

σj

(
p!|gj |
σj

) p+1
p

= σ0 + (p!)
p+1
p

k−1∑
j=0

(ε1 + ωj)
p+1
p

σ
1
p

j

≤ σ0 +

(
(2p!)p+1

σ0

) 1
p
k−1∑
j=0

ε
p+1
p

1 ≤ σ0 +

(
(2p!)p+1

σ0

) 1
p

kεε
p+1
p

1 ≤ σ0 + 2

(
(2p!)p+1

σ0

) 1
p

def
= σmax,

where we successively used (3.24), (3.22), (3.21) and the definition of kε. We finally set

f0 = 2
2p+1
p

(
p!

σ0

) 1
p

and fk+1
def
= fk + gksk +

p∑
i=2

1

i!
Di,k[sk]

i = fk −
(
p!

σk

) 1
p

(ε1 + ωk)
p+1
p ,

yielding, using (3.25) and the definition of kε, that

f0 − fkε =

kε−1∑
k=0

(
p!

σk

) 1
p

(ε1 + ωk)
p+1
p ≤ 2

p+1
p

(
p!

σ0

) 1
p

kεε
p+1
p

1 ≤ 2
2p+1
p

(
p!

σ0

) 1
p

.

As a consequence
fk ∈ [0, f0] for all k ∈ {0, . . . , kε} (3.26)

Observe that (3.24) satisfies (2.8) (for the model (2.4)) and (2.9) for θ1 = 1. Moreover
(3.25) is the same as (2.11)-(2.12). Hence the sequence {xk} generated by

x0 = 0 and xk+1 = xk + sk

may be viewed as produced by the OFFARp algorithm given (3.22). Observe also that

|fk+1 − fk| ≤ (p!)
1
pσmax

(
ε1 + ωk
σk

) p+1
p

≤ σmax

p!
|sk|p+1 (3.27)

and

|gk+1 − gk| ≤ |ωk − ωk+1| =
ε1
kε
≤ ε

2p+1
p

1 ≤ σmax

σk
(ε1 + ωk) =

σmax

p!
|sk|p (3.28)

(we used kε ≤ ε
− p+1

p

1 + 1 and ε1 ≤ 1), while, if p > 1,

|Di,k+1 −Di,k| = 0 ≤ σmax

p!
|sk|p+1−i (3.29)

for i = 2, . . . , p. In view of (3.23), (3.26) and (3.27)-(3.29), we may then apply classical
Hermite interpolation to the data given by {(xk, fk, gk, D2,k, . . . , Dp,k)}kεk=0 (see [11, The-
orem A.9.2] with κf = max[2, f0, σmax/p!], for instance) and deduce that there exists a
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p times continuously differentiable piecewise polynomial function fp satisfying AS.1–AS.4
and such that, for k ∈ {0, . . . , kε},

fk = fp(xk), gk = ∇1
xfp(xk) and Di,k = ∇ixfp(xk), (i = 2, . . . , p).

The sequence {xk} may thus be interpreted as being produced by the OFFARp algorithm
applied to fp starting from x0 = 0. The desired conclusion then follows by observing that,
from (3.21) and (3.22),

|gk| > ε1 for k ∈ {0, . . . , kε − 1} and |gkε | = ε1.

2

4 Second-order optimality

If second-derivatives are available and p ≥ 2, it is also possible to modify the OFFARp algorithm
to obtain second-order optimality guarantees. We thus assume in this section that p ≥ 2 and
restate the algorithm as follows.

The modified algorithm only differs from that of page 15 by the addition of condition (4.5)
on the step sk. As was the case for (2.9)/(4.4), note that (4.5) holds with θ2 = 1 at a second-
order minimizer of the model mk(s), and is thus achievable for θ2 > 1. Moreover, because the
modified algorithm subsumes the original one, all properties derived in the previous section
continue to hold. In addition, we may complete the bounds of Lemma 3.1 by noting that
AS.3 for p > 1 also implies that

‖∇2
xf(xk+1)−∇2

sTf,p(xk, sk)‖ ≤
Lp

(p− 1)!
‖sk‖p−1. (4.9)

We now derive a second-order analog of the step lower bound of Lemma 3.4.

Lemma 4.1 Suppose that AS.1 and AS.3 hold and that the modified algorithm is ap-
plied. Then

‖sk‖p−1 >
(p− 1)!

Lp + θ2σk
max

[
0,−λmin[∇2

xf(xk+1)]
]
. (4.10)
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Algorithm 4.1: Modified OFFO adaptive regularization of degree p

Step 0: Initialization: An initial point x0 ∈ IRn, a regularization parameter v0 =
σ0 > 0, a requested final gradient accuracy ε1 ∈ (0, 1] and a requested final curva-
ture accuracy ε2 ∈ (0, 1] are given, as well as the parameters

θ1, θ2 > 1 and ϑ ∈ (0, 1] (4.1)

Set k = 0.

Step 1: Check for termination: Evaluate gk = ∇1
xf(xk) and ∇2

xf(xk). Terminate
with xε = xk if

‖gk‖ ≤ ε1 and λmin[∇2
xf(xk)] ≥ −ε2. (4.2)

Else, evaluate {∇ixf(xk)}pi=3.

Step 2: Step calculation: Compute a step sk which sufficiently reduces the model
mk defined in (2.4) in the sense that

mk(sk)−mk(0) < 0, (4.3)

‖∇1
sTf,p(xk, sk)‖ ≤ θ1

σk
p!
‖sk‖p (4.4)

and
λmin[∇2

sTf,p(xk, sk)] ≥ −θ2
σk

(p− 1)!
‖sk‖p−1. (4.5)

Step 3: Updates. Set
xk+1 = xk + sk, (4.6)

vk+1 = vk + vk‖sk‖p+1 (4.7)

and select
σk+1 ∈ [ϑvk+1, vk+1] . (4.8)

Increment k by one and go to Step 1.
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Proof. Successively using the triangle inequality, (4.9) and (4.5), we obtain that

λmin[∇2
xf(xk+1)] = min

‖d‖≤1
∇2
xf(xk+1)[d]2

= min
‖d‖≤1

[
∇2
xf(xk+1)[d]2 −∇2

sTf,p(xk, sk)[d]2 +∇2
sTf,p(xk, sk)[d]2

]
≥ min
‖d‖≤1

[
∇2
xf(xk+1)[d]2 −∇2

sTf,p(xk, sk)[d]2
]

+ min
‖d‖≤1

∇2
sTf,p(xk, sk)[d]2

= min
‖d‖≤1

[
(∇2

xf(xk+1)−∇2
sTf,p(xk, sk))[d]2

]
+ λmin[∇2

sTf,p(xk, sk)]

≥ −‖∇2
xf(xk+1)−∇2

sTf,p(xk, sk)‖ − θ2
σk

(p− 1)!
‖sk‖p−1

= −‖∇2
xf(xk+1)−∇2

sTf,p(xk, sk)‖ − θ2
σk

(p− 1)!
‖sk‖p−1

= − Lp
(p− 1)!

‖sk‖p−1 − θ2
σk

(p− 1)!
‖sk‖p−1,

which proves (4.10). 2

We now have to adapt our argument since the termination test (4.2) may fail if either its first
or its second part fails. Lemma 3.4 then gives a lower bound on the step if the first part fails,
while we have to use Lemma 4.1 if the second part fails. This is formalized in the following
lemma.

Lemma 4.2 Suppose that AS.1 and AS.3 hold, and that the OFFARp algorithm has
reached iteration of index

k ≥ k∗∗
def
=

⌈
2Lp

κp+1
bothϑ

max

[(
2Lp
ϑ

) 1
p

,

(
2Lp
ϑ

) 2
p−1

]
max

[
ε
− p+1

p

1 , ε
− p+1
p−1

2

]⌉
, (4.11)

where

κboth

def
= min

( p!
Lp
ϑσ0

+ θ1

) 1
p

,

(
(p− 1)!
Lp
ϑσ0

+ θ2

) 1
p−1

 . (4.12)

Then

vk ≥
2Lp
ϑ
, (4.13)

which implies that
σk ≥ 2Lp. (4.14)

Proof. As in Lemma 3.5, (4.14) is a direct consequence of (4.8) if (4.13) is true. In
order to adapt the proof of Lemma 3.5, we observe that, at iteration k, (3.5) and (4.10)
hold and

‖sk‖ > min

[(
p!

Lp + θ1σk
‖g(xk+1)‖

) 1
p

,

(
(p− 1)!

Lp + θ2σk
max

[
0,−λmin[∇2

xf(xk+1)]
]) 1

p−1

]
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which, given termination has not yet occured and vk ≥ σk ≥ ϑσ0 implies that

‖sk‖ > min

σ− 1
p

k

(
p!

Lp
ϑσ0

+ θ1

) 1
p

, σ
− 1
p−1

k

(
(p− 1)!
Lp
ϑσ0

+ θ2

) 1
p−1

min
[
ε
1
p

1 , ε
1
p−1

2

]
≥ κboth min

[
v
− 1
p

k , v
− 1
p−1

k

]
min

[
ε
1
p

1 , ε
1
p−1

2

]
. (4.15)

Suppose now that (4.13) fails, i.e. that for some k ≥ k∗∗, vk <
2Lp
ϑ . Since vk is a non-

decreasing sequence, we have that vj <
2Lp
ϑ for j ∈ {0, . . . , k}. Successively using (4.7)

and (4.15), we obtain that

vk >
k−1∑
j=0

vj‖sj‖p+1 ≥
k−1∑
j=0

κp+1
both min

[
v
− 1
p

j , v
− 2
p−1

j

]
min

[
ε
1
p

1 , ε
1
p−1

2

]p+1

≥
k−1∑
j=0

κp+1
both min

[(
2Lp
ϑ

)− 1
p

,

(
2Lp
ϑ

)− 2
p−1

]
min

[
ε
1
p

1 , ε
1
p−1

2

]p+1

= k∗∗κ
p+1
both min

[(
2Lp
ϑ

)− 1
p

,

(
2Lp
ϑ

)− 2
p−1

]
min

[
ε
1
p

1 , ε
1
p−1

2

]p+1
.

Using the definition of k∗∗ in the last inequality, we see that

2Lp
ϑ

< vk∗∗ <
2Lp
ϑ
,

which is impossible. Hence no index k ≥ k∗∗ exists such that vk <
2Lp
ϑ and (4.13) and

(4.14) hold. 2

We then continue to use the theory of the previous section with a value of k1 now satisfying
the improved bound

k1 ≤ k∗∗, (4.16)

instead of k1 ≤ k∗. This directly leads us to the following strengthened complexity result.
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Theorem 4.3 Suppose that AS.1–AS.4 hold and that p > 1 Then the modified OFFARp

algorithm requires at most[
κMOFFARp

(
f(x0)− flow +

Lpvmax + ϑσ20
(p+ 1)!σ0

)]
+

2Lp

κp+1
bothϑ

max

[(
2Lp
ϑ

) 1
p

,

(
2Lp
ϑ

) 2
p−1

]
×

max
[
ε
− p+1

p

1 , ε
− p+1
p−1

2

]
+ 2

iterations and evaluations of {∇ixf}
p
i=1 to produce a vector xε ∈ IRn such that ‖g(xε)‖ ≤

ε1 and λmin[∇2
xf(xε)] ≥ −ε2, where

κMOFFARp

def
= 2(p+ 1)! max

[
σ1/pmax

(
Lp + ϑθ1σ0
ϑp!σ0

) p+1
p

, σ2/p−1max

(
Lp + ϑθ2σ0
ϑ(p− 1)!σ0

) p+1
p−1

]

and where σmax is defined in Lemma 3.9, vmax is defined in Lemma 3.7 and κboth in (4.12).

Proof. The bound of Theorem 3.10 remains valid for obtaining a vector xε ∈ IRn such
that ‖g(xε)‖ ≤ ε1, but we are now interested to satisfy the second part of (4.2) as well.
Using (4.10) instead of (3.5), we deduce (in parallel to (3.19)) that before termination,

f(xj)− f(xj+1) ≥
σj‖sj‖p+1

2(p+ 1)!

≥ σj((p− 1)!)
p+1
p−1 max[0,−λmin[∇2

xf(xk+1)]]
p+1
p−1

2(p+ 1)!(Lp + θ2σj)
p+1
p−1

≥ ((p− 1)!)
p+1
p−1 ε

p+1
p−1

2

2(p+ 1)!σ
2
p−1
max

(
Lp
ϑσ0

+ θ2

) p+1
p

,

so that, summing this inequality from k1 to k ≥ k1 and using AS.3 now gives (in parallel
to (3.20)) that, before the second part of (4.2) is satisfied,

f(xk1)− flow ≥ f(xk1)− f(xk) ≥
(k − k1)
κ2nd

ε
p+1
p−1

2

where

κ2nd

def
= 2(p+ 1)!σ2/p−1max

(
Lp + ϑθ2σ0
ϑ(p− 1)!σ0

) p+1
p−1

.

As a consequence, we deduce, using (4.16), that the second part of (4.2) must hold at the
latest after [

κ2nd

(
f(x0)− flow +

Lpvmax + ϑσ20
(p+ 1)!σ0

)]
ε
− p+1
p−1

2 + k∗∗ + 2

iterations and evaluations of the derivatives, where k∗∗ is defined in (4.11). Combining
this result with that of Theorem 3.10 then yields the desired conclusion. 2
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Focusing again on the case where p = 2 and upperbounding complicated constants, we
may state the following corollary.

Corollary 2 Suppose that AS.1–AS.4 hold and that p = 2. Then there exists constants
κ∗ such that the modified OFFAR1 algorithm requires at most

κ∗max
[
ε
−3/2
1 , ε−32

]
iterations and evaluations of the gradient and Hessian to produce a vector xε ∈ IRn such
that ‖g(xε)‖ ≤ ε1 and λmin[∇2

xf(xkε)] ≥ −ε2.

We finally prove that the complexity for reaching approximate second order points, as stated
by Theorem 4.3, is also sharp.

Theorem 4.4 Let ε1, ε2 ∈ (0, 1] and p > 1. Then there exists a p times continuously
differentiable function fp from IR into IR such that the modified OFFARp applied to fp

starting from the origin takes exactly kε = dε
− p+1
p−1

2 e iterations and derivative’s evaluations
to produce an iterate xkε such that |∇1

xfp(xkε)| ≤ ε1 and λmin[∇2
xf(xkε)] ≥ −ε2.

Proof. The proof is very similar to that of Theorem 3.11, this time taking a uniformly
zero gradient but a minimal eigenvalue of the Hessian slowly converging to −ε2 from below.
It is detailed in appendix. 2

5 Discussion

It is remarkable that the complexity bound stated by Theorems 3.10 and 4.3 are identical
(in order) to that known for the standard setting where the objective function is evaluated
at each iteration. Moreover, the O(ε−3/2) bound for p = 2 was shown in [9] to be optimal
within a very large class of second-order methods. One then concludes that, from the sole
viewpoint of evaluation complexity, the computation of the objective function’s values is an
unnecessary effort for achieving convergence at optimal speed.

The above results may be extended in different ways, which we have not included in our
development to avoid too much generality and reduce the notational burden. The first is to

allow errors in derivatives of orders 2 to p. If we denote by ∇̂ixf the approximation of ∇ixf ,
it is easily seen in the proof of Lemma 3.4 that the argument remains valid as long as, for
some κD ≥ 0,

‖∇̂ixf(xk)−∇ixf(xk)‖ ≤ κD‖sk‖p+1−i. (5.1)

Since the accuracy of derivatives of degree larger than one only occurs in this lemma, we
conclude that our results still hold if (5.1) holds.
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The second extension is to replace the gradient Lipschitz continuity in AS.3 by a weaker
Hölder continuity, namely that there exist non-negative constant Lp and β ∈ (0, 1] such that

‖∇pxf(x)−∇pxf(y)‖ ≤ Lp‖x− y‖β for all x, y ∈ IRn. (5.2)

It then possible to verify that all our result remain valid with p+ 1 replaced by p+ β.
A third possibility is to consider optimization in infinite-dimensional smooth Banach

spaces, a development presented for the standard framework in [19]. This requires specific
techniques for computing the step and a careful handling of the norms involved.

We may also consider non-smooth norms, as in [22], or imposing convex constraints on
the variables [11, Chapter 6].

Finally, an extension to guarantee third-order optimality conditions (in the case where
third derivatives are available) may be possible along the lines discussed in [11, Chapter 4].

6 Conclusions

We have presented an adaptive regularization algorithm for nonconvex unconstrained mini-
mization where the objective function is never calculated and which has, for a given degree of
used derivatives, the best-known worst-case complexity order, not only among OFFO meth-
ods, but also among all known optimization algorithms. In particular, the algorithm using

gradients and Hessians requires at most O(ε
−3/2
1 ) iterations to produce an iterate such that

‖∇1
xf(xk)‖ ≤ ε1, and at most O(ε−32 ) iterations to additionally ensure that λmin[∇2

xf(xk)] ≥
−ε2. Moreover, all stated complexity bounds are sharp.

Given the prowess of OFFO methods on noisy problems, the transition from the present
deterministic theory to the noisy context is clearly of interest and is the object of ongoing
research.
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Appendix

We give the detailed proof of Theorem 4.4.

Theorem A.1 Let ε2 ∈ (0, 1] and p > 1. Then there exists a p times continuously
differentiable function fp from IR into IR such that the modified OFFARp applied to fp

starting from the origin takes exactly kε = dε
− p+1
p−1

2 e iterations and derivative’s evaluations
to produce an iterate xkε such that |∇1

xfp(xkε)| ≤ ε1 and λmin[∇2
xf(xkε)] ≥ −ε2.

Proof. The proof of this result closely follows that of Theorem 3.11. First select ϑ = 1
(implying that σk = vk for all k), some σ0 = v0 > 0 and define, for all k ∈ {0, . . . , kε},

ωk = ε2
kε − k
kε

∈ [0, ε2] (A.1)

and
gk = 0, Hk = −(ε2 + ωk) and Di,k = 0, (i = 3, . . . , p), (A.2)

so that
|Hk| ∈ [ε2, 2ε2] ⊂ [0, 2] for all k ∈ {0, . . . , kε}. (A.3)

We then set, for all k ∈ {0, . . . , kε},

sk =

(
p!|Hk|
σk

) 1
p−1

, (A.4)

so that

σk
def
= σ0 +

k−1∑
j=0

σj |sj |p+1 (A.5)

= σ0 +
k−1∑
j=0

σj

(
p!|Hj |
σj

) p+1
p−1

= σ0 + (p!)
p+1
p−1

k−1∑
j=0

(ε2 + ωj)
p+1
p−1

σ
2
p−1

j

≤ σ0 +

(
(2p!)p+1

σ20

) 1
p−1

k−1∑
j=0

ε
p+1
p−1

2 ≤ σ0 +

(
(2p!)p+1

σ20

) 1
p−1

kεε
p+1
p−1

2 ≤ σ0 + 2

(
(2p!)p+1

σ20

) 1
p−1

def
= σmax,

where we successively used (A.4), (A.2), (A.1) and the definition of kε. We finally set

f0 = 2
p+1
p−1

(
p!

σ0

) 2
p−1

and fk+1
def
= fk+ 1

2
Hks

2
k+

p∑
i=2

1

i!
Di,k[sk]

i = fk− 1
2

(
p!

σk

) 2
p−1

(ε2+ωk)
p+1
p−1 ,

yielding, using (3.25) and the definition of kε, that

f0 − fkε =
1

2

kε−1∑
k=0

(
p!

σk

) 2
p−1

(ε2 + ωk)
p+1
p−1 ≤ 2

2
p−1

(
p!

σ0

) 2
p−1

kεε
p+1
p

2 ≤ 2
p+1
p−1

(
p!

σ0

) 2
p−1

.
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As a consequence
fk ∈ [0, f0] for all k ∈ {0, . . . , kε}. (A.6)

Observe that (A.4) satisfies (4.3) (for the model (2.4)), (4.4) for θ1 = 1 and (4.5) for
θ2 = 1. Moreover (A.5) is the same as (4.7)-(4.8). Hence the sequence {xk} generated by

x0 = 0 and xk+1 = xk + sk

may be viewed as produced by the modified OFFARp algorithm given (A.2). Observe also
that

|fk+1 − fk| ≤ (p!)
2
p−1σmax

(
ε2 + ωk
σk

) p+1
p−1

≤ σmax

p!
|sk|p+1, (A.7)

|gk+1 − gk| = 0 ≤ σmax

p!
|sk|p, (A.8)

and

|Hk+1 −Hk| ≤ |ωk − ωk+1| =
ε2
kε
≤ ε

2p
p−1

2 ≤ σmax

σk
(ε2 + ωk) =

σmax

p!
|sk|p−1 (A.9)

(we used kε ≤ ε
− p+1
p−1

2 + 1 and ε2 ≤ 1), while, if p > 2,

|Di,k+1 −Di,k| = 0 ≤ σmax

p!
|sk|p+1−i (A.10)

for i = 3, . . . , p. In view of (A.3), (A.6) and (A.7)-(A.10), we may then apply classical
Hermite interpolation to the data given by {(xk, fk, gk, Hk, D3,k, . . . , Dp,k)}kεk=0 (see [11,
Theorem A.9.2] with κf = max[2, f0, σmax/p!], for instance) and deduce that there exists a
p times continuously differentiable piecewise polynomial function fp satisfying AS.1–AS.4
and such that, for k ∈ {0, . . . , kε},

fk = fp(xk), gk = ∇1
xfp(xk), Hk = ∇2

xfp(xk) and Di,k = ∇ixfp(xk), (i = 3, . . . , p).

The sequence {xk} may thus be interpreted as being produced by the OFFARp algorithm
applied to fp starting from x0 = 0. The desired conclusion then follows by observing that,
from (A.1) and (A.2), gk = 0 < ε1 for all k while

λmin[Hk] = Hk < −ε2 for k ∈ {0, . . . , kε − 1} and λmin[Hkε ] = Hkε = −ε2.
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