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Abstract

An Adagrad-inspired class of algorithms for smooth unconstrained optimization is
presented in which the objective function is never evaluated and yet the gradient norms
decrease at least as fast as O(1/

√
k + 1) while second-order optimality measures converge

to zero at least as fast as O(1/(k + 1)1/3). This latter rate of convergence is shown
to be essentially sharp and is identical to that known for more standard algorithms (like
trust-region or adaptive-regularization methods) using both function and derivatives’ eval-
uations. A related “divergent stepsize” method is also described, whose essentially sharp
rate of convergence is slighly inferior. It is finally discussed how to obtain weaker second-
order optimality guarantees at a (much) reduced computional cost.

Keywords: Second-order optimality, objective-function-free optimization (OFFO), Adagrad,

global rate of convergence, evaluation complexity.

1 Introduction

This paper considers an a priori unexpected but fundamental and challenging question: is
evaluating the value of the objective function necessary for obtaining (complexity-wise) effi-
cient minimization algorithms which find second-order approximate minimizers? This ques-
tion arose as a natural consequence of the somewhat surprising results of [14], where it was
shown that OFFO (i.e. Objective-Function Free Optimization) algorithms(1) exist which con-
verge to first-order points at a global rate which in order identical to that to well-known
methods using both gradient and objective function evaluations. That these algorithms in-
clude the deterministic version of Adagrad [10], a very popular method for deep learning
applications, was an added bonus and a good motivation.

We show here that, from the point of view of evaluation complexity alone, evaluating the
value of the objective function during optimization is also unnecessary(2) for finding approxi-
mate second-order minimizers at a (worst-case) cost entirely comparable to that incurred by
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(1)For which the only source of information on the problem at hand is the value of the gradient.
(2)The authors are well aware that this is a theoretical statement, as it may be impractical to evaluate

derivatives without first evaluating the function itself.
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familiar and reliable techniques such as second-order trust-region or adaptive regularization
methods. This conclusion is coherent with that of [14] for first-order points and is obtained by
exhibiting an OFFO algorithm whose global rate of convergence is proved to be O(1/

√
k + 1)

for the gradients’norm and O(1/(k + 1)1/3) for second-order measures. The new ASTR2 algo-
rithm is of the adaptively scaled trust-region type, as those studied in [14]. The key difference
is that it now hinges on a scaling technique which depends on second-order information, when
relevant.

A further motivation for our analysis is the folklore observation that algorithms which
use function values (often in linesearches or other acceptance tests for a new iterate) are
significantly less robust than OFFO counterparts, essentially because the accuracy necessary
for the former methods to work well is significantly higher than that requested on derivatives’
values. Thus OFFO algorithms, like the one discussed in this paper, merit, in our view, a
sound theoretical consideration.

The paper is organized as follows. Section 2 presents the new ASTR2 class of algorithms
and discusses some of its scaling-independent properties. The complexity analysis of a first,
Adagrad-like, subclass of ASTR2 is then presented in Section 3. Another subclass of interest
is also considered and analyzed in Section 4. Section 5 discusses how weaker optimality
conditions may be guaranteed by the ASTR2 algorithms at significantly reduced computational
cost. Conclusions and perspectives are finally presented in Section 6

2 The ASTR2 class of minimization methods

2.1 Approximate first- and second-order optimality

We consider the nonlinear unconstrained optimization problem

min
x∈IRn

f(x) (2.1)

where f is a function from IRn to IR. More precisely, we assume that

AS.1: the objective function f(x) is twice continuously differentiable;

AS.2: its gradient g(x)
def
= ∇1

xf(x) and Hessian H(x)
def
= ∇2

xf(x) are Lipschitz continuous
with Lipschitz constant L1 and L2, respectively, that is

‖g(x)− g(y)‖ ≤ L1‖x− y‖ and ‖H(x)−H(y)‖ ≤ L2‖x− y‖

for all x, y ∈ IRn;

AS.3: there exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.

As our purpose is to find approximate first- and second-order minimizers, we need to
clarify these concepts. In this paper we choose to follow the “ strong φ” concept of optimality
discussed in [4, 6] or [5, Chapters 12–14]. It is based on the quantity

φδf,2(x) = f(x)− min
‖d‖≤δ

Tf,2(x, d), (2.2)

where Tf,2(x, d) is the second-order Taylor expansion of f at x, that is

Tf,1(x, d) = f(x) + g(x)Td and Tf,2(x, d) = f(x) + g(x)Td+ 1
2
dTH(x)d.
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Observe that φδf,j(x) is interpreted as the maximum decrease of the local j-th order Taylor
model of the objective function f at x, within a ball of radius δ. Importantly for our present
purposes, the evaluation of φδf,2(x) does not require the evaluation of f(x), as it can be
rewritten as

φδf,2(x) = max
‖d‖≤δ

−
(
g(x)Td+ 1

2
dTH(x)d

)
. (2.3)

Moreover, computing φδf,2(x) is a standard trust-region step calculation, for which many
efficient methods exist (see [7, Chapter 7], for instance).

The next result recalls the link between the φ optimality measure and the more standard
ones.

Lemma 2.1 [5, Theorems 12.1.4 and 12.1.6] Suppose that f is twice continuously dif-
ferentiable. Then

(i) for any δ > 0 and any x ∈ IRn, we have that

‖g(x)‖ =
φδf,1(x)

δ
, (2.4)

and so φδf,1(x) = 0 if and only if g(x) = 0;

(ii) we have that

φδf,2(x) = 0 for some δ > 0, then g(x) = 0 and λmin[H(x)] ≥ 0,

and so any such x is a first- and second-order minimizer;

(iii) if φδ1f,1(x) ≤ ε1 δ1 (and so (2.5) holds with j = 1), then ‖g(x)‖ ≤ ε1;

(iv) if φδf,2(x) ≤ 1
2
ε2δ

2, then λmin[H(x)] ≥ −ε2 (and so (2.5) holds for j = 2) and
‖g(x)‖ ≤ δκ(x)

√
ε2, where κ(x) depends on (the eigenvalues of) H(x).

Note also that computing φδf,1(x) simply results from (2.4) and that, in particular, φ1
f,1(x) =

‖g(x)‖. Computing φδf,2(x) is a standard Euclidean trust-region step calculation (see [7,
Chapter 7], for instance).

For j ∈ {1, 2}, we then say that an iterate xk is an ε-approximate minimizer if

φδf,i(xk) ≤ εi
δi

i
for some δ ∈ (0, 1] and all 1 ≤ i ≤ j, (2.5)

where ε = (ε1, . . . , εj). There are two ways to express how fast an algorithm tends to such
points in the worst case. The first (the “ε-orders”) is to assume ε is given and then give a
bound on the maximum number of iterations and evaluations that are needed to satisfy (2.5).
In this paper we focus on the second (the “k-orders”), where one instead gives an upper
bound(3) on φδf,j(xk) as a function of k (for specified j and δ).

(3)Converging to zero.
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2.2 The ASTR2 class

After these preliminaries, we now introduce the new ASTR2 class of algorithms. Methods in
this class are of “adaptively scaled trust-region” type, a term we now briefly explain. Classical
trust-region algorithms (see [7] for an in-depth coverage or [21] for a more recent survey) are
iterative. At each iteration, they define a local model of the objective function which is deemed
trustable within the “trust region”, a ball of given radius centered at the current iterate. A
step and corresponding trial point are then computed by (possibly approximately) minimizing
this model in the trust region. The objective function value is then computed at the trial
point, and this point is accepted as the new iterate if the ratio of the achieved reduction in the
objective function to that predicted by the model is sufficiently large. The radius of the trust
region is then updated using the value of this ratio. As is clear from this description, these
methods are intrinsically dependent of the evaluation of the objective function, and therefore
not suited to our Objective-Function Free Optimization (OFFO) context. Here we follow
[14] in interpreting the mechanism designed for the Adagrad methods [10] as an alternative
trust-region design not using function evaluations. In this interpretation, the trial point is
always accepted and the trust-region radius is determined by the gradient sizes, in a manner
reminiscent also of [11]. In this approach, one uses scaling factors to determine the radius
(hence the name of Adaptively Scaled Trust Region) at each iteration. Given these factors,
which we will denote, at iteration k, by wLk and wQk , we may then state the ASTR2 class of
algorithms as shown on the following page. This algorithm involves requirements on the step
which are standard (and practical) for trust-region methods.

A few additional comments on this algorithm are now in order.

1. The algorithms in the ASTR2 class belong to the OFFO framework: the objective func-
tion is never evaluated (remember that φ1

f,j(x) can be computed without any such

evaluation, the same being obviously true for ∆qk, ∆qCk and ∆qEk ).

2. Given our focus on k-orders of convergence, the algorithm does not include a termination
criterion. It is however easy, should one be interested in ε-orders instead, to test (2.5)
for δ = 1 and the considered ε1 and ε2 at the end of Step 1, and then terminate if this
condition holds.

3. Despite their somewhat daunting statements, conditions (2.9)–(2.12) are relatively mild
and have been extensively used for standard trust-region algorithms, both in theory
and practice. Condition (2.10) defines the so-called “Cauchy decrease”, which is the
decrease achievable on the quadratic model Tf,2(xk, s) in the steepest descent direction
[7, Section 6.3.2]. Conditions (2.11) and (2.12) define the “eigen-point decrease”, which
is that achievable along uk, a (χ-approximate) eigenvector associated with the smallest
Hessian eigenvalue [7, Section 6.6] when this eigenvalue is negative. We set ∆qEk = 0 for
consistency when Hk is positive semi-definite. We discuss in Section 5 how they can be
ensured in practice, possibly approximately, for instance by the GLTR algorithm [13].

4. The computation of φk can be reused to compute sQk , should it be necessary. If ∆k > 1,
the model minimization may be pursued beyond the boundary of the unit ball. If
∆k < 1, backtracking is also possible [7, Section 10.3.2].



Gratton, Toint: OFFO algorithms for second-order optimality 5

Algorithm 2.1: ASTR2

Step 0: Initialization. A starting point x0 is given. The constants τ, χ ∈ (0, 1] and
ξ ≥ 1 are also given. Set k = 0.

Step 1: Compute derivatives. Compute gk = g(xk) and Hk = H(xk), as well as

φk
def
= φ1

f,2(xk) and φ̂k
def
= min[φk, ξ].

Step 2: Define the trust-region radii. Set

∆L
k =

‖gk‖
wLk

and ∆Q
k =

φ̂k

wQk
(2.6)

where wLk = wL(x0, . . . , xk) and wQk = wQ(x0, . . . , xk).

Step 3: Step computation. If
‖gk‖2 ≥ φ̂3

k, (2.7)

then set
sk = sLk = − gk

wLk
. (2.8)

Otherwise, set sk = sQk , where sQk is such that

‖sQk ‖ ≤ ∆Q
k and ∆qk = f(xk)− Tf,2(xk, s

C
k ) ≥ τ max

[
∆qCk ,∆q

E
k

]
(2.9)

where
∆qCk = max

α≥0

α‖gk‖≤∆Q
k

[
f(xk)− Tf,2(xk,−αgk)

]
(2.10)

and ∆qEk = 0 if λmin[Hk] ≥ 0, or

∆qEk = max
α≥0

α≤∆Q
k

[
f(xk)− Tf,2(xk, αuk)

]
(2.11)

with uk satisfying

uTkHkuk ≤ χλmin[Hk], uTk gk ≤ 0 and ‖uk‖ = 1, (2.12)

if λmin[Hk] < 0.

Step 4: New iterate. Define
xk+1 = xk + sk, (2.13)

increment k by one and return to Step 1.
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5. Note that two scaling factors are updated from iteration to iteration: one for first-order
models and one for second-order ones. It does indeed make sense to trust these two
types of models in region of different sizes, as Taylor’s theory suggests second-order
models may be reasonably accurate in larger neighbourhoods.

6. A “componentwise” version where the trust region is defined in the ‖ · ‖∞ norm is
possible with

φi,k = max

[
φk,− min

|α|≤1

(
αgi,k + 1

2
α2[Hk]i,i

)]
and

∆L
i,k =

|gi,k|
wLi,k

and ∆Q
i,k =

min[ξ, φi,k]

wQi,k
,

where gi,k denotes the ith component of gk, and where wLi,k, w
Q
i,k and ∆i,k are the ith

components of wLk , wQk and ∆k (now vectors in IRn). We will not explicitly consider
this variant to keep our notations reasonably simple.

Our assumption that the gradient and Hessian are Lipschitz continuous (AS.2) ensures
the following standard result.

Lemma 2.2 [1] or [5, Theorem A.8.3] Suppose that AS.1 and AS.2 hold. Then

f(xk + sLk )− f(xk) ≤ 〈gk, sLk 〉+
L1

2
‖sLk ‖2 (2.14)

and

f(xk + sQk )− f(xk) ≤ −∆qk +
L2

6
‖sQk ‖

3. (2.15)

The first step in analyzing the convergence of the ASTR2 algorithm is to derive bounds on the
objective function’s change from iteration to iteration, depending on which step (linear with
sk = sLk , or quadratic with sk = sQk ) is chosen. We start by a few auxiliary results on the
relations between first- and second-order optimality measures.

Lemma 2.3 Suppose that H is an n × n symmetric positive semi-definite matrix and
g ∈ IRn, and consider the (convex) quadratic q(d) = 〈g, d〉+ 1

2
〈d,Hd〉. Then

φ1
q,2(0) =

∣∣∣∣ min
‖d‖≤1

q(d)

∣∣∣∣ ≤ ‖g‖. (2.16)

Proof. From the definition of the gradient, we have that

‖g‖ =

∣∣∣∣ min
‖d‖≤1

〈g, d〉
∣∣∣∣ .
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But 〈g, d〉 defines the supporting hyperplane of q(d) at d = 0 and thus the convexity of q
implies that q(d) ≥ 〈g, d〉 for all d. Hence∣∣∣∣ min

‖d‖≤1
q(d)

∣∣∣∣ ≤ ∣∣∣∣ min
‖d‖≤1

〈g, d〉
∣∣∣∣

and (2.16) follows. 2

Lemma 2.4 Suppose that
0 < ηk ≤ 1

2
φk (2.17)

where

ηk
def
= min

(
0,−λmin[Hk]

)
. (2.18)

Then
1
2
φk ≤ ‖gk‖. (2.19)

Proof. Observe first that (2.17) implies that λmin[Hk] < 0 and ηk = |λmin[Hk]|. Let dk
be a solution of the optimization problem defining φk, i.e.,

dk = arg min
‖d‖≤1

Tf,2(xk, d),

so that φk = fk − Tf,2(xk, dk). Since λmin[Hk] < 0, it is known from trust-region theory
[7, Corollary.2.2] that dk may be chosen such that ‖dk‖ = 1. Now define

q0(d)
def
= 〈gk, d〉+ 1

2
〈d, (Hk − λmin[Hk]I)d〉 = Tf,2(xk, d)− fk + ηk‖d‖2

and note that q0(d) is convex by construction. Then, at dk,

q0(dk) = −φk + ηk

and (2.17) implies that q0(dk) < 0. Moreover,

1
2
φk ≤ −q0(dk) ≤ −〈gk, dk〉 ≤ ‖gk‖,

where we used the convexity of q0 to deduce the the first inequality, and Cauchy-Schwarz
with ‖dk‖ ≤ 1 to derive the second. This proves (2.19). 2

Using these results, we may now prove a crucial property on objective function change. For
this purpose, we partition the iterations in two sets, depending which type of step is chosen,
that is

KL = {k ≥ 0 | sk = sLk } and KQ = {k ≥ 0 | sk = sQk }.
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Lemma 2.5 Suppose that AS.1 and AS.2 hold. Then

fk+1 − fk ≤ −
‖gk‖2

wLk
+
L1

2

‖gk‖2

(wLk )2
for k ∈ KL (2.20)

and

fk+1 − fk ≤ −
τ

4ξ
min

[
1

2(1 + L1)
,

1

wQk
,

1

(wQk )2

]
φ̂3
k +

L2

6

φ̂3
k

(wQk )3
for k ∈ KQ. (2.21)

Proof. Suppose first that sk = sLk . Then (2.14), (2.8) and (2.6) ensure that

fk+1 − fk ≤ −
‖gk‖2

wLk
+
L1

2
(∆L

k )2 = −‖gk‖
2

wLk
+
L1

2

‖gk‖2

(wLk )2
, (2.22)

giving (2.20).

Suppose now that sk = sQk , i.e. k ∈ KQ. Then, because of (2.9)–(2.12), the decrease ∆qk
in the quadratic model Tf,2(xk, s) at sk is at least a fraction τ of the maximum of the
Cauchy and eigen-point decreases given by ∆qCk and ∆qEk . Standard trust-region theory
(see [7, Lemmas 6.3.2 and 6.6.1] for instance) then ensures that, for possibly non-convex
Tf,2(xk, s),

∆qk ≥ τ max

[
1
2 min

(
‖gk‖2

1 + ‖Hk‖
, ‖gk‖∆Q

k

)
,
ηk
2 (∆Q

k )2

]

≥ τ
2 max

[
min

(
‖gk‖2
1 + L1

,
‖gk‖φ̂k
wQk

)
,
ηkφ̂

2
k

(wQk )2

]
where we used the bound ‖Hk‖ ≤ L1 and (2.6) to derive the last inequality. If ηk ≤ 1

2
φk,

then, using Lemma 2.4 and the inequality φk ≥ φ̂k,

∆qk ≥
τ

2
min

(
‖gk‖2

1 + L1
,
‖gk‖φ̂k
wQk

)
≥ τ

2
min

(
( 1
2
φ̂k)

2

1 + L1
,
( 1
2
φ̂k)φ̂k

wQk

)
.

Now φ̂3
k ≤ ξφ̂2

k and thus

∆qk ≥
τ

2
min

(
φ̂3
k

4ξ(1 + L1)
,
φ̂3
k

2ξwQk

)
. (2.23)

If instead ηk > 1
2
φk ≥ 1

2
φ̂k, then

∆qk ≥
τ

2

ηkφ̂
2
k

(wQk )2
≥ τ

2

( 1
2
φ̂k)φ̂

2
k

(wQk )2
. (2.24)

Given that, if k ∈ KQ, ‖sk‖ ≤ ∆Q
k = φ̂k/w

Q
k , we deduce (2.21) from (2.15), (2.23) and

(2.24). 2

Observe that neither (2.20) nor (2.21) guarantees that the objective function values are mono-
tonically decreasing.
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3 An Adagrad-like algorithm for second-order optimality

We first consider a choice of scaling factors directly inspired by the Adagrad algorithm [10]
and assume that, for some ς > 0, µ, ν ∈ (0, 1), ϑL, ϑQ ∈ (0, 1] and all k ≥ 0,

wLk ∈ [ϑLŵ
L
k , ŵ

L
k ] where ŵLk =

ς +
k∑
`=0
`∈KL

‖gk‖2


µ

(3.1)

and

wQk ∈ [ϑQŵ
Q
k , ŵ

Q
k ] where ŵQk =

ς +
k∑
`=0
`∈KQ

φ̂3
k


ν

. (3.2)

Note that selecting the parameters ϑL and ϑQ strictly less than one allows the scaling factors

wLk and wQk to be chosen in an interval at each iteration without any monotonicity.
We now present a two technical lemmas which will be necessary in our analysis. The first

states useful results for a specific class of inequalities.

Lemma 3.1 Let a ≥ 1
2
ς and b ≥ 1

2
ς. Suppose that, for some θa ≥ 1, θb ≥ 1, θ ≥ 0,

µ ∈ (0, 1), and ν ∈ (0, 1
3
)

a1−µ + b1−2ν ≤ θaA(a) + θbB(b) + θ (3.3)

where A(a) and B(b) are given, as a function of µ and ν, by

µ < 1
2

µ = 1
2

µ > 1
2

A(a) a1−2µ log(2a) 0
and

ν < 1
3

ν = 1
3

ν > 1
3

B(k) b1−3ν log(2b) 0
.

Then there exists positive constants κa and κb only depending on θa, θb, θ, µ and ν such
that

a ≤ κa and b ≤ κb. (3.4)

Proof. This result is proved by comparing the value of the left- and right-hand sides
for possibly large a and b. The details are given in Lemmas A.2–A.8 in appendix, whose
results are then combined as shown in Table 1. The details of the constants κa and κb for

µ < 1
2

µ = 1
2

µ > 1
2

ν < 1
3

Lemma A.4 Lemma A.7 Lemma A.5
ν = 1

3
Lemma A.7 Lemma A.8 Lemma A.7

ν > 1
3

Lemma A.5 Lemma A.7 Lemma A.2

Table 1: Lemmas for combinations of µ and ν

the various cases are explicitly given in the statements of the relevant lemmas. 2
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The second auxiliary result is a bound extracted from [14] (see also [9, 20] for the case α = 1).

Lemma 3.2 Let {ck} be a non-negative sequence, ς > 0, α > 0, ν ≥ 0 and define, for
each k ≥ 0, dk =

∑k
j=0 cj . If α 6= 1, then

k∑
j=0

cj
(ς + dj)α

≤ 1

(1− α)
((ς + dk)

1−α − ς1−α). (3.5)

Otherwise,
k∑
j=0

cj
(ς + dj)

≤ log

(
ς + dk
ς

)
. (3.6)

Note that, if α > 1, then the bound (3.5) can be rewritten as

k∑
j=0

cj
(ς + dj)α

≤ 1

α− 1

(
ς1−α − (ς + dk)

1−α
)
,

whose right-hand side is positive.
Armed with the above results, we are now in position to specify particular choices of the
scaling factors wk and derive the convergence properties of the resulting variants of ASTR2.

Theorem 3.3 Suppose that AS.1–AS.3 hold and that the ASTR2 algorithm is applied to
problem (2.1), where wLk and wQk are given by (3.1) and (3.2), respectively. Then there
exists a positive constant κASTR2 only depending on the problem-related quantities x0,
flow, L1 and L2 and on the algorithmic parameters ς, τ , ξ, µ and ν such that

average
j∈{0,...,k}

‖gj‖2 ≤
κASTR2

k + 1
and average

j∈{0,...,k}
φ̂3
j ≤

κASTR2

k + 1
, (3.7)

and therefore that

min
j∈{0,...,k}

‖gj‖ ≤
κASTR2

(k + 1)
1
2

and min
j∈{0,...,k}

φ̂j ≤
κASTR2

(k + 1)
1
3

. (3.8)

Proof. To simplify notations in the proof, define

ak = 2
k∑
j=0
j∈KL

‖gj‖2 and bk = 2
k∑
j=0
j∈KQ

φ̂3
k. (3.9)

Consider first an iteration index j ∈ KL Then (2.20) (expressed for for j ≥ 0), (3.1) and
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the inequality τ ≤ 1 give that

f(xj+1)− f(xj) ≤ −
τ

2

‖gj‖2

wLj
+

L1

2ϑ2
L

‖gj‖2

(wLj )2
≤ −τ

2

‖gj‖2

(ς + 1
2
aj)

µ +
L1

2ϑ2
L

‖gj‖2

(ς + 1
2
aj)

2µ . (3.10)

Suppose now that j ∈ KQ. Then (2.21) and (3.2) imply that

fj+1 − fj ≤ −
τ

4ξ
min

[
φ̂3
j

2(1 + L1)
,

φ̂3
j

(ς + 1
2
bj)ν

φ̂3
j

(ς + 1
2
bj)2ν

]
+

L2

6ϑ3
Q

φ̂3
j

(ς + 1
2
bj)3ν

, (3.11)

Suppose now that

aj > 2ς and bj > max

[
1, 2ς,

(
2(1 + L1)

) 1
ν

]
, (3.12)

which implies that

wLj ≤ a
µ
j , wQj ≤ b

ν
j and 2(1 + L1) ≤ bνj .

Then combining (3.10) and (3.11), the inequality ξ ≥ 1 and AS.3, we deduce that, for all
k ≥ 0,

f(x0)− flow ≥
τ

4ξ


k∑
j=0
j∈KL

‖gj‖2

aµj
+

k∑
j=0
j∈Kq

φ̂3
j

b2νj

− L1

2ϑ2
L

k∑
j=0
j∈KL

‖gj‖2

(wLk )2
− L2

6ϑ3
Q

k∑
j=0
j∈KQ

φ̂3
j

(wQk )3
.

But, by definition, aj ≤ ak and bj ≤ bk for j ≤ k, and thus, for all k ≥ 0,

a1−µ
k + b1−2ν

k ≤ 4ξ(f(x0)− flow)

τ
+

2ξL1

τϑ2
L

k∑
j=0
j∈KL

‖gj‖2

(wLk )2
+

2ξL2

3τϑ3
Q

k∑
j=0
j∈KQ

φ̂3
j

(wQk )3
. (3.13)

We now have to bound the last two terms on the right-hand side of (3.13). Using (3.1)
and Lemma 3.2 with {ck} = {‖gk‖2}k∈KL and α = 2µ, gives that

k∑
j=0
k∈KL

‖gj‖2

(wLk )2
≤ 1

ϑ2
L(1− 2µ)

(ς +
k∑
j=0
k∈KL

‖gk‖2
)1−2µ

− ς1−2µ

 ≤ a1−2µ
k

ϑ2
L(1− 2µ)

(3.14)

if µ < 1
2
, and

k∑
j=0
k∈KL

‖gj‖2

(wLj )2
≤ 1

ϑ2
L

log

(
ς +

∑k
j=0,k∈KL ‖gk‖2

ς

)
≤ 1

ϑ2
L

log

(
ς + ak
ς

)
(3.15)
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if µ = 1
2

and

k∑
j=0
k∈KL

‖gj‖2

(wLk )2
≤ 1

ϑ2
L(2µ− 1)

ς1−2µ −
(
ς +

k∑
j=0
k∈KL

‖gk‖2
)1−2µ

 ≤ ς1−2µ

ϑ2
L(2µ− 1)

(3.16)

if µ > 1
2
. Similarly, using (3.2) and Lemma 3.2 with {ck} = {φ̂3

k}k∈KQ and α = 3ν yields
that

k∑
j=0
k∈KQ

φ3
j

(wQk )3
≤ 1

ϑ3
Q(1− 3ν)

(ς +

k∑
j=0
k∈KQ

φ̂3
k

)1−3ν − ς1−3ν

 ≤ b1−3ν
k

ϑ3
Q(1− 3ν)

(3.17)

if ν < 1
3
,

k∑
j=0
k∈KQ

φ̂3
j

(wQj )3
≤ 1

ϑ3
Q

log

(
ς +

∑k
j=0,k∈KQ φ̂

3
k

ς

)
≤ 1

ϑ3
Q

log

(
ς + bk
ς

)
(3.18)

if ν = 1
3
, and

k∑
j=0
k∈KQ

φ̂3
j

(wQk )3
≤ 1

ϑ3
Q(3ν − 1)

ς1−3ν −
(
ς +

k∑
j=0
k∈KQ

φ̂3
j

)
 ≤ ς1−3ν

ϑ3
Q(3ν − 1)

(3.19)

if ν > 1
3
. Moreover, unless ak < 1, the argument of the logarithm in the right-hand side

of (3.15) satisfies

1 ≤ ς + ak
ς
≤ 1 + ak ≤ 2ak. (3.20)

Similarly, unless bk < 1, the argument of the logarithm in the right-hand side of (3.18)
satisfies

1 ≤ ς + bk
ς
≤ 1 + bk ≤ 2bk. (3.21)

Moreover, we may assume, without loss of generality, that L1 and L2 are large enough to
ensure that

2ξL1 ≥ τϑ2
L and 2ξL2 ≥ 3τϑ3

Q.

Because of these observations and since (3.13) together with one of (3.14)–(3.16) and one
of (3.17)-(3.19) has the form of condition (3.3), we may then apply Lemma 3.1 for each
k ≥ 0 with a = ak, b = bk and the following associations:
• for µ ∈ (0, 1

2
), ν ∈ (0, 1

3
):

θa =
2ξL1

τϑ2
L

(1− 2µ), θb =
2ξL2

3τϑ3
Q(1− 3ν)

, θ =
4ξ(f(x0)− flow)

τ
;
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• for µ = 1
2
, ν ∈ (0, 1

3
):

θa =
2ξL1

τϑ2
L

, θb =
2ξL2

3ϑ3
Qτ(1− 3ν)

, θ =
4ξ(f(x0)− flow)

τ
;

• for µ ∈ ( 1
2
, 1), ν ∈ (0, 1

3
):

θa = 1, θb =
2ξL2

3τϑ3
Q(1− 3ν)

, θ =
4ξ(f(x0)− flow)

τ
+

2ξL1

τϑ2
L

· ς
1−2µ

2µ− 1
;

• for µ ∈ (0, 1
2
), ν = 1

3
:

θa =
2ξL1

τϑ2
L(1− 2µ)

, θb =
2ξL2

3τϑ3
Q

, θ =
4ξ(f(x0)− flow)

τ
;

• for µ = 1
2
, ν = 1

3
:

θa =
2ξL1

τϑ2
L

, θb =
2ξL2

3τϑ3
Q

, θ =
4ξ(f(x0)− flow)

τ
;

• for µ ∈ ( 1
2
, 1), ν = 1

3
:

θa =
2ξL1

τϑ2
L

, θb =
2ξL2

3ϑ3
Qτ

; θ =
4ξ(f(x0)− flow)

τ
+

2ξL1

τϑ2
L

· ς
1−2µ

2µ− 1
;

• for µ ∈ (0, 1
2
), ν ∈ ( 1

3
, 1):

θa =
2ξL1

τϑ2
L(1− 2µ)

, θb = 1, θ =
4ξ(f(x0)− flow)

τ
+

2ξL2

3τϑ3
Q

· ς
1−3ν

3ν − 1
;

• for µ = 1
2
, ν ∈ ( 1

3
, 1):

θa =
2ξL1

τϑ2
L

, θb = 1, θ =
4ξ(f(x0)− flow)

τ
+

2ξL2

3τϑ3
Q

· ς
1−3ν

3ν − 1
;

• for µ ∈ ( 1
2
, 1), ν ∈ ( 1

3
, 1):

θa = 1, θb = 1, θ =
4ξ(f(x0)− flow)

τ
+

2ξL1

τϑ2
L

· ς
1−2µ

2µ− 1
+

2ξL2

3τϑ3
Q

· ς
1−3ν

3ν − 1
.

As a consequence of applying Lemma 3.1, we obtain that there exists positive constants(4)

κ1rst ≥ 1 and κ2nd ≥ 1 only depending on problem-related quantities and on ς, ξ, µ and ν
such that, for all k ≥ 0,

ak ≤ κ1rst and bk ≤ κ2nd. (3.22)

We also have, from the mechanism of Step 3 of the algorithm (see (2.7)) and (3.9), that

k∑
j=0

‖gj‖2 =
k∑
j=0
j∈KL

‖gj‖2 +
k∑
j=0
j∈KQ

‖gj‖2 ≤
k∑
j=0
j∈KL

‖gj‖2 +
k∑
j=0
j∈KQ

φ̂3
j ≤ 1

2
(ak + bk) ≤ 1

2
(κ1rst + κ2nd)

(4)We choose them to be at least one, in order to cover the cases where ak ≤ 1 or bk ≤ 1 mentioned before
(3.20) and (3.21).
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and

k∑
j=0

φ̂3
j =

k∑
j=0
j∈KL

φ̂3
j +

k∑
j=0
j∈KQ

φ̂3
j ≤

k∑
j=0
j∈KL

‖gj‖2 +
k∑
j=0
j∈KQ

φ̂3
j ≤ 1

2
(ak + bk) ≤ 1

2
(κ1rst + κ2nd).

These two inequalities in turn imply that, for all k ≥ 0,

(k + 1) average
j∈{0,...,k}

‖gj‖2 ≤ 1
2
(κ1rst + κ2nd) and (k + 1) average

j∈{0,...,k}
φ̂3
j ≤ 1

2
(κ1rst + κ2nd),

and the desired results follow with κASTR2 = 1
2
(κ1rst + κ2nd). 2

Comments:

1. Note that φ̂k < φk only when φk > ξ. Thus, if φk is bounded(5), one can choose ξ
large enough to ensure that φk = φ̂k for all k, and therefore that minj{0,...,k} φj ≤
κASTR2/(k + 1)

1
3 . In practice, ξ can be used to tune the algorithm’s sensitivity to

second-order information.

2. If the k-orders of convergence specified by (3.8) are translated in ε-orders, that is num-
bers of iterations/evaluations to achieve ‖g(xk‖ ≤ ε1 and φk = φ̂k ≤ ε2, where ε1
and ε2 are precribed accuracies, we verify that at most O(ε−2

1 ) of them are needed to
achieve the first of these conditions, while at most O(ε−3

2 ) are needed to achieve the
second. As a consequence, at most O(max[ε−2

1 , ε−3
2 ]) iterations/evaluations are needed

to satisfy both conditions. These orders are identical to the sharp bounds known for
the familiar trust-region methods (see [16, 2] or [5, Theorems 2.3.7 and 3.2.6](6)), or,
for second-order optimality(7), for the Adaptive Regularization method (see [18], [5,
Theorem 3.3.2]). This is quite remarkable because function values are essential in these
two latter classes of algorithms to enforce descent, itself a crucial ingredient of existing
convergence proofs.

3. While (3.8) is adequate to allow a meaningful comparison of the global convergence
rates with standard algorithms, as we just discussed, we note that (3.7) is at least as
strong, because the average is of course a majorant of the minimum. As it turns out,
it provides (order)-equivalent bounds. To see this, we first note that, for k > 0 and
α ∈ (0, 1),

k∑
i=1

1

iα
= k1−α

1− α + ζ(α) + α

∫ ∞
k

x− bxc
x1+α dx

≤ k1−α

1− α + ζ(α) + α

∫ ∞
k

1

x1+α dx

= k1−α

1− α + ζ(α) + α2

kα

(5)Which is the case if ‖gk‖ ≤ κg (as we will require in Section 4) since then φk ≤ ‖gk‖+ 1
2
‖Hk‖ ≤ κg + 1

2
L1.

(6)This second of these theorems quotes an O(max[ε−2
1 ε−1

2 , ε−3
2 ]) order bound known for standard trust-region

methods using first and second derivatives.
(7)Adaptive Regularization algorithms are faster for finding first-order points, as they find such points in
O(ε

−3/2
1 ) evaluations of the objective function and its gradient [18], [5, Theorem 3.3.9].
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where ζ(·) is the Riemann zeta function (see [19, (25.2.8)] for the first equality), so that

1
k

k∑
i=1

1

iα

1
kα

= kα−1
k∑
i=1

1

iα
≤ 1

1− α
+
ζ(α)

k1−α +
α2

k

and therefore

1

k

k∑
i=1

1

iα
= O

(
1

kα

)
for α ∈ { 1

2
, 1

3
} (the two cases of interest here).

4. The expression of the constants in Theorem 3.3 is very intricate. However it is re-
markable that they do not explicitly depend on the problem dimension. Although a
good sign, this does not tell the whole story and caution remains advisable, because the
Lipschitz constants L1 and L2 may themselves hide this (potentially severe) dependence.

5. It is also remarkable that the bounds (3.7) and (3.8) specify the same order of global
convergence irrespective of the values of µ and ν in (0, 1), although these values do
affect the constants involved.

6. The condition (2.7) determining the choice of a linear (in KL) or quadratic (in KQ)
step is only used at the very end of the theorem’s proof, after (3.22) has already been
obtained. This means that other choice mechanisms are possible without affecting this
last conclusion, which is enough to derive bounds on ‖gj‖2 and φ̂3

j averaged on iterations

in KL and KQ, respectively (rather than on all iterations).

We now show that the bound (3.8) is essentially sharp (in the sense of [3], meaning that
a lower bound on evaluation complexity exists which is arbitrarily close to its upper bound)
by following ideas of [5, Theorem 2.2.3] in an argument parallel to that used in [14] for the
first-order bound.

Theorem 3.4 The bound (3.8) is essentially sharp in that, for each µ, ν ∈ (0, 1), ϑL =
ϑQ = 1 and each ε ∈ (0, 2

3
), there exists a univariate function fµ,ν,ε satisfying AS.1–AS.3

such that, when applied to minimize fµ,ν,ε from the origin, the ASTR2 algorithm with
(3.1)-(3.2) produces second-order optimality measures given by

φk = φ̂k = min
j∈{0,...,k}

φ̂j =
1

(k + 1)
1
3

+ε
. (3.23)

Proof. We start by constructing {xk} for which fµ,ν,ε(xk) = fk, ∇1
xfµ,ν,ε(xk) = gk and

∇2
xfµ,ν,ε(xk) = Hk for associated sequences of function, gradient and Hessian values {fk},
{gk} and {Hk}, and then apply Hermite interpolation to exhibit the function fµ,ν,ε itself.
We select an arbitrary ς > 0 and define, for k ≥ 0,

gk
def
= 0, and Hk = − 2

(k + 1)
1
3

+ε
, (3.24)
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from which we deduce, using (2.2), that, for k > 0,

φk = φ̂k =
1

(k + 1)
1
3

+ε
.

Since φ3
k > 0 = ‖gk‖2, we set

sk = sQk
def
=

1

(k + 1)
1
3

+ε[ς +
∑k

j=0 φ̂
3
j ]
ν
, (3.25)

which is the exact minimizer of the quadratic model within the trust region, yielding that,
for k ≥ 0,

∆qk
def
=
∣∣gksk + 1

2
Hks

2
k

∣∣ =
1

(k + 1)1+3ε
[
ς +

∑k
j=0 φ̂

3
j )
]2ν ≤ 1

(k + 1)1+3ε
, (3.26)

where we used the fact that ς +
∑k

j=0 φ̂
3
j > ς + φ̂0 > 1 to deduce the last inequality. We

then define, for all k ≥ 0,

x0 = 0, xk+1 = xk + sk (k ≥ 0) (3.27)

and
f0 = ζ(1 + 3ε), fk+1 = fk −∆qk (k ≥ 0). (3.28)

Observe that the sequence {fk} is decreasing and that, for all k ≥ 0,

fk+1 = f0 −
k∑
k=0

∆qk ≥ f0 −
k∑
k=0

1

(k + 1)1+3ε
≥ f0 − ζ(1 + 3ε), (3.29)

where we used (3.28) and (3.26). Hence (3.28) implies that

fk ∈ [0, f0] for all k ≥ 0. (3.30)

Also note that, using (3.28),
|fk+1 − fk + ∆qk| = 0, (3.31)

while, using (3.24),
|gk+1 − gk| = 0 (k ≥ 0). (3.32)

Moreover, using the fact that 1/x
1
3

+ν is a convex function of x over [1,+∞), and that
from (3.25) sk ≥ 1

(k+1)
1
3
+ν(ς+k+1)ν

, we derive that, for k ≥ 0,

|Hk+1 −Hk| = 2

∣∣∣∣∣ 1

(k + 2)
1
3

+ν
− 1

(k + 1)
1
3

+ν

∣∣∣∣∣
≤ 2

(
1

3
+ ν

)
1

(k + 1)
4
3

+ν

≤ 8

3

(ς + k + 1)ν

(k + 1)(k + 1)
1
3

+ν(ς + k + 1)ν

≤ 8

3

(ς + k + 1)ν

k + 1
sk

≤ 8

3
(ς + 2)ν sk.
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These last bounds with (3.30), (3.31) and (3.32) allow us to use standard Hermite inter-
polation on the data given by {fk}, {gk} and {Hk}: see, for instance, Theorem A.9.1 in
[5] with p = 2 and

κf = max

[
8

3
(ς + 2)ν , f0, 2

]
(the second term in the max bounding |fk| because of (3.30) and the third bounding
|gk| and |Hk| because of (3.24)). We then deduce that there exists a twice continuously
differentiable function fµ,ν,ε from IR to IR with Lipschitz continuous gradient and Hessian
(i.e. satisfying AS.1 and AS.2) such that, for k ≥ 0,

fµ,ν,ε(xk) = fk, ∇1
xfµ,ν,ε(xk) = gk and ∇2

xfµ,ν,ε(xk) = Hk.

Moreover, the range of fµ,ν,ε is constant independent of ε, hence guaranteeing AS.3. The
definitions (3.24), (3.25), (3.27) and (3.28) imply that the sequences {xk}, {fk}, {gk} and
{Hk} can be seen as generated by the ASTR2 algorithm applied to fµ,ν,ε, starting from
x0 = 0. 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

97.5

98

98.5

99

99.5

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-2

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-6

-4

-2

0

2

4

6

Figure 1: The function fµ,ν,ε(x) (left), its gradient ∇1
xfµ,ν,ε(x) (middle) and its Hessian

∇2
xfµ,ν,ε(x) (right) plotted as a function of x, for the first 10 iterations of the ASTR2 algorithm

with (3.1)-(3.2) (µ = 1
2
, ν = 1

3
, ε = ς = 1

100
, ϑL = ϑQ = 1)

Figure 1 shows the behaviour of fµ,ν,ε(x) for µ = 1
2
, ν = 1

3
, ϑL = ϑQ = 1 and ε = ς = 1

100
,

its gradient and Hessian, as resulting from the first 10 iterations of the ASTR2 algorithm with
(3.1)-(3.2). (We have chosen to shift f0 to 100 in order to avoid large numbers on the vertical

axis of the left panel.) Due to the slow convergence of the series
∑

j 1/j
1

1+3/100 , illustrating the
boundeness of f0−fk+1 would require many more iterations. One also notes that the gradient
is not monotonically increasing, which implies that fµ,ν,ε(x) is nonconvex, as can be verified
in the left panel. Note that the unidimensional nature of the example is not restrictive, since
it is always possible to make the value of its objective function and gradient independent of
all dimensions but one. Also note that, as was the case in [14], the argument of Theorem 3.4
fails for ε = 0 since then the sums in (3.29) diverge when k tends to infinity.
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Note that, because

k∑
j=0

1

(j + 1)
1
3

+ε
≥
∫ k

0

dj

(j + 2)
1
3

+ε

=
3

2 + 3ε

[
k + 2

(k + 2)
1
3

+ε
− 2

]

≥ 3

2(2 + 3ε)

[
k + 1

(k + 1)
1
3

+ε
− 2

]
,

one deduces that

average
j∈{0,...,k}

φ̂j ≥
3

2(2 + 3ε)

[
1

(k + 1)
1
3

+ε
− 2

k + 1

]
,

which, when compared to (3.8), reflects the (slight) difference in strength between (3.7) and
(3.8).

4 A “divergent stepsize” ASTR2 subclass

A “divergent stepsize” first-order method was analyzed in [14], motivated by its good prac-
tical behaviour in the stochastic context [15]. For coherence, we now present and analyze a
similar variant, this time for second-order optimality. This requires the following additional
assumption.

AS.4: there exists a constant κg > 0 such that, for all x, ‖g(x)‖∞ ≤ κg.

Theorem 4.1 Suppose that AS.1–AS.3 and AS.4 hold and that the ASTR2 algorithm is
applied to problem (2.1), where, the scaling factors wi,k are chosen such that, for some
power parameters 0 < ν1 ≤ µ1 < 1 and 0 < ν2 ≤ µ2 < 1

2
, some constants ς ∈ (0, 1] and

κw ≥ max[1, ς], all i ∈ {1, . . . , n} and all k ≥ 0,

0 < ς (k + 1)ν1 ≤ wLk ≤ κw (k + 1)µ1 and 0 < ς (k + 1)ν2 ≤ wQk ≤ κw (k + 1)µ2 . (4.1)

Let ψk
def
= min[1,max[‖gk‖2, φ3

k]]. Then, for any θ ∈ (0, 1
4
τ) and k > jθ,

min
j∈{jθ,...,k}

ψk ≤ κ�(θ)
(k + 1)max[µ1,2µ2]

k − jθ
≤ κ�(θ)(jθ + 1)

(k + 1)1−max[µ1,2µ2]
, (4.2)

where

jθ
def
= max

[(
L1

2ς(1− θ)

) 1
ν1

,

(
2(1 + L1)

ς

) 1
ν2

,

(
L2

3ς( 1
4
τ − θ)

) 1
ν2

,

(
L2ξ

3ς2( 1
4
τ − θ)

) 1
2ν2

]
(4.3)

and

κ�(θ)
def
=

{
κ2
w

θ

(
f(x0)− flow + (jθ + 1) max

[
L1κ

2
g

2ς2
,
L2ξ

3

3ς3

])} 1
3

.
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Proof. Consider an arbitrary θ ∈ (0, 1
4
τ) and note that AS.4, (4.1) and the definition of

φ̂k imply that

wLk ∈ [ςµ, κw(k + 1)µ1 ] and wQk ∈ [ςν , κw(k + 1)µ2 ]. (4.4)

If we define jθ by (4.3), we immediately obtain from AS.4 and Lemma 2.5 (where we
neglect the first term in the right-hand sides of (2.20) and (2.21)) that

f(xjθ+1) ≤ f(x0) + (jθ + 1)κover where κover = max

[
L1κ

2
g

2ς2
,
L2ξ

3

3ς3

]
. (4.5)

If we choose j > jθ, one then verifies that the definition of jθ in (4.3), the bounds (2.20)
and (2.21) and the definition (4.1) together ensure that

f(xj+1)− f(xj) ≤


−θ‖gk‖

2

wLk
if j ∈ KL,

−θ φ3
k

(wQk )2
if j ∈ KQ.

Using now the mechanism of Step 3, the definition of ψk, (4.1) and the inequality κw ≥ 1,
we obtain that, for j > jθ

f(xj)− f(xj+1) ≥ θψj min

[
1

wLk
,

1

(wQk )2

]
≥ θψj

κ2
w(j + 1)max[µ1,2µ2]

. (4.6)

As a consequence, we obtain from (4.5) and the summation of (4.6) for j ∈ {jθ + 1, . . . , k}
that, for k > jθ,

f(x0)− f(xj+1) ≥ −(jθ + 1)κover +

k∑
j=jθ+1

θψj

κ2
w(j + 1)max[µ1,2µ2]

.

We therefore deduce, using AS.3, that

(k − jθ) min
jθ,max+1,...,k

ψj ≤
k∑

j=jθ+1

ψj ≤
κ2
w(k + 1)max[µ1,2µ2]

θ

[
f(x0)− flow + (jθ + 1)κover

]
,

and (4.2) follows. 2

This theorem gives a bound on the rate at which the combined optimality measure ψk tends
to zero, and this bound is slightly worse than but close to what we obtained in the previous
section whenever max[µ1, 2µ2] approaches zero.

Using the methodology of Theorem 3.4, we now show that the bound (4.2) is also essen-
tially sharp.
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Theorem 4.2 The bound (4.2) is essentially sharp in that, for each µ = (µ1, µ2), each
ν = (ν1, ν2) with 0 < ν1 ≤ µ1 < 1 and 0 < ν2 ≤ µ2 < 1

2
and each ε ∈ (0, 1− 1

3
(1− 2µ2)),

there exists a univariate function hµ,ν,ε satisfying AS.1–AS.4 such that, when applied to
minimize hµ,ν,ε from the origin, the ASTR2 algorithm with (4.1) produces second-order
optimality measures given by

φk = φ̂k = ψk = min
j∈{0,...,k}

ψj =
1

(k + 1)
1
3

(1−2µ2)+ε
. (4.7)

Proof. As above, we start by defining, for k ≥ 0, γ = 1
3
(1− 2µ2) + ε, wk = κw(k + 1)µ2 ,

and, for k ≥ 0,

gk
def
= 0, and Hk = − 2

(k + 1)γ
, (4.8)

which then implies, using (2.2) that, for k > 0,

φk = φ̂k =
1

(k + 1)γ
. (4.9)

Given these definitions and because φ̂3
k > 0 = ‖gk‖2, we set

sk = sQk
def
=

1

(k + 1)γ [κw(k + 1)µ2 ]
=

1

κw(k + 1)γ+µ2
, (4.10)

yielding that, for k > 0,

∆q0
def
=

1

(ς + 1)2ν
and ∆qk

def
=
∣∣gksk + 1

2
Hks

2
k

∣∣ =
1

κ2
w(k + 1)3γ+2µ2

≤ 1

(k + 1)3γ+2µ2
,

(4.11)
where we used the fact that κw ≥ 1 to deduce the last inequality. We then define, for all
k ≥ 0,

x0 = 0, xk+1 = xk + sk (k > 0) (4.12)

and
h0 = ζ(3γ + 2µ2) and hk+1 = hk −∆qk (k ≥ 0), (4.13)

where ζ(·) is the Riemann zeta function. Note that, since γ > 1 − 2µ2, the argument
3γ + 2µ2 of ζ is strictly larger than one and ζ(3γ + 2µ2) is finite. Observe also that the
sequence {hk} is decreasing and that, for all k ≥ 0,

hk+1 = h0 −
k∑
k=0

∆qk ≥ h0 −
k∑
k=0

1

(k + 1)3γ+2µ2
≥ h0 − ζ(3γ + 2µ2), (4.14)

where we used (3.28) and (3.26). Hence (3.28) implies that

hk ∈ [0, h0] for all k ≥ 0. (4.15)

Also note that, using (3.28),
|hk+1 − hk + ∆qk| = 0, (4.16)
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while, using (3.24),
|gk+1 − gk| = 0 (k ≥ 0). (4.17)

Moreover, using the fact that 1/xγ is a convex function of x over [1,+∞) and (4.10), we
derive that, for k ≥ 0,

|Hk+1 −Hk| = 2

∣∣∣∣ 1

(k + 2)γ
− 1

(k + 1)γ

∣∣∣∣ ≤ 2γ

(k + 1)1+γ
≤ 2γκw(k + 1)µ2

k + 1
sk ≤ 2γκwsk.

This bound with (4.15), (4.16) and (4.17) once more allow us to use standard Hermite
interpolation on the data given by {hk}, {gk} and {Hk}, as stated in [5, Theorem A.9.1]
with p = 2 and

κf = max [2γκw, h0, 2]

(the second term in the max bounds |hk| because of (4.15) and the third bounds both
|gk| and |Hk| because of (4.8)). As a consequence, there exists a twice continuously
differentiable function hµ,ν,ε from IR to IR with Lipschitz continuous gradient and Hessian
(i.e. satisfying AS.1 and AS.2) such that, for k ≥ 0,

hµ,ν,ε(xk) = hk, ∇1
xhµ,ν,ε(xk) = gk and ∇2

xhµ,ν,ε(xk) = Hk.

Moreover, the ranges of hµ,ν,ε and its derivatives is constant independent of γ, hence
guaranteeing AS.3 and AS.4. Thus (4.8), (4.10), (4.12) and (4.13) imply that the sequences
{xk}, {hk}, {gk} and {Hk} can be seen as generated by the ASTR2 algorithm applied to
hµ,ν,ε, starting from x0 = 0. The first bound of (4.7) then results from (4.9) and the
definition of γ. 2
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Figure 2: The function hµ,ν,ε(x) (left), its gradient ∇1
xhµ,ν,ε(x) (middle) and its Hessian

∇2
xhµ,ν,ε(x) (right) plotted as a function of x, for the first 10 iterations of the ASTR2 algorithm

with (4.2) (µ = ν = ( 1
2
, 1

3
))

The behaviour of hµ,ν,ε is illustrated in Figure 2. It is qualitatively similar to that of fµ,ν,ε
shown in Figure 1, although the decrease in objective-value is somewhat slower, as expected.
As in Section 3, note that the inequality

k∑
j=0

1

(j + 1)γ
≥
∫ k

0

dj

(j + 2)γ
=

1

1− γ

[
k + 2

(k + 2)γ
− 1

]
≥ 1

2(1− γ)

[
k + 1

(k + 1)γ
− 2

]
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implies that

average
j∈{0,...,k}

ψj ≥
1

2(1− γ)

[
1

(k + 1)
1
3

(1−2µ2)+ε
− 2

k + 1

]
,

which has the same flavour as the second bound of (3.23).

5 Second-order optimality in a subspace

While the ASTR2 algorithms guarantee second-order optimality conditions, they come at a
computational price. The key of this guarantee is of course that significant negative curva-
ture in any direction of IRn must be exploited, which requires evaluating the Hessian. In
addition, the optimality measure φk and the step sk must also be computed. However, these
computational costs may be judged excessive, so the question arises whether a potentially
cheaper algorithm is able to ensure a “degraded” or weaker form of second-order optimality.
Fortunately, the answer is positive: one can guarantee second-order optimality in subspaces
of IRn at lower cost.

The first step is to assume that a subspace Sk is of interest at iteration k. Then, instead
of computing φk from (2.3), one can choose to calculate

φSkk = max
‖d‖≤1
d∈Sk

−
(
g(x)Td+ 1

2
dTH(x)d

)
.

Because the dimension of Sk may be much smaller than n, the cost of this computation may
be significantly smaller than that of computing φk. The measure φSkk may for instance be
obtained using a Krylov-based method, as conjugate gradients [17], GLRT [13] or variants
thereof, where the minimum of the model Tf,2(x, d) within the trust region is derived it-
eratively in a sequence of nested Krylov subspaces of increasing dimension, which tend to
contain vector along which curvature is extreme [12, Chapter 9], thereby improving the qual-
ity of the second-order guarantee compared to random subspaces. This process may then be
terminated before the subspaces fill IRn, should the calculation become too expensive or a
desired accuracy be reached. In addition, there is no need for nk, the dimension of the final
Krylov space at iteration k to be constant: it is often kept very small when far from opti-
mality. This technique has the added benefit that the full Hessian is not evaluated, but only
nk Hessian-times-vector products are needed, again significantly reducing the computational
burden. Calculating the step sQk for k ∈ KQ once φSkk is known is also cheaper in a space of
dimension nk much less than n, especially since only a τ -approximation is needed (see the
comments after the algorithm).

Importantly, the theory developped in the previous sections is not affected by the transition
from IRn to Sk, except that now the complexity bounds (3.7)-(3.8) and (4.2) are no longer
expressed using φ̂k but now involve φ̂Skk = min[1, φSkk ] instead. While clearly not as powerful as
the complete second-order guarantee in IRn, weaker guarantees based on (Krylov) subspaces
are often sufficient in practice and make the ASTR2 algorithm more affordable. Note that, in
the limit, one can even choose Sk = {0} for all k, in which case we can set Hk = 0 for all
k and we do not obtain any second-order guarantee (but the first-order complexity bounds
remain valid, recovering results of [14]).
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6 Conclusions

We have introduced an OFFO algorithm whose global rate of convergence to first-order mini-
mizers is O((k+1)−

1
2 ) while it converges to second-order ones as O((k+1)−

1
3 ). These bounds

are equivalent to the best known bounds for second-order optimality for algorithms using
objective-function evaluations, despite the latter exploiting significantly more information.
Thus we conclude that, from the point of view of evaluation complexity at least, evaluating
values of the objective function is an unnecessary effort for efficiently finding second-order
minimizers. We have also discussed another closely related algorithm, whose global rates
of convergence can be nearly as good. We have finally considered how weaker second-order
guarantees may be obtained at a much reduced computational cost.

We expect that extending our proposal to convexly constrained cases (for instance to
problems involving bounds on the variables) should be possible. As in [7, Chapter 12], the
idea would be to restrict the model minimization at each iteration to the intersection of the
trust region with the feasible domain, but this should of course be verified.

It is clearly too early to assess whether the new algorithms will turn out to be of practical
interest. In the form with ϑ = 1, they are undoublty quite conservative because of the
monotonic nature of the scaling factors (and hence of the trust-region radius) and because,
for locally convex functions (for which a second-order guarantee is not needed), ‖gk‖ ≥ φk,
yielding a linear step. Whether less conservative variants with similar or better complexity
can be designed is the object of ongoing research.
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Appendix: technical lemmas

Lemma A.1 Let w > 0 and suppose that

wα ≤ β log(2w). (A.1)

for some α ∈ (0, 1) and β such that

β >
3α

2α
. (A.2)

Then

w ≤ σ(α, β)
def
=

[
−β
α
W−1

(
− α

β 2α

)] 1
α

(A.3)

where W−1(·) is the second branch of the Lambert function [8].
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Proof. First note that (A.1) is equivalent to

1

2α
(2w)α ≤ β

α
log
(

(2w)α
)

Setting now u = (2w)α, one obtains that

ω(u)
def
=

1

2α
u− β

α
log(u) ≤ 0. (A.4)

But ω(u) is convex for u > 0 and tends to infinity if u tends to zero or to infinity. Moreover,
it achieves its minimum at umin = β2α/α, at which it takes the value

ω(umin) =
β

α

(
1− log

(
β 2α

α

))
< 0,

where the inequality results from (A.2). Hence ω(u) has two real roots u1 ≤ u2 and the
set of u for which (A.4) holds is bounded above by u2. By definition,

log(u2)− α

β 2α
u2 = 0,

which is
u2e
− α
β 2α

u2 = 1.

Defining now z = − α
β 2α u2, we obtain that

zez = − α

β 2α
.

By definition of the Lambert function, this gives that

u2 = −β 2α

α
z = −β2α

α
W−1

(
− α

β 2α

)
> 0

which is well-defined because (A.2) implies that − α
β 2α ∈ [−1

e , 0). Since w = u
1
α /2, this

implies (A.3). 2

Lemma A.2 Let a ≥ 0 and b ≥ 0. Suppose that, for some µ ∈ (0, 1
2
), ν ∈ (0, 1

3
) and

some θa,0, θb,0 and θ0 ≥ 0,
θa,0a

1−µ + θb,0b
1−2ν ≤ θ0. (A.5)

Then

a ≤
(
θ0

θa,0

) 1
1−µ

and b ≤
(
θ0

θb,0

) 1
1−2ν

.

Proof. Obvious from the inequalities θa,0a
1−µ ≤ θa,0a

1−µ + θb,0b
1−2ν and θb,0b

1−2ν ≤
θa,0a

1−µ + θb,0b
1−2ν . 2
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Lemma A.3 Let a ≥ 0 and b ≥ 0. Suppose that, for some µ ∈ (0, 1
2
), some θa,1 > 0 and

some θ1 ≥ 0,
a1−µ ≤ θa,1a1−2µ + θ1. (A.6)

Then
a ≤ max

[
(2θ1)

1
1−µ , (2θa,1)

1
µ

]
.

Symmetrically, if ν ∈ (0, 1
3
), θb,1 > 0 and

b1−2ν ≤ θb,1b1−3ν + θ1. (A.7)

Then
b ≤ max

[
(θ1)

1
1−2ν , (2θb,1)

1
ν

]
.

Proof. Suppose first that θa,1a
1−2µ ≤ θ1. Then a1−µ ≤ 2θ1 and thus a ≤ (2θ1)

1
1−µ

Suppose now that θa,1a
1−2µ > θ1. Then a1−µ ≤ 2θa,1a

1−2µ, that is a ≤ (2θa)
1
µ . The proof

of the second part is similar. 2

Lemma A.4 Let a ≥ 0 and b ≥ 0. Suppose that, for some µ ∈ (0, 1
2
), ν ∈ (0, 1

3
) and

some θa, θb > 0 and θ2 ≥ 0,

a1−µ + b1−2ν ≤ θa,2a1−2µ + θb,2b
1−3ν + θ2. (A.8)

Then

a ≤ max

[(
θ2

θa,2

) 1
1−2µ

, 2
1

1−µ (2θb,2)
1−2ν
ν(1−µ) , (4θa,2)

1
µ

]
and

b ≤ max

[(
θ2

θb,2

) 1
1−3ν

, 2
1

1−2ν (2θa,2)
1−µ

µ(1−2ν) , (4θb,2)
1
ν

]
.

Proof. Suppose first that

θa,2a
1−2µ + θb,2b

1−3ν ≤ θ2. (A.9)

Then, from Lemma A.2,

a ≤
(
θ2

θa,2

) 1
1−2µ

and b ≤
(
θ2

θb,2

) 1
1−3ν

. (A.10)

Suppose now that (A.9) fails, and thus that

θa,2a
1−2µ + θb,2b

1−3ν + θ2 ≤ 2θa,2a
1−2µ + 2θb,2b

1−3ν . (A.11)
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Assume also that
a > (2θa,2)

1
µ and b > (2θb,2)

1
ν (A.12)

Then,
2θa,2a

1−2µ + 2θb,2b
1−3ν < a1−µ + b1−2ν

and so, using (A.8) and (A.11),

a1−µ + b1−2ν ≤ θa,2a1−2µ + θb,2b
1−3ν + θ2 < a1−µ + b1−2ν ,

which is impossible. Hence (A.12) cannot hold, and at least one of its inequalities must
fail. Suppose that it is the first, that is

a ≤ (2θa,2)
1
µ

def
= κ1. (A.13)

Then (A.8) and (A.11) give that

b1−2ν ≤ a1−µ + b1−2ν ≤ 2θa,2κ
1−2µ
1 + 2θb,2b

1−3ν

and we may apply Lemma A.3 with θb,1 = 2θb,2 and θ1 = 2θa,2κ
1−2µ
1 to deduce that

b ≤ max

[(
4θa,2κ

1−2µ
1

) 1
1−2ν

, (4θb,2)
1
ν

]
.

Symmetrically, we deduce that if the second inequality of (A.12) fails, that is if

b ≤ (2θb,2)
1
ν

def
= κ2,

then, applying Lemma A.3 with θa,1 = 2θa,2 and θ1 = 2θb,2κ
1−3ν
2 ,

a ≤ max

[(
4θb,2κ

1−3ν
2

) 1
1−µ , (4θa,2)

1
µ

]
.

Combining the two cases yields the desired result. 2

Lemma A.5 Let a ≥ 0 and b ≥ 0. Suppose that, for some µ ∈ (0, 1
2
), ν ∈ ( 1

3
, 1) and

some θa,3 > 0, θ3 ≥ 0,
a1−µ + b1−2ν ≤ θa,3a1−2µ + θ3. (A.14)

Then

a ≤ max
[
(2θ3)

1
1−µ , (2θa,3)

1
µ

]
= κa,3 and b ≤

(
θa,3κ

1−2µ
a,3 + θ3

) 1
1−2ν

.

Symmetrically, if θb,3 > 0 and

a1−µ + b1−2ν ≤ θb,3b1−3ν + θ3,

then

b ≤ max
[
(2θ3)

1
1−2ν , (2θb,3)

1
ν

]
= κb,3 and a ≤

(
θb,3κ

1−3ν
b,3 + θ3

) 1
1−µ

.
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Proof. From (A.14), we have that

a1−µ ≤ a1−µ + b1−2ν ≤ θa,3a1−2µ + θ2

and we may apply Lemma A.3 with θa,1 = θa,3 and θ1 = θ3 to deduce that

a ≤ max
[
(2θ3)

1
1−µ , (2θa,3)

1
µ

]
def
= κa

From the inequality b1−2ν ≤ a1−µ + b1−2ν and (A.14), we also obtain that

b ≤
(
θa,3κ

1−2µ
a + θ3

) 1
1−2ν .

2

Lemma A.6 Let a > 0 and b > 0. Suppose that, for some ν ∈ (0, 1
3
], some θa,4 ≥ 1 and

some θ4 ≥ 0,

a
1
2 + b1−2ν ≤ θa,4 log(2a) + θ4. (A.15)

Then

a ≤ max

[
1

2
e
θ4
θa,4 , σ

(
1
2
, 2θa,4

)]
= κa,4 and b ≤

(
θa,4 log(2κa,4) + θ4

) 1
1−2ν

.

Symmetrically, if θb,4 ≥ 1, µ ∈ (0, 1
2
] and

a1−µ + b
1
3 ≤ θb,4 log(2b) + θ4,

then

b ≤ max

[
1

2
e
θ4
θb,4 , σ

(
1
2
, 2θb,4

)]
= κb,4 and a ≤

(
θb,4 log(2κb,4) + θ4)

) 1
1−µ

.

Proof. Suppose first that θa,4 log(2a) ≤ θ4. Then

a ≤ 1

2
e
θ4
θa,4 . (A.16)

Otherwise, (A.15) gives that

a
1
2 ≤ a

1
2 + b1−2ν ≤ 2θa,4 log(2a)

from which one deduces using Lemma A.1 with α = 1
2

and β = 2θa,4 (which is allowed

since 2θa,4 ≥ 2 > 3/2
5
2 implies (A.2)) that

a ≤ σ( 1
2
, 2θa,4),

where σ(·, ·) is defined in (A.3). This inequality and (A.16) give the desired bound on a.
Substituting this in (A.15) gives the bound on b. The proof of the symmetric statement

is similar, in which the use of Lemma A.1 is now allowed because θb,4 ≥ 1 > 1/2
4
3 again

implies (A.2). 2
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Lemma A.7 Let a > 0 and b ≥ 0. Suppose that, for some ν ∈ (0, 1
3
), some θa,5 ≥ 1,

θb,5 > 0 and some θ5 ≥ 0,

a
1
2 + b1−2ν ≤ θa,5 log(2a) + θb,5b

1−3ν + θ5, (A.17)

Then

a ≤ max

1

2
e
θ5
θa,5 , σ( 1

2
, 4θa,5)

1

2
e
θb,5(2θb,5)

1−3ν
ν

θa,5


and

b ≤ max

[(
θ5

θb,5

) 1
1−3ν

, (2θa,5 log(2σa))
1

1−2ν ,
(

4θb,5

) 1
ν
, (2θb,5)

1
ν

]
.

with σa = σ
(

1
2
, 2θa,5

)
. Symmetrically, if θa,5 ≥ 1, µ ∈ (0, 1

2
), b > 0 and

a1−µ + b
1
3 ≤ θa,5a1−2µ + θb,5 log(2b) + θ5,

then

a ≤ max

[(
θ5

θa,5

) 1
1−2µ

, (2θb,5 log(2σb))
1

1−µ ,
(

4θa,5

) 1
µ
, (2θa,5)

1
µ

]
and

b ≤ max

1

2
e
θ5
θb,5 , σ( 1

2
, 4θb,5)

1

2
e
θa,5(2θa,5)

1−2µ
µ

θb,5


with σb = σ

(
1
2
, 2θb,5

)
.

Proof. Suppose first that,

θa,5 log(2a) + θb,5b
1−3ν ≤ θ5. (A.18)

Then

a ≤ 1

2
e
θ5
θa,5 and b ≤

(
θ5

θb,5

) 1
1−3ν

. (A.19)

Suppose now that (A.18) fails. Then, from (A.17),

a
1
2 + b1−2ν ≤ 2θa,5 log(2a) + 2θb,5b

1−3ν . (A.20)

If
a > σ

(
1
2
, 2θa,5

)
and b > (2θb,5)

1
ν , (A.21)

we obtain, using Lemma A.1 (which we may apply because θa,5 ≥ 1 > 3/2
5
2 ), (A.20) and

(A.17) that

a
1
2 + b1−2ν ≤ 2θa,5 log(2a) + 2θb,5b

1−3ν < a
1
2 + b1−2ν ,
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which is impossible. Hence one of the inequalities of (A.21) must be violated. Suppose
that

a ≤ σ
(

1
2
, 2θa,5

) def
= σa.

Using Lemma A.1 again and (A.20), this implies that

b1−2ν ≤ a
1
2 + b1−2ν ≤ 2θa,5 log(2σa) + 2θb,5b

1−3ν

and we deduce from Lemma A.3 with θb,1 = 2θb,5 and θ1 = 2θa,5 log(2σa) that

b ≤ max

[
(2θa,5 log(2σa))

1
1−2ν ,

(
4θb,5

) 1
ν

]
.

If we now suppose that b ≤ (2θb,5)
1
ν , then (A.20) ensures that

a
1
2 ≤ a

1
2 + b1−2ν ≤ 2θa,5 log(2a) + 2θb,5(2θb,5)

1−3ν
ν ,

and we now obtain from Lemma A.6 with θa,4 = 2θa,5 and θ4 = 2θb,5(2θb,5)
1−3ν
ν that

a ≤ max

1

2
e
θb,5(2θb,5)

1−3ν
ν

θa,5 , σ
(

1
2
, 4θa,5

) .
2

Lemma A.8 Let a > 0 and b > 0. Suppose that, for some θa,6 ≥ 1, θb,6 ≥ 1 and some
θ6 ≥ 0,

a
1
2 + b

1
3 ≤ θa,6 log(2a) + θb,6 log(2b) + θ6, (A.22)

where 2a ≥ ς and 2b ≥ ς. Then

a ≤ max

[
1

2
e
θ6+| log(ς)|

θa,6 , σ( 1
2
, 2θa,6), σ( 1

3
, 2θb,6)e

θb,6
2θa,6 , σ( 1

3
, 4θa,6)

]
and

b ≤ max

[
1

2
e
θ6+| log(ς)|

θb,6 , σ( 1
2
, 2θb,6), σ( 1

3
, 2θba6)e

θa,6
2θb,6 , σ( 1

3
, 4θb,6)

]
.

Proof. Suppose first that

θa,6 log(2a) + θb,6 log(2b) ≤ θ6. (A.23)

Then
θa,6 log(2a) ≤ θ6 + | log(ς)| and θb,6 log(2b) ≤ θ6 + | log(ς)|

and hence

a ≤ 1

2
e
θ6+| log(ς)|

θa,6 and b ≤ 1

2
e
θ6+| log(ς)|

θb,6 . (A.24)
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Suppose now that (A.23) fails, and thus (A.22) implies that

a
1
2 + b

1
3 ≤ 2θa,6 log(2a) + 2θb,6 log(2b). (A.25)

Assume also that
a > σ

(
1
2
, 2θa,6

)
and b > σ

(
1
3
, 2θb,6

)
. (A.26)

Then, using (A.22) and (A.25),

a
1
2 + b

1
3 ≤ 2θa,6 log(2a) + 2θb,6 log(2b) < a

1
2 + b

1
3 ,

which is impossible. Hence one of the inequalities of (A.26) must fail. If a ≤ σ
(

1
2
, 2θa,6

)
,

then (A.22) gives that

b
1
3 ≤ a

1
2 + b

1
3 ≤ θa,6 log

(
2σ
(

1
2
, 2θa,6

))
+ 2θb,6 log(2b).

and Lemma A.6 with θb,4 = 2θb,6 and θ4 = θa,6 log
(

2σ
(

1
2
, 2θa,6

))
then implies that

b ≤ max

[
1

2
e
θa,6 log(2σ(

1
2
,2θa,6))

2θb,6 , σ
(

1
2
, 4θb,6

)]
= max

[
σ
(

1
2
, 2θa,6

)
e
θa,6
2θb,6 , σ

(
1
2
, 4θb,6

)]
.

Symmetrically, if b < σ
(

1
3
, 2θb,6

)
, then

a ≤ max

[
σ( 1

3
, 2θb,6)e

θb,6
2θa,6 , σ

(
1
3
, 4θa,6

)]
.

2


