
Complexity and performance for two classes

of noise-tolerant first-order algorithms

S. Gratton∗, S. Jerad† and Ph. L. Toint‡

20 IV 2022

Abstract

Two classes of algorithms for optimization in the presence of noise are presented, that
do not require the evaluation of the objective function. The first generalizes the well-
known Adagrad method. Its complexity is then analyzed as a function of its parameters,
and it is shown that some methods of the class enjoy a better asymptotic convergence rate
than previously known. A second class of algorithms is then derived whose complexity
is at least as good as that of the first class. Initial numerical experiments on finite-sum
problems arsing from deep-learning applications suggest that that methods of the second
class often outperform those of the first.

Keywords: First-order methods, objective-function-free optimization, noisy gradients, Adagrad,

convergence bounds, evaluation complexity.

1 Introduction

Minimization algorithms which can handle noisy evaluations of the objective function and/or
gradients have generated a significant amount of research in the last years [3, 5, 4, 6, 7, 8, 12,
13, 28, 14, 15, 21, 22, 25, 26, 27, 29, 31, 32]. Interestingly, a number of these contributions
[3, 5, 4, 6, 7, 8, 12, 13, 25] indicate that, when the (noisy) objective function is evaluated,
its accuracy is significantly more critical to ensure convergence than that of the computed
(noisy) derivatives. This may be the reason why methods where the problem is avoided by
not evaluating the objective function (such as Adagrad [15], RMSProp [27], Adam [21] or
AMSGrad [26]) have become very popular in the context of finite-sum minimization, where
noise in the evaluation arises from sampling among a very large number of terms. That
such methods can be provably convergent to first-order stationary points is quite remarkable.
Moreover, several authors have been able to prove global convergence rates, including the
recent contributions by [14], where an improved (compared to earlier analysis) such rate
was proved for the Adagrad algorithm, and by [31] where the analysis was refined to take

∗Université de Toulouse, INP, IRIT, Toulouse, France. Email: serge.gratton@enseeiht.fr. Work partially
supported by 3IA Artificial and Natural Intelligence Toulouse Institute (ANITI), French ”Investing for the
Future - PIA3” program under the Grant agreement ANR-19-PI3A-0004”

†ANITI, Université de Toulouse, INP, IRIT, Toulouse, France. Email: sadok.jerad@enseeiht.fr
‡NAXYS, University of Namur, Namur, Belgium. Email: philippe.toint@unamur.be. Partially supported

by ANITI.

1

“sparsity” of the gradient sequence and optimal1 learning rates into account and to cover
AMSgrad and RMSProp.

The present paper uses (and extends) some preliminary results of [29, 14] to establish a
new analysis that achieves several goals.

1. The global rate of convergence result of [14] is shown to hold for an extended class of
methods comprising the Adagrad algorithm.

2. An improved asymptotic rate is also derived for these methods under an additional
conditional variance condition akin to the Strong Growth Condition of [28], indicating
that the results of [14] cannot be sharp if this condition holds. The new result is
independent of gradient “sparsity”. More importantaly, it allows an essentially arbitrary
choice of the learning rate which does not require the knowledge of the problem’s Lipschitz
constant. It therefore provides a strong alternative to those of [28] and [31].

3. Using the new analysis tools, a new class of methods is then proposed, whose global
rate of convergence is shown to be very close to that of methods using (exact) function
evaluations.

4. Numerical experiments with finite-sum problems arising from deep-learning applications
indicate that method of the latter class often perform better than those of the former.

The presentation is organized as follows. A general framework of first-order trust-region
algorithms is introduced in Section 2, in which two classes of algorithms (one of them con-
taining the Adagrad method) are defined and analyzed (complexity-wise) in Sections 3 and
4, respectively. Numerical experiments in the finite-sum minimization context are presented
in Section 5. Some conclusions are finally outlined in Section 6.

2 First-order trust-region methods for minimizing noisy func-
tions

We are interested in (approximately) solving the problem

min
x∈IRn

F (x) (1)

where F is a function from IRn to IR contaminated by noise. Moreover, we assume that
evaluating F at any given x to sufficient accuracy is either impossible or too costly. Evaluating
a noisy gradient is however possible. . . and our only source of information about the problem.
While access to F or its exact gradient is impossible, we nevertheless make the following
assumptions.

Assumption 2.1. The objective function F (x) is continuously differentiable.

Assumption 2.2. Its exact gradient G(x)
def
= ∇1

xf(x) is Lipschitz continuous with Lipschitz
constant L, that is

‖G(x)−G(y)‖ ≤ L‖x− y‖

for all x, y ∈ IRn.

1A priori unknown.

2

Assumption 2.3. There exists a constant Flow such that, for all x, F (x) ≥ Flow.

A standard consequence of Assumption 2.2 is that, for, any x, s ∈ IRn,

F (x+ s) ≤ F (x) +G(x)T s+
L

2
‖s‖2 (2)

(see Lemma 2.1 in [2] or Theorem A.8.3 in [11], for instance).
We now present a first-order adaptively scaled gradient algorithmic framework (ASGRAD),
where, at iteration k, a noisy gradient gk = g(xk) is evaluated and a step sk defined that
decreases the associated local linear model and whose size is determined by componentwise
“scaling factors” wi,k to be chosen at each iteration. Our framework is formally described as
follows.

Algorithm 2.1: The ASGRAD framework

Step 0: Initialization. x0 and a constant γlow ∈ (0, 1] are given. Set k = 0.

Step 1: Step computation. Evaluate gk and set

sk = γks
L
k , (3)

with
sLi,k = −

gi,k
wi,k

(4)

for a stepsize γk ∈ [γlow, 1] and positive scaling factors wi,k.

Step 2: New iterate. Define
xk+1 = xk + sk, (5)

increment k by one and return to Step 1.

We stress that gk (as evaluated in Step 1) is a noisy random gradient evaluation. The
algorithms of the ASGRAD framework therefore generate a stochastic process

{xk, gk, γk, sLk , sk}

on some probability space (Ω,F ,P). The associated expectation operator will be denoted by
E[·] and Ek[·] will stand for the conditional expectation knowing {g0, . . . , gk−1}. All algorithms
in our framework may clearly be interpreted as variants of Stochastic Gradient Descent,
allowing for a variety of stepsize (learning rate) rules.

We will, in what follows, assume that the noisy gradient gk is a bounded non-biased
estimator of the true gradient, that is

Assumption 2.4. We have that, for all k ≥ 0, Ek[gk] = G(xk). Moreover, there exists a
constant κg ≥ 1 such that ‖gk‖∞ ≤ κg for all k ≥ 0 and all realizations of the algorithm.

3

Note that this assumption, which is standard in the analysis of stochastic first-order methods,
immediately implies that

‖G(xk)‖∞ ≤ κg (6)

for all k ≥ 0.
The reader has undoubtly noted that we have not been very specific regarding how the scaling
factors wi,k are selected, and a whole range of options is possible. This justifies our choice to
consider ASGRAD as an algorithmic framework, covering many possible such choices. The rest
of this paper is devoted to the analysis of two specific classes of interest.

3 An Adagrad-inspired class of ASGRAD algorithms

In the first considered ASGRAD class, the scaling factors are inspired by the definition of the
Adagrad algorithm [15]. More specifically, we make the following additional assumptions.

Assumption 3.1. For each i ∈ {1, . . . , n} and k ≥ 0, there exist a constant ςi > 0 and a
random variable vi,k such that vi,k ≥ ςi and wi,k = (vi,k)

µ for some µ ∈ (0, 1). In addition,

|Ek[vi,k]− vi,k| ≤ κv(Ek
[
g2
i,k

]
+ g2

i,k) (7)

for some κv > 0 and all k ≥ 0.

Assumption 3.2. For every realization of the algorithm, we have that that g2
i,k ≤ vi,k for all

i ∈ {1, . . . , n} and all k ≥ 0.

We immediately note that Assumption 3.1 implies that

vi,k ≥ min
i∈{1,...,n}

ςi
def
= ςmin (8)

and Assumption 3.2 ensures that

Ek
[
g2
i,k

]
≤ Ek[vi,k] . (9)

The first step in our analysis is to derive a parametric bound on the decrease in the exact
linear model of F caused by the step sk, using a technique inspired by [29] and [14].

Lemma 3.3. Let sLj be the step produced at the j-th iteration by the an ASGRAD algorithm.
Suppose also that Assumptions 2.4 3.1 and 3.2 hold. Let Gj be the true gradient of F at xj.
Then, for all i ∈ {1, . . . , n},

Ej
[
γjGi,js

L
i,j

]
≤−(1− µ

2
)
γlowG

2
i,j

(Ej [vi,j])µ
+ 2κ∆Ej

[
g2
i,j

w2
i,j

]
, (10)

where

κ∆
def
=

µκ2
v

γlow

[
κ2µ
g +

κ2
g

ς1−µ
min

+
κ4−2µ
g

ς2−2µ
min

+ κ2−2µ
g κµ

]
with κµ

def
=

1

ς1−2µ
min

1µ< 1
2

+ κ4µ−2
g 1µ≥ 1

2
, (11)

where 1e stands for the indicator function of the event e.

4

Proof. See Appendix.
This lemma essentially implies that sL provides a descent direction on the true F as long as
the square of the true gradient’s norm remains large compared with the stepsizes. We also
need another result, partly inspired by [29, 14], whose utility will be to bound the last term
on the right-hand side of (10).

Lemma 3.4. Let {ak}k≥0 be a non-negative sequence, α > 0 and define, for each k ≥ 0,

bk =
∑k

j=0 aj. Then if α 6= 1,

k∑
j=0

aj
(ς + bj)α

≤ 1

(1− α)
((ς + bk)

1−α − ς1−α). (12)

Otherwise (i.e. if α = 1) (see Lemma 5.2 in [14]),

k∑
j=0

aj
ς + bj

≤ log

(
ς + bk
ς

)
. (13)

Proof. See Appendix. Note that (13) is the limit of (12) when α tends to one.
Using both Lemmas 3.3 and 3.4, we are now in position to deduce a first result on the global
convergence rate of a class of ASGRAD algorithms using specific “Adagrad-like” scaling factors
satisfying Assumptions 3.1 and 3.2.

Theorem 3.5. Suppose that Assumptions 2.1–2.4 hold and that an ASGRAD algorithm is
applied to problem (1) where, for all k ≥ 0 and all i ∈ {1, . . . , n},

wi,k =

(
ς +

k∑
`=0

g2
i,`

)µ
, (14)

where ς ∈ (0, κg] and µ ∈ (0, 1). Then the following bounds hold for κ∆ given in (11) and

κ�
def
=

κ2µ
g (4κ∆ + L)

(1− µ

2
)γlow

. (15)

(i) If µ ∈ (0, 1
2), then

E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤ 2κ2µ

g

(1− µ
2)γlow(k + 1)1−µ

[
F (x0)− Flow

]
+

nκ�
1− 2µ

(ς + κ2
g(k + 1))1−2µ − ς1−2µ

(k + 1)1−µ . (16)

(ii) If µ = 1
2 , then

E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤ 8κg

3γlow

√
(k + 1)

[
F (x0)− Flow

]
+ nκ�

log

(
1 + (k + 1)

κ2
g
ς

)
√

(k + 1)
. (17)

5

(iii) If µ ∈ (1
2 , 1), then

E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤

2κ2µ
g

(1− µ

2
)γlow(k + 1)1−µ

[
F (x0)− Flow

]

+
nκ�

2µ− 1

ς1−2µ−(ς+κ2
g(k + 1))1−2µ

(k + 1)1−µ . (18)

Proof. It is clear from (14) that wi,k ≥ ςµ. Moreover, if we define vi,k
def
= ς +

∑k
`=0 g

2
i,`,

then we have that wi,k = vµi,k, vi,k ≥ g
2
i,k and

|Ek[vi,k]− vi,k| = |Ek
[
g2
i,k

]
− g2

i,k| ≤ Ek
[
g2
i,k

]
+ g2

i,k.

Thus the proposed scaling factors verify Assumptions 3.1 and 3.2 with κv = 1.
Using (2), we derive that

F (xj+1) ≤ F (xj) + γjG
T
j s

L
j +

L

2
γ2
j ‖sLj ‖2 ≤ F (xj) + γjG

T
j s

L
j +

L

2
‖sLj ‖2.

Taking the conditional expectation, using Lemma 3.3, the fact that vi,j ≤ (k+ 2)κ2
g (because

we assumed that ς ≤ κg), (4), we deduce that, for j ∈ {0, . . . , k},

Ej [F (xj+1)] ≤ F (xj) +
n∑
i=1

Ej
[
γjGi,js

L
i,j

]
+
L

2
Ej
[
‖sLj ‖2

]
,

≤ F (xj)−
n∑
i=1

(1− µ

2
)γlow

G2
i,j

(Ej [vi,j])µ
+ 2κ∆Ej

[
g2
i,j

w2
i,j

]
+
L

2
Ej
[
‖sLj ‖2

]
,

≤ F (xj)− (1− µ

2
)γlow

‖Gj‖2

κ2µ
g (k + 2)µ

+

(
L

2
+ 2κ∆

)
Ej
[
‖sLj ‖2

]
.

We may now sum the previous inequality for j ∈ {0, . . . , k} and take the full expectation to
derive that

E[F (xk+1)] ≤ F (x0)− (1− µ

2
)

γlow

κ2µ
g (k + 2)µ

k∑
j=0

E
[
‖Gj‖2

]
+

(
L

2
+ 2κ∆

) k∑
j=0

E
[
‖sLj ‖2

]
≤ F (x0)− (1− µ

2
)

γlow

κ2µ
g (k + 2)µ

k∑
j=0

E
[
‖Gj‖2

]
+

(
L

2
+ 2κ∆

) n∑
i=1

k∑
j=0

E
[
(sLi,j)

2
]
.

(19)

Using now Lemma 3.4 with α = 2µ for each sLi,j , (4), (14) and Assumption 2.4, we derive

that, for µ ∈ (0, 1
2),

k∑
j=0

(sLi,j)
2 =

k∑
j=0

g2
i,j

(ς +
∑k

j=0 g
2
i,j)

2µ

≤ 1

1− 2µ

ς +

k∑
j=0

g2
i,j

1−2µ

− ς1−2µ


≤ 1

1− 2µ

[(
ς + (k + 1)κ2

g

)1−2µ
− ς1−2µ

]
.

6

Plugging this inequality in (19) and using Assumption 2.3, we obtain that

Flow ≤ E[F (xk+1)] ≤ F (x0)− (1− µ

2
)

γlow

κ2µ
g (k + 2)µ

k∑
j=0

E
[
‖Gj‖2

]
+

n

1− 2µ

(
L

2
+ 2κ∆

)[
(ς + (k + 1)κ2

g)
1−2µ − ς1−2µ

]
and thus, since (k + 2)µ ≤ 2(k + 1)µ, that

(k + 1)E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤

k∑
j=0

E
[
‖Gj‖2

]
(20)

≤
2κ2µ

g (F (x0)− Flow)

(1− µ

2
)γlow(k + 1)−µ

(21)

+
n
[
(ς + κ2

g(k + 1))1−2µ − ς1−2µ
]

(1− 2µ)(k + 1)−µ

κ2µ
g

(
L+ 4κ∆

)
γlow(1− µ

2)

 ,

which is (16).
If µ = 1

2 , we reuse (19) and Lemma 3.4 for each sLi,j with α = 1, and derive that, in this case,

E[F (xk+1)] ≤ F (x0)− 3

4

γlow√
(k + 2)κg

k∑
j=0

E
[
‖Gj‖2

]
+ n

(
L

2
+ 2κ∆

)
log

(
1 + (k + 1)

κ2
g

ς

)
.

By a reasoning similar to that leading to (20) we now obtain that

(k + 1)E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤

k∑
j=0

E
[
‖Gj‖2

]
≤
(

4

3

)
2κg(F (x0)− Flow)

√
(k + 1)

γlow

+

(
4n

3

)
κg
γlow

(L+ 4κ∆) log
(

1 + (k + 1)
κ2
g

ς

)√
(k + 1).

Rearranging the terms yields (17).
Finally, if µ ∈ (1

2 , 1), we again reuse (19) and Lemma 3.4 for each sLi,j with α = 2µ > 1, and
deduce that

E[F (xk+1)] ≤ F (x0)− (1− µ

2
)

γlow

(k + 2)µκ2µ
g

k∑
j=0

E
[
‖Gj‖2

]
+

(
L

2
+ 2κ∆

)
n

2µ− 1

(
ς1−2µ − (ς + κ2

g(k + 1))1−2µ
)
.

7

Following the same argument as above yields that

(k + 1)E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤

k∑
j=0

E
[
‖Gj‖2

]

≤
2κ2µ

g (F (x0)− Flow)

(1− µ

2
)γlow(k + 1)−µ

+
n

2µ− 1

κ2µ
g

(
L+ 4κ∆

)
γlow(1− µ

2)

×
ς1−2µ − (ς + κ2

g(k + 1))1−2µ

(k + 1)−µ
.

Rearranging the terms gives (18). �

Note that the last fractions in the last terms of (16) and (18) have been written in a form
stressing the continuity with (17), but could obviously be bounded above by the simpler

(ς + κ2
g)

1−2µ

(k + 1)µ
and

ς1−2µ

(k + 1)1−µ

respectively.
Theorem 3.5 suggests a few comments. The first is that (16), (17) and (18) guarantee

the convergence of the ASGRAD algorithm with (14) to first-order critical points, because their
right-hand sides all tend to zero when k tends to infinity. The rate at which this convergence
occurs differs however for the three cases, depending on the parameter µ. If constants are
lumped into a generic O(·) notation, we obtain, using Jensen’s inequality, that

E

[
average
j∈{0,...,k}

‖Gj‖

]
≤



O

(
1

(k + 1)
1
2
µ

)
(µ ∈ (0, 1

2
)),

O

(√
log(k + 1)

(k + 1)
1
4

)
(µ = 1

2
),

O

(
1

(k + 1)
1
2

(1−µ)

)
(µ ∈ (1

2
, 1)).

Examining these “k-order” bounds indicates that the best bound is that corresponding to
µ = 1

2
. This is nothing but the standard Adagrad algorithm.

One may then ask whether the bounds given by Theorem 3.5 are sharp. We now show that
is is not the case under an additional conditional variance condition on the gradient estimator.
Note that both Assumptions 3.1–3.2 automatically hold for (14) with vi,j = ς +

∑j
`=0 g

2
i,` (for

convenience, set vi,−1 = ς).

Theorem 3.6. Suppose that Assumptions 2.1–2.4 hold and that an ASGRAD algorithm is
applied to problem (1) with the scaling factors defined by (14) for some ς ∈ (0, κg], µ ∈ (0, 1),
all i ∈ {1, . . . , n} and all k ≥ 0. Suppose also that, for all i ∈ {1, . . . , n} and all k ≥ 0

Vark [gi,k] = Ek
[
g2
i,k −G2

i,k

]
≤ κvarG

2
i,k (22)

8

for some κvar ≥ 0. Then, for any θ ∈ (0, (1− 1
2
µ)γlow), there exists a finite jθ ≥ 0 such that

E

[
average

j∈{jθ+1,...,k}
‖Gj‖2

]
≤ κ∗(θ)

(k + 2)µ

k − jθ
+

nκO
k − jθ

≤ jθ + 3

(k + 2)

(
κ∗(θ)

(k + 2)−µ
+ nκO

)
, (23)

where

κ∗(θ)
def
=

κ2µ
g

θ
{F (x0)− Flow + nκ�} (24)

with

κO
def
=

(
κ̃

γlow(1− 1
2
µ)− θ

) 1
µ

, κ�
def
=

κ̃

ς2µ

[
(jθ + 1)κ2

g + κO
]
,

κ̃
def
=

(
2κ∆ +

L

2

)
(1 + κvar)

(
1 +

κ2
g

ς

)µ
, (25)

and κ∆ defined by (11).

Proof. We have verified (at the beginning of the proof of Theorem 3.5) that the proposed
scaling factors verify Assumptions 3.1 and 3.2. We invoke (2) to deduce that

F (xj+1) ≤ F (xj) + γjG
ᵀ
js
L
j +

L

2
γ2
j ‖sLj ‖2 ≤ F (xj) + γjG

ᵀ
js
L
j +

L

2
‖sLj ‖2,

and, taking the conditional expectation and using Lemma 3.3, that

Ej [F (xj+1)] ≤ F (xj) +
n∑
i=1

Ej
[
γjGi,js

L
i,j

]
+
L

2
Ej
[
‖sLj ‖2

]
,

≤ F (xj)−
n∑
i=1

(1− µ

2
)γlow

G2
i,j

(Ej [vi,j])µ
+

(
2κ∆ +

L

2

)
Ej

[
g2
i,j

v2µ
i,j

]
.

Observe now that, for each i ∈ {1, . . . , n}, vi,j−1 + κ2
g ≥ vi,j ≥ vi,j−1 and that vi,j−1 is

measurable knowing g0, . . . , gj−1. Hence,

Ej [F (xj+1)] ≤ F (xj)−
n∑
i=1

[
1−µ

2

] γlowG
2
i,j

(Ej [vi,j])µ
+

[
2κ∆+

L

2

]
Ej

[
g2
i,j

v2µ
i,j−1

]

≤ F (xj)−
n∑
i=1

[
1−µ

2

] γlowG
2
i,j

(Ej [vi,j])µ
+

[
2κ∆+

L

2

] Ej[g2
i,j

]
v2µ
i,j−1

.

We now use (22) to deduce that

Ej [F (xj+1)] ≤ F (xj)−
n∑
i=1

[
1−µ

2

] γlowG
2
i,j

(Ej [vi,j])µ
+

[
2κ∆+

L

2

]
(1 + κvar)

G2
i,j

v2µ
i,j−1

.

But
Ej [vi,j]
vi,j−1

≤ 1 +
κ2
g

vi,j−1
≤ 1 +

κ2
g

ς

9

and thus

G2
i,j

v2µ
i,j−1

=
(Ej [vi,j])µ

(vi,j−1Ej [vi,j])µ
G2
i,j

vµi,j−1

≤
(1 +

κ2g
ς)µ

(Ej [vi,j])µ
G2
i,j

vµi,j−1

,

so that

Ej [F (xj+1)] ≤ F (xj)−
n∑
i=1

[
1−µ

2

] γlowG
2
i,j

(Ej [vi,j])µ
+

κ̃

(Ej [vi,j])µ
G2
i,j

vµi,j−1

,

where κ̃ is defined by (25). Summing over iterations in j ∈ {0, . . . , k} in this last inequality
yields that

k∑
j=0

Ej [F (xj+1)] ≤
k∑
j=0

F (xj) +

k∑
j=0

n∑
i=1

G2
i,j

(Ej [vi,j])µ

[
−γlow

(
1− µ

2

)
+

κ̃

vµi,j−1

]
. (26)

Now select an arbitrary θ ∈ (0, γlow(1 − 1
2
µ)) and let I be the (possibly empty) subset of

{1, . . . , n} such that, for all j ≥ 0 and all i ∈ I,

−γlow

(
1− µ

2

)
+

κ̃

vµi,j−1

≥ −θ.

This last inequality implies that, for all j ≥ 0 and all i ∈ I,

E[vi,j−1] ≤
(

κ̃

γlow(1− 1
2
µ)− θ

) 1
µ

,

and hence, using Jensen’s inequality, that, for all k ≥ 0 and all i ∈ I,

E

 k∑
j=0

G2
i,j

 = E

 k∑
j=0

Ej [gi,j]2
 =

k∑
j=0

E[gi,j]
2

≤ ς +

k∑
j=0

E
[
g2
i,j

]
= E[vi,k]

≤
(

κ̃

γlow(1− 1
2
µ)− θ

) 1
µ

. (27)

Consider now i ∈ J def
= {1, . . . , n} \ I (assuming therefore that J 6= ∅). For such an i, there

must exist a ji(θ) sufficiently large such that

−γlow

(
1− µ

2

)
+

κ̃

vµi,j−1

≤ −θ,

for j = ji(θ) + 1 and hence, since vi,j is an increasing function of j, for all j ≥ ji(θ) + 1. If we
now set

jθ =

{
max
i∈J

ji(θ) if J 6= ∅
−1 otherwise.

(28)

10

we then verify, using Assumption 2.4, that

jθ∑
j=0

∑
i∈J

G2
i,j

(Ej [vi,j])µ

(
−(1− µ

2
)γlow + κ̃

1

vµi,j−1

)
≤ nκ̃(jθ + 1)

κ2
g

ς2µ
. (29)

Returning to inequality (26) and using (29) for the J terms and the fact that ς ≤ vi,j ≤
(k + 2)κ2

g, we deduce that

k∑
j=0

Ej [F (xj+1)] ≤
k∑
j=0

F (xj)−
k∑

j=jθ+1

∑
i∈J

G2
i,j

Ej [vi,j]µ
θ + nκ̃(jθ + 1)

κ2
g

ς2µ
+

k∑
j=0

∑
i∈I

κ̃G2
i,j

ς2µ

≤
k∑
j=0

F (xj)−
k∑

j=jθ+1

∑
i∈J

θG2
i,j

κ2µ
g (k + 2)µ

+
κ̃

ς2µ

n(jθ + 1)κ2
g +

k∑
j=0

∑
i∈I

G2
i,j

 .
We now take the full expectation and use (27) for each i ∈ I to obtain that

E[F (xk+1)] ≤ F (x0)− θ

κ2µ
g (k + 2)µ

E

 k∑
j=jθ+1

∑
i∈J

G2
i,j


+
nκ̃

ς2µ

[
(jθ + 1)κ2

g +

(
κ̃

γlow(1− 1
2
µ)− θ

) 1
µ

]
.

Rearranging the terms of the last inequality and using the fact that F (xk+1) ≥ Flow by
Assumption 2.3 and (27) for the I terms gives that

E

 k∑
j=jθ+1

‖Gj‖2
 = E

 k∑
j=jθ+1

∑
i∈J

G2
i,j +

k∑
j=jθ+1

∑
i∈I

G2
i,j


≤ κ2µ

g (k + 2)µ

θ

{
F (x0)−Flow +

nκ̃

ς2µ

[
(jθ + 1)κ2

g

+

[
κ̃

γlow(1− 1
2
µ)− θ

] 1
µ

]}
+ n

(
κ̃

γlow(1− 1
2
µ)− θ

) 1
µ

.

Dividing by (k− jθ) gives (23)–(25). To conclude our proof, we need to examine the situation
where J = ∅ and (27) holds for all i ∈ I = {1, . . . , n}. Therefore

(k + 1)E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤ n

(
κ̃

γlow(1− 1
2
µ)− θ

) 1
µ

. (30)

We may then ignore this situation in our worst-case analysis since this last bound is clearly
better than (23). �

It is important to note that, at variance with Theorem 3.5 which states global2 convergence
rates, Theorem 3.6 only gives asymptotic3 rates. Indeed, our proof does not give an explicit
expression of the index jθ as a function of problem-dependent quantities only.

2That is valid for each k ≥ 0.
3That is valid for k sufficiently large.

11

Our result complements that stated in Corollary 7 of [31] and Theorem 3 of [28] in that it
now allows a very flexible choice of the learning rate γk (namely γk ∈ [γlow, 1]) while γk has
to be chosen as a specific function of a priori unknown constants4 in these references, if the
best achievable rate of convergence is to be achieved. However, our result does not take any
sparsity of the gradient sequence into account and obtains the best convergence rate at the
price of the variance condition (22), which can be viewed as a “component-wise” variant of
the Strong Growth Condition” (SGC) proposed in [28].

Note that expressions (24) and (23) in Theorem 3.6 have an explicit linear dependence
on the problem dimension n (as in [31]), but caution should be exercized in interpreting this
observation since (potentially severe) dependence on dimension may lurk in the Lipschitz
constant L of Assumption 2.2.

Interestingly, Theorem 3.6 also raises the possibility (which we dismissed in the worst-case
but could well positively influence the practical convergence behaviour) that I = {1, . . . , n}
and (30) holds, which is then significantly better than both (16)–(18) and (23).

Even if the favourable situation we just discussed does not occur, (23) shows that (16)–
(18) are not sharp whenever the conditional variance condition (22) holds. Indeed, for k
sufficiently large, (23) indicates that a bound of the form

E

[
average

j∈{jθ+1,...,k}
‖Gj‖

]
= O

(
1

(k + 1)
1
2

(1−µ)

)
(31)

is valid. Observe that this order is very close, for small µ, to that achieved by standard
methods using function evaluations to enforce descent (such as steepest descent [23] or first-
order trust-region [17] or adaptive regularization methods [24, 10]) in the noiseless case.

4 A “divergent series” class of ASGRAD algorithms

The key to Theorem 3.6 and its improved convergence rate is the existence of the (implicit)
jθ index. One might then wonder if another class of ASGRAD algorithms exists where such
an index can be explicitly computed and a similar convergence rate achievable. This is the
object of our next theorems.

Theorem 4.1. Suppose that Assumptions 2.1–2.4 hold and that an ASGRAD algorithm is
applied to problem (1) with its scaling factors being defined, for some ν ∈ (0, 1) and µ ∈
[ν,max(1, 2ν)), all i ∈ {1, . . . , n} and all k ≥ 0 by

ρi,k(k + 1)ν ≤ wi,k ≤ ξi,k(k + 1)µ, (32)

where ρi,k, wi,k and ξi,k are random variables depending on iterations {0, . . . , k} such that
ς ≤ ρi,k and ξi,k ≤ κξ for some constants 0 < ς ≤ κξ, for all i ∈ {1, . . . , n} and all k ≥ 0.
Then, for ν 6= 1

2
,

E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤
κξ(F (x0)− Flow)

γlow(k + 1)1−µ +
nLκξκ

2
g

2(1− 2ν)ς2γlow

[
1

(k + 1)2ν−µ −
2ν

(k + 1)1−µ

]
,

(33)

4Such as κg, L and the index of the final iteration.

12

while, if ν = 1
2
,

E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤
κξ(F (x0)− Flow)

γlow(k + 1)1−µ +
nLκξκ

2
g

2ς2γlow

(
1 + log(k + 1)

(k + 1)1−µ

)
, (34)

Proof. By using (2) and the bounds on γj , we derive that

F (xj+1) ≤ F (xj) + γjG
T
j s

L
j +

L

2
γ2
j ‖sLj ‖2 ≤ F (xj) + γjG

T
j s

L
j +

L

2
‖sLj ‖2. (35)

We now derive an upper bound on the expectation Ej
[
−γjGi,jgi,j

wi,j

]
using an argument similar

to that used in the beginning of the proof of Lemma 3.3.
Consider first the case where Gi,jgi,j < 0 then,

−γjGi,jgi,j
wi,j

≤ −Gi,jgi,j
ς(j+1)ν as γj ≤ 1 and

ς(j + 1)ν ≤ wi,j (by using (32) and the bounds on ρi,k). Hence,

Ej
[
−γjGi,jgi,j

wi,j

]
≤ −

G2
i,j

ς(j + 1)ν
. (36)

Otherwise (i.e. if Gi,jgi,j ≥ 0), then,
−γjGi,jgi,j

wi,j
≤ −γlowGi,jgi,j

κξ(j+1)µ because γlow ≤ γj and

wi,j ≤ κξ(j + 1)µ (by using (32) and the bounds on ξi,k). As a consequence, we have that

Ej
[
−γjGi,jgi,j

wi,j

]
≤ −

γlowG
2
i,j

κξ(j + 1)µ
. (37)

Defining now κγ
def
= γlow

κξ
, noting that κγ ≤ 1

ς and combining (36) and (37) yields that

Ej
[
−γjGi,jgi,j

wi,j

]
≤ −

κγG
2
i,j

(j + 1)µ
,

so that, taking the conditional expectation of (35), the last inequality and using Assump-
tion 2.4,

Ej [F (xj+1)] ≤ F (xj) +
n∑
i=1

Ej
[
γjGi,js

L
i,j

]
+
L

2
Ej
[
‖sLj ‖2

]
,

≤ F (xj) +

n∑
i=1

Ej
[
γjGi,j

gi,j
wi,j

]
+
L

2
Ej

[
g2
i,j

w2
i,j

]
,

≤ F (xj)−
n∑
i=1

κγG
2
i,j

(j + 1)µ
+
L

2
Ej

[
g2
i,j

w2
i,j

]
, (38)

≤ F (xj)−
n∑
i=1

κγG
2
i,j

(j + 1)µ
+
Lκ2

g

2
Ej

[
1

w2
i,j

]
.

Using now (32) and the bounds on ρi,k yields that

Ej [F (xj+1)] ≤ F (xj)−
n∑
i=1

κγ
G2
i,j

(j + 1)µ
+

nLκ2
g

2ς2(j + 1)2ν
.

13

Summing over all iterations from 0 to k and taking the full expectation gives that

E[F (xk+1)] ≤ F (x0)− κγ
k∑
j=0

n∑
i=1

E
[
G2
i,j

]
(j + 1)µ

+
nLκ2

g

2ς2

k∑
j=0

1

(j + 1)2ν
.

If we now define

φν(x)
def
=

{
(x+ 1)1−2ν − 1

1− 2ν if ν 6= 1
2

log(x+ 1) otherwise,

we may bound the last inequality, using a simple sum-integral comparison and Assumption 2.3
to obtain that

k∑
j=0

n∑
i=1

E
[
G2
i,j

]
≤ (k + 1)µ(F (x0)− Flow)

κγ
+
nLκ2

g(k + 1)µ

2ς2κγ
(1 + φν(k)).

Substituting κγ by its value gives then,

E

[
average
j∈{0,...,k}

‖Gj‖2
]
≤
κξ(F (x0)− Flow)

γlow(k + 1)1−µ +
nLκξκ

2
g

2ς2γlow

(
1 + φν(k)

(k + 1)1−µ

)
.

This gives (34) when ν = 1
2
. Otherwise, (33) follows by using the fact that

1 + φν(k) =
1

1− 2ν

[
1

(k + 1)2ν−1
− 2ν

]
.

�

The choice (32) is of course reminiscent, in a smooth but stochastic and nonconvex setting,
of the “divergent stepsize” subgradient method for non-smooth convex optimization (see [1]
and the many references therein), for which a O(1/

√
k) global rate of convergence is known

(Theorems 8.13 and 8.30 in this last reference).
The bounds given by Theorem 4.1 are qualitatively similar to those of Theorem 3.5, but,

as in Theorem 3.6 for this case, they may be improved if we strengthen our assumptions, this
time explicitly rather than implicitly.

Theorem 4.2. Suppose that Assumptions 2.1–2.4 hold and that an ASGRAD algorithm is
applied to problem (1) with its scaling factors being defined as in Theorem 4.1 with ν ∈ (0, 1)
and µ ∈ [ν,max(4

3
ν, 1)). Suppose additionally that the conditional variance condition (22)

holds for all i ∈ {1, . . . , n} and all k ≥ 0. Then, for any θ ∈ (0, γlowκξ)),

E

[
average

j∈{jθ+1,...,k}
‖Gj‖2

]
≤κ#(θ)

(k + 1)µ

k − jθ
≤
κ#(θ)(jθ+2)

(k + 1)1−µ , (39)

where

κ#(θ)
def
=

1

θ

(
F (x0)− Flow +

nκ2
gLκ

2
ξ (1 + κvar)

21−µς4
jθ

)
, (40)

and

jθ
def
=

(Lκ3
ξ(1 + κvar)

21−µς4(γlow − θκξ)

) 1
4ν−3µ

+ 1. (41)

14

Proof. To simplify notation, set, for the course of this proof, wi,−1 = ς, i ∈ {1, . . . , n},
0
0 = 1 and (as in the previous theorem) κγ = γlow/κξ. As in the proof of Theorem 4.1, we
derive (see (38)) that

Ej [F (xj+1)] ≤ F (xj)−
n∑
i=1

κγG
2
i,j

(j + 1)µ
+
L

2
Ej

[
g2
i,j

w2
i,j

]

≤ F (xj)−
n∑
i=1

κγG
2
i,j

(j + 1)µ
+
L

2
Ej

[
g2
i,j

w2
i,j−1

(
wi,j−1

wi,j

)2
]

≤ F (xj)−
n∑
i=1

κγG
2
i,j

(j + 1)µ
+
Lκ2

ξj
2µ

2ς2j2ν
Ej

[
g2
i,j

w2
i,j−1

]

≤ F (xj)−
n∑
i=1

κγG
2
i,j

(j + 1)µ
+

Lκ2
ξj

2µ

2ς2j2νw2
i,j−1

(1 + κvar)G
2
i,j ,

where we have used the fact that
(
wi,j−1

wi,j

)2
≤ κ2ξ j

2µ

ς2 j2ν
(because of (32)), the measurability of

wi,j−1 w.r.t the past and (22) to deduce the last inequality. Using now the bound (j+1)µ

wi,j−1
≤ 2µjµ

ς jν

and summing over the iterations for j ∈ {0, . . . , k} yields that

k∑
j=0

Ej [F (xj+1)] ≤
k∑
j=0

F (xj) +
k∑
j=0

n∑
i=1

G2
i,j

(j + 1)µ

(
−κγ +

κ̂ j3µ

wi,j−1 j3ν

)
, (42)

with κ̂ =
Lκ2ξ

21−µς3 (1 + κvar). Note now that the definition of jθ in (41), the fact that 4ν > 3µ
and that wi,j−1 ≥ ς jν together imply that(

−κγ +
κ̂ j3µ

wi,j−1 j3ν

)
≤ −θ, (43)

for j ≥ jθ. Hence, from (42),

k∑
j=0

Ej [F (xj+1)] ≤
k∑
j=0

F (xj)− θ
k∑

j=jθ

n∑
i=1

G2
i,j

(j + 1)µ
+

jθ−1∑
j=0

n∑
i=1

G2
i,j

(j + 1)µ

(
−κγ +

κ̂ j3µ

wi,j−1 j3ν

)
,

(44)
while the last term of the previous equation is bounded by

jθ−1∑
j=0

n∑
i=1

G2
i,j

(j + 1)µ

(
−κγ +

κ̂ j3µ

wi,j j3ν

)
≤

jθ−1∑
j=0

n∑
i=1

κ̂
G2
i,j

ς
≤
nκ2

gκ̂

ς
jθ, (45)

where we used the facts that ‖G‖∞ ≤ κg (because of (6)), wi,j ≥ ς (because of (32)) and
3ν > 9

4
µ > 2µ (because of the bounds ν ≤ µ < 4

3
ν). Injecting (45) in (44), we deduce that

θ

k∑
j=jθ

n∑
i=1

G2
i,j

(j + 1)µ
≤

k∑
j=0

F (xj)−
k∑
j=0

Ej [F (xj+1)] +
nκ2

gκ̂

ς
jθ.

15

Taking the full expectation then gives that

(k − jθ)E

[
average

j∈{jθ+1,...,k}
‖Gj‖2

]
≤ E

 k∑
j=jθ

n∑
i=1

G2
i,j

 ≤ (k + 1)µ

θ

[
F (x0)− Flow +

nκ2
gκ̂

ς
jθ

]
.

(46)
which gives the desired result. �

The k-order of convergence of E
[
averagej∈{jθ+1,...,k} ‖Gj‖

]
implied by (39) is therefore

O

(
1

(k + 1)
1
2

(1−µ)

)

which is identical to (31), except that now (41) now gives an explicit formula for jθ, thereby
quantifying what is meant by the “k sufficienlty large” assumption used to derive (31).

It is of course possible to combine the ideas of the two ASGRAD classes considered so far,
for instance by defining both ξi,k and ρi,k in (32) to be equal to ς+

∑k
j=0 g

2
i,j/(k+ 1), without

altering the results of Theorem 4.2.

5 Numerical experiments on deep-learning datatsets

We now provide some numerical illustration of the algorithmic variants discussed in the pre-
vious sections, in the context of deep-learning using neural networks for image processing.
The problem considered is to classify images in a preset number of classes. A neural network
is then constructed whose output is fed in a cross-entropy objective function5 (also called
“loss” in the deep-learning jargon). This a relatively standard setting in which noise arises
from sampling the terms of the finite sum defining the objective function.

We trained two network architectures, namely the simple cifar-nv convolutional network
of [16] and a small resnet18 model [18], on four standard datasets of 32×32 images: CIFAR10
and CIFAR1006, SVHN 7 and FMNIST [30]. For these experiments, we used haiku [19] and
optax [20] two JAX [9] based libraries on a workstation with four GTX 1080TI. We now
compare the numerical performance of (14) for various µ values in (0.1, 0.5, 0.9) and of two
scaling factor choices satisfying (32). In order to define these, first set

ξk = max(ς, ξk−1, |gk|), (k ≥ 0), (47)

with ξ−1 = 0 and the max being understood componentwise. They are then defined by

wi,k = ξk(k + 1)ν (48)

and wi,k = max(ς,
1

k + 1

k∑
j=0

|gi,k|)(k + 1)ν . (49)

These two scalings, denoted respectively by maxgi and avrgi, verify (32) with ς = ς and
κξ = κg. In (48) and (49), we chose ν = 0.1 and ς = 0.01. The corresponding variants are

5https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
6https://www.cs.toronto.edu/˜kriz/cifar.html
7http://ufldl.stanford.edu/housenumbers

16

called maxgi and avrgi, respectively. Note that the scaling factors are increasing in maxgi but
no necessarily so in avrgi.
For all experiments, we also chose a fixed8 learning rate policy with γk = γ = 5.{10−4, 10−5}
for all k ≥ 0. We used the same random initialization (as speciefied by haiku) for all scaling
choices and followed the data-augmentation procedure of [16], both for training and testing.
We trained the models for a total of 100000 steps with a batchsize (sample size) of 128 using
the cross-entropy loss function. We report the training and test accuracies (the latter on a
sample of size 128 from the test dataset) every 500 steps.

The results of these experiments (averaged over three random runs) are presented in
Figures 1–4 for the CIFAR10 and CIFAR100 datasets. The corresponding results for SVHN
and FMNIST are reported in Appendix. In each figure, the top panels show the evolution
of the training accuracy (as a function of the number of steps), and the bottom panels that
of the test accuracy. The average values are shown as thick lines and the shaded areas of
corresponding colour give the 67% confidence intervals.

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0
tra

in
_a

cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 1: CIFAR10: Training (top) and test (bottom) accuracies for the Adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with γ = 5.10−4(left) and γ = 5.10−5 (right) on the
cifar-nv architecture

These experiments are obviously not meant to replace significant numerical testing, but,
albeit caution must be exercised not to extrapolate from limited data, they still suggest a few
tentative comments.

• For fixed learning rates, the methods maxgi and avrgi of the second ASGRAD class
(introduced in Section 4) seem to produce relatively good results on our example, both
in training and testing, often outperforming the Adagrad-like variants of the first class
(of Section 3), sometimes more than marginally.

• The relative behaviour of the tested variants does not differ significantly between the
two tested network architectures, even if the test accuracy is (as expected) slighly lower
for the resnet18 case.

8Our choice of a fixed learning rate policy is meant to focus on the intrinsic properties of each scaling factor
option.

17

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 2: CIFAR10: Training (top) and test (bottom) accuracies for the Adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with γ = 5.10−4 (left) and γ = 5.10−5 (right) on the
resnet18 architecture

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 3: CIFAR100: Training (top) and test (bottom) accuracies for the Adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with γ = 5.10−4(left) and γ = 5.10−5 (right) on the
cifar-nv architecture

18

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 4: CIFAR100: Training (top) and test (bottom) accuracies for the Adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with γ = 5.10−4(left) and γ = 5.10−5 (right) on the
resnet18 architecture

• Among Adagrad-like variants of the first class, those with a larger µ handle smaller
learning rates better on these examples, a behaviour admittedly not predicted by our
theory.

• The comparison of left and right panels in each figure unsurprisingly shows that, albeit
our theory does not depend on the choice of γk ∈ (0, 1], the practical convergence
behaviour may be affected by this choice (and other factors such as finite-sum sampling
strategy).

These conclusions are supported and reinforced by the results for SVHN and FMNIST in
appendix.

6 Conclusions

We have introduced a first-order trust-region framework for minimization methods and de-
rived complexity upper bounds for two classes of interest, the first containing the standard
Adagrad. These bounds give the best complexity to Adagrad in the first class. We have also
shown these bounds can be improved for both classes under an additional variance condi-
tion, in which case the parameter choice yielding the best bounds no longer corresponds to
Adagrad. This improvement is asymptotic and implicit for the first class and explicit for the
second.

Our numerical illustrations of the discussed methods on examples arising from deep-
learning applications indicate that methods of the second class have merits, but also that, at
least in our examples, there remains some distance from the above theory to real behaviour.
This may possibly be because the complexity bounds may not be sharp, but also, fortunately,
because the worst-case happens very rarely in practice.

19

Acknowledgments This work was supported in part by 3IA Artificial and Natural In-
telligence Toulouse Institute, French ”Investing for the Future - PIA3” program under the
Grant agreement ANR-19-PI3A-0004”. The experiments presented in this paper were carried
out on the OSIRIM platform administered by IRIT and supported by CNRS, the Region
Midi-Pyrénées, the French Government, and ERDF (see http://osirim.irit.fr/site/en).

References

[1] A. Beck. First-order Methods in Optimization. Number 25 in MOS-SIAM Optimization Series. SIAM,
Philadelphia, USA, 2017.

[2] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Adaptive regularization algorithms with inexact
evaluations for nonconvex optimization. SIAM Journal on Optimization, 29(4):2881–2915, 2019.

[3] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. A stochastic ARC method with inexact function
and random derivatives evaluations. In Proceedings of the International Conference on Machine Learning
(ICML2020), 2020.

[4] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. The impact of noise on evaluation complexity: The
deterministic trust-region case. arXiv:2104.02519, 2021.

[5] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Quadratic and cubic regularization methods with
inexact function and random derivatives for finite-sum minimization. In Proceedings of the ICCSA 2021,
2021.

[6] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Adaptive regularization algorithm for nonconvex op-
timization using inexact function evaluations and randomly perturbed derivatives. Journal of Complexity,
68, 2022.

[7] A. Berahas, L. Cao, and K. Scheinberg. Global convergence rate analysis of a generic line search algorithm
with noise. SIAM Journal on Optimization, 31:1489–1518, 2021.

[8] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of a stochastic trust
region method via supermartingales. INFORMS Journal on Optimization, 1(2):92–119, 2019.

[9] J. Bradbury, R. Frostig, P. Hawkins, M.-J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy
programs, 2018.

[10] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic overestimation methods for unconstrained
optimization. Part II: worst-case function-evaluation complexity. Mathematical Programming, Series A,
130(2):295–319, 2011.

[11] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity of algorithms for nonconvex optimiza-
tion. Number 30 in MOS-SIAM Series on Optimization. SIAM, Philadelphia, USA, June 2022.

[12] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Mathematical Programming, Series A, 159(2):337–375, 2018.

[13] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-region method and
random models. Mathematical Programming, Series A, 169(2):447–487, 2018.

[14] A. Défossez, L. Bottou, F. Bach, and N. Usunier. A simple convergence proof for Adam and Adagrad.
arXiv:2003.02395v2, 2020.

[15] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12, July 2011.

[16] I. Gitman and B. Ginsburg. Comparison of batch normalization and weight normalization algorithms for
the large-scale image classification. arXiv1709.08145:, 2017.

[17] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear
optimization. SIAM Journal on Optimization, 19(1):414–444, 2008.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv:1512.03385,
2015.

[19] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX, 2020.

20

[20] M. Hessel, D. Budden, F. Viola, M. Rosca, E. Sezener, and T. Hennigan. Optax: composable gradient
transformation and optimisation, in JAX!, 2020.

[21] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings in the International
Conference on Learning Representations (ICLR), 2015.

[22] X. Li and F. Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes. AI
Stats, 2019.

[23] Yu. Nesterov. Introductory Lectures on Convex Optimization. Applied Optimization. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2004.

[24] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, Series A, 108(1):177–205, 2006.

[25] C. Paquette and K. Scheinberg. A stochastic line search method with convergence rate analysis. SIAM
Journal on Optimization, 30(1):349–376, 2020.

[26] S. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In Proceedings in the
International Conference on Learning Representations (ICLR), 2018.

[27] T. Tieleman and G. Hinton. Lecture 6.5-RMSPROP. COURSERA: Neural Networks for Machine Learn-
ing, 2012.

[28] S. Vaswani, F. Bach, and M. Schmidt. Fast and faster convergence of SGD for over-parameterized
models (and an accelerated perceptron). In Proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan, volume 89, 2019.

[29] R. Ward, X. Wu, and L. Bottou. Adagrad stepsizes: sharp convergence over nonconvex landscapes. In
Proceedings in the International Conference on Machine Learning (ICML2019), 2019.

[30] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv:1708.07747, 2017.

[31] D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. On the convergence of adaptive gradient methods
for nonconvex optimization. In Proceedings of OPT2020: 12th Annual Workshop on Optimization for
Machine Learning, 2020.

[32] F. Zou, L. Shen, Z. Jie, J. Sun, and W Liu. A sufficient condition for convergences of Adam and RMSprop.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

21

A first technical lemma

Lemma .1. Let µ ∈ (0, 1]. Let x, y ∈ R+ \ {0}. Then

|xµ − yµ|
xµyµ

≤ µ |x− y|
xyµ

+ µ
|x− y|
xµy

. (50)

Proof. Let us first consider the case x ≥ y. Remembering that uµ ≤ 1 + µ(u − 1) for u > 0
and taking u = x

y , we successively derive that

xµ

yµ
≤ 1 + µ

(
x

y
− 1

)
,

xµ − yµ ≤ µ
(
xyµ

y
− yµ

)
,

xµ − yµ ≤ µyµ−1(x− y),

xµ − yµ

xµyµ
≤ µx− y

xµy
. (51)

Hence the inequality (50) is valid when x ≥ y. For the symmetric case (y ≥ x), we similarly
obtain that

yµ − xµ

xµyµ
≤ µy − x

yµx
. (52)

Combining (51) and (52) yields the desired result.

Proof of Lemma 3.3

Let us consider an iteration index j ≥ 0 and a component index i ∈ {1, . . . , n}. We first use
the definition of sL in (4) and the fact that wi,j = vµi,j (Assumption 3.1) to obtain that

Ej
[
γjGi,js

L
i,j

]
= −Ej

[
γj
Gi,jgi,j
vµi,j

]
= −Ej

[
γj
Gi,jgi,j
Ej [vi,j]µ

]
+ Ej

[
γjGi,jgi,j

(
1

Ej [vi,j]µ
− 1

vµi,j

)]
.

(53)
If Gi,jgi,j ≥ 0, then

−γjGi,jgi,j
Ej [vi,j]µ

≤ −γlow
Gi,jgi,j
Ej [vi,j]µ

and thus

Ej
[
−γjGi,jgi,j

Ej [vi,j]µ
]
≤ −γlow

Gi,j
Ej [vi,j]µ

Ej [gi,j] = −γlow

G2
i,j

Ej [vi,j]µ
. (54)

Otherwise, if Gi,jgi,j < 0, we may deduce that

−γjGi,jgi,j
Ej [vi,j]µ

≤ − Gi,jgi,j
Ej [vi,j]µ

,

implying that

Ej
[
−γjGi,jgi,j

Ej [vi,j]µ
]
≤ − Gi,j

Ej [vi,j]µ
Ej [gi,j] = −

G2
i,j

Ej [vi,j]µ
≤ −γlow

G2
i,j

Ej [vi,j]µ
. (55)

22

Combining (53), (54) and (55) gives that

Ej
[
γjGi,js

L
i,j

]
≤ −γlow

G2
i,j

Ej [vi,j]µ
+ Ej

γjGi,jgi,j v
µ
i,j − Ej [vi,j]µ

vµi,jEj [vi,j]
µ︸ ︷︷ ︸

A

 . (56)

We now derive an upper bound on the absolute value of the A term by successively using
Lemma (.1), Assumption 3.1 and the bound γj ≤ 1 to obtain that

|A| = |γjGi,jgi,j |
|vµi,j − Ej [vi,j]µ |
vµi,jEj [vi,j]

µ

≤ µ|γjGi,jgi,j |
|vi,j − Ej [vi,j] |
vµi,jEj [vi,j]

+ µ|γjGi,jgi,j |
|vi,j − Ej [vi,j] |
vi,jEj [vi,j]µ

≤ µ |Gi,jgi,j |κv
Ej
[
g2
i,j

]
vµi,jEj [vi,j]︸ ︷︷ ︸
B

+µ |Gi,jgi,j |κv
g2
i,j

vµi,jEj [vi,j]︸ ︷︷ ︸
C

+ µ |Gi,jgi,j |κv
Ej
[
g2
i,j

]
vi,jEj [vi,j]µ︸ ︷︷ ︸
D

+µ |Gi,jgi,j |κv
g2
i,j

vi,jEj [vi,j]µ︸ ︷︷ ︸
E

.

We now use Young’s inequality with p = q = 2, that is

∀λ > 0, x, y ∈ R+, xy ≤ λ

2
x2 +

y2

2λ
, (57)

to successively handle the 4 terms of the last bound.
• For the first term B, we choose

x =
|Gi,j |

Ej [vi,j]µ
, λ =

γlowEj [vi,j]µ

4
and y = κv|gi,j |

Ej
[
g2
i,j

]
vµi,jEj [vi,j]

1−µ .

Using (57), Assumptions 2.4, 3.2 and (9), we obtain that

B ≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow

g2
i,j

v2µ
i,j

Ej
[
g2
i,j

]2

Ej [vi,j]2−µ
,

≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow
Ej
[
g2
i,j

]µ g2
i,j

v2µ
i,j

≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow
κ2µ
g

g2
i,j

v2µ
i,j

.

Taking now the expectation over Ej [.] yields that

Ej [B] ≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow
κ2µ
g Ej

[
g2
i,j

w2
i,j

]
. (58)

23

• Now consider the C term. In this case, we choose

x =
|Gi,jgi,j |
Ej [vi,j]µ

, λ = γlow
Ej [vi,j]µ

4Ej
[
g2
i,j

] and y = κv
g2
i,j

vµi,jEj [vi,j]
1−µ

to deduce from (57) that

C ≤ γlow

G2
i,j

8Ej [vi,j]µ
g2
i,j

Ej
[
g2
i,j

] + 2
κ2
v

γlow

g4
i,j

v2µ
i,j

Ej
[
g2
i,j

]
Ej [vi,j]2−µ

≤ γlow

G2
i,j

8Ej [vi,j]µ
g2
i,j

Ej
[
g2
i,j

] + 2
κ2
v

γlow
κ2
g

g2
i,j

v2µ
i,j

1

Ej [vi,j]1−µ

≤ γlow

G2
i,j

8Ej [vi,j]µ
g2
i,j

Ej
[
g2
i,j

] + 2
κ2
v

γlow

κ2
g

ς1−µ
min

g2
i,j

v2µ
i,j

,

where we successively used the facts that Ej
[
g2
i,j

]
≤ Ej [vi,j] (because of (9)), g2

i,j ≤ κ2
g (because

of Assumption 2.4) and Ej [vi,j]1−µ ≥ ς1−µ
min (because of (8)). Taking the expectation over Ej [.]

then gives that

Ej [C] ≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow

κ2
g

ς1−µ
min

Ej

[
g2
i,j

w2
i,j

]
. (59)

(Note that we can divide by Ej
[
g2
i,j

]
above, as it suffice to notice that Ej

[
g2
i,j

]
= 0 implies

g2
i,j = 0. C would then be equal to zero and (59) would still be verified.)
• Let us now handle the D term. Choosing

x =
|Gi,j |

Ej [vi,j]µ
, λ = γlow

Ej [vi,j]µ

4
and y = κv|gi,j |

Ej
[
g2
i,j

]
vi,j

,

we now deduce from (57) that

D ≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow

g2
i,jEj

[
g2
i,j

]2

Ej [vi,j]µ v2
i,j

,

≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow

g2
i,j

v2µ
i,j

1

v2−2µ
i,j

Ej
[
g2
i,j

]2

Ej [vi,j]µ

≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow

g2
i,j

v2µ
i,j

1

v2−2µ
i,j

Ej
[
g2
i,j

]2−µ
≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow

κ4−2µ
g

ς2−2µ
min

g2
i,j

v2µ
i,j

,

where, as for the C term, we used the facts that Ej
[
g2
i,j

]µ
≤ Ej [vi,j]µ, g2

i,j ≤ κ2
g and v2−2µ

i,j ≥
ς2−2µ
min . Taking the expectation Ej [.] yields, in this case, that

Ej [D] ≤ γlow

G2
i,j

8Ej [vi,j]µ
+ 2

κ2
v

γlow

κ4−2µ
g

ς2−2µ
min

Ej

[
g2
i,j

w2
i,j

]
. (60)

24

• Finally consider the E term. Choosing

x =
|Gi,jgi,j |
Ej [vi,j]µ

, λ = γlow
Ej [vi,j]µ

4Ej
[
g2
i,j

] and y = κv
g2
i,j

vi,j

in (57) then gives that

Ej [E] ≤ γlow

G2
i,j

8Ej [vi,j]µ
g2
i,j

Ej
[
g2
i,j

] + 2
κ2
v

γlow

g4
i,jEj

[
g2
i,j

]
Ej [vi,j]µ v2

i,j

≤ γlow

G2
i,j

8Ej [vi,j]µ
g2
i,j

Ej
[
g2
i,j

]
+ 2

κ2
v

γlow
Ej
[
g2
i,j

]1−µ g2
i,j

v2µ
i,j

(
1

v1−2µ
i,j

g2
i,j

vi,j
1µ< 1

2
+
|g4−4µ
i,j |
v2−2µ
i,j

|g4µ−2
i,j |1µ≥ 1

2

)

≤ γlow

G2
i,j

8Ej [vi,j]µ
g2
i,j

Ej
[
g2
i,j

] + 2
κ2
v

γlow
κ2−2µ
g

g2
i,j

v2µ
i,j

(
1

ς1−2µ
min

1µ< 1
2

+ κ4µ−2
g 1µ≥ 1

2

)
,

where we once more used the facts that Ej
[
g2
i,j

]µ
≤ Ej [vi,j]µ and |gi,j | ≤ κg, in turn implying

that
g2
i,j ≤ vi,j and vi,j ≥ ςmin if µ < 1

2

and
|g4−4µ
i,j | ≤ v2−2µ

i,j and |g4µ−2
i,j | ≤ κ4µ−2

g if µ ≥ 1
2
.

Taking the expectation Ej [.], we deduce that

Ej [E] ≤ γlow

G2
i,j

8Ej [vi,j]µ
+

κ2
v

γlow
κ2−2µ
g

(
1

ς1−2µ
min

1µ< 1
2

+ κ4µ−2
g 1µ≥ 1

2

)
Ej

[
g2
i,j

w2
i,j

]
. (61)

Summing now (58), (59), (60) and (61) and substituting the obtained upper-bound of A in

(56), we finally obtain (10) with (11).

Proof of Lemma 3.4

Consider first the case where α 6= 1 and note that 1
(1−α)x

1−α is then a non-decreasing and

concave function on (0,+∞). Setting b−1 = 0 and using these properties, we obtain that, for
j ≥ 0,

aj
(ς + bj)α

≤ 1

1− α
(
(ς + bj)

1−α − (ς + bj − aj)1−α)
≤ 1

1− α
(
(ς + bj)

1−α − (ς + bj−1)1−α) .
We then obtain (12) by summing this inequality for j ∈ {0, . . . , k}.

25

Suppose now that α = 1, We then use the concavity and non-decreasing character of the
logarithm to derive that

aj
(ς + bj)α

=
aj

(ς + bj)
≤ log(ς + bj)− log(ς + bj − aj) ≤ log(ς + bj)− log(ς + bj−1).

The inequality (13) then again follows by summing for j ∈ {0, . . . , k}.

Results for SVHN and FMNIST

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 5: SVHN: Training (top) and test (bottom) accuracies for the Adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with γ = 5.10−4(left) and γ = 5.10−5 (right) on the
cifar-nv architecture

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 6: SVHN: Training (top) and test (bottom) accuracies for the Adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with γ = 5.10−4(left) and γ = 5.10−5 (right) on the
resnet18 architecture

26

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 7: FMNIST: Training (top) and test (bottom) accuracies for the Adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with γ = 5.10−4(left) and γ = 5.10−5 (right) on the
resnet18 architecture

27

