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Abstract

A class of algorithms for unconstrained nonconvex optimization is considered where
the value of the objective function is never computed. The class contains a determin-
istic version of the first-order Adagrad method typically used for minimization of noisy
function, but also allows the use of second-order information when available. The rate of
convergence of methods in the class is analyzed and is shown to be identical to that known
for first-order optimization methods using both function and gradients values. The result
does not assume that the gradient of the objective function are unformly bounded and
is essentially sharp. It improves on previously known complexity bounds (in the stochas-
tic context) by Défossez et al. (2020) and Gratton et al. (2022), both giving a better
rate of global convergence and removing the need to assume bounded gradients. A new
class of methods is designed, for which a slightly worse and essentially sharp complexity
result holds. Limited numerical experiments show that the new methods’ performance
may be comparable to that of standard steepest descent, despite using significantly less
information, and that this performance is relatively insensitive to noise.

Keywords: First-order methods, objective-function-free optimization (OFFO), Adagrad, con-

vergence bounds, evaluation complexity, second-order models.

1 Introduction

This paper is concerned with Objective-Function-Free Optimization (OFFO(1)) algorithms,
which we define as numerical optimization methods in which the value of the problem’s objec-
tive function is never calculated, although we obviously assume that it exists. This is clearly
at variance with the large majority of available numerical optimization algorithms, where the
objective function is typically evaluated at every iteration, and its value then used to assess
progress towards a minimizer and (often) to enforce descent. Dispensing with this informa-
tion is therefore challenging. As it turns out, first-order OFFO methods (i.e. OFFO methods
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(1)This term is coined in contrast to DFO, a well-known acronym for Derivative Free Optimization. OFFO

can be viewed as the complement of DFO, since the latter only uses objective function values and no derivatives,
while the former only uses derivatives and no objective function values.

1



Gratton, Jerad, Toint: First-order OFFO algorithms with unbounded gradients 2

only using gradients) already exist for some time and have proved popular and useful in fields
such as machine learning or sparse optimization, thereby justifying our interest. Algorithms
such Adagrad [12], RMSprop [28], Adam [21] or AMSgrad [27] have been proposed and ana-
lyzed, recent contributions being [10] and [31] where improved convergence bounds for such
methods are discussed. All these results assume bounded gradients. We refer the reader to
the interesting paper [10] for a more extensive historical perspective on the developement of
convergence theory of these first-order OFFO algorithms.

We take here the point of view that, although methods such as Adagrad and Adam have
been defined and used in the context of probabilistic inexact gradient evaluations (such as
resulting from sampling in finite-sum problems), they may neverthless be of interest in a de-
terministic context (i.e. when gradients are computed exactly). Indeed, in addition to being
one of the very few existing approaches to OFFO, their deterministic evaluation complexity
analysis provides a very useful template for that of their probabilistic counterparts. In partic-
ular, lower complexity bounds for the deterministic case immediately apply to the stochastic
one. The purpose of the present contribution is thus to explore the deterministic context, the
probablistic approach (using linear models only) being covered in a companion paper [18].

Should one be interested in first-order deterministic objective-function-free optimization,
another obvious alternative would be to minimize the norm of the gradient (in the least-
squares sense or in some other norm) using a derivative-free algorithm. To the best of our
knowledge, this approach has not been widely experimented, maybe because it has the draw-
back of not being biased towards minimizing the underlying objective function: standard DFO
algorithms, such as trust-region or adaptive regularization methods using finite-difference
approximations, make, in this context, no distinction between minimizers, maximizers and
other first-orders points of the original problem. More importantly, convergence of the DFO
minimizer would have to occur to a global minimum for the original gradient to approxi-
mately vanish. The evaluation complexity of this approach is nevertheless appealing under
these strong assumptions, because it was proved in [4] (see also [15] and [6, Section 13.1])
that reaching an ε-approximate first-order point (of the gradient’s norm) can be obtained in
O(ε−2 + | log(ε)|) evaluations(2). We will compare below this theoretical bound with the new
OFFO complexity results obtained in this paper.

Contributions: In this paper, we

1. interpret the deterministic counterpart of Adagrad as a first-order trust-region method
and use this interpretation to extend it to potentially use second-order information,

2. provide, for this extended method and without assuming gradient boundeness, an es-
sentially sharp global(3) bound on the gradient’s norm as a function of the iteration
counter, which is identical to that known for first-order optimization methods using
both function and gradients values,

3. use the developed framework to define a further class of first-order OFFO methods, for
which an essentially sharp complexity result is also provided,

(2)As is standard for two real positive sequences {ak} and {bk}, we say that ak = O(bk) if and only if
limk→∞(ak/bk) is finite.

(3)I.e., valid at every iteration.
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4. present some numerical experiments indicating that OFFO methods may indeed be
competitive with steepest descent in efficiency and reliability.

Note: When this paper was completed, the authors became aware of the paper [16], where an
adaptive trust-region algorithm is proposed in which the objective function is not evaluated,
with a global rate of convergence similar to that presented below. However, while this algo-
rithm is also a member of the class we study here, it is motivated differently (no relation to
Adagrad is mentioned in [16]) and involves very different theoretical arguments (in particular,
the question of sharpness for the complexity bound is not considered).

The paper is organized as follows. Section 2 introduces the new “trust-region minded”
class of algorithms ASTR1 and the global rate of convergence of a subclass containing the
deterministic Adagrad method are studied in Section 3. Section 4 then introduces a new
ASTR1 subclass and analyzes its global rate of convergence. Some numerical illlustration is
provided in Section 5. Conclusions are finally outlined in Section 6.

2 A class of first-order minimization methods

We consider the problem
min
x∈IRn

f(x) (2.1)

where f is a smooth function from IRn to IR. In particular, we will assume in what follows
that

AS.1: the objective function f(x) is continuously differentiable;

AS.2: its gradient g(x)
def
= ∇1

xf(x) is Lipschitz continuous with Lipschitz constant L ≥ 0,
that is

‖g(x)− g(y)‖ ≤ L‖x− y‖

for all x, y ∈ IRn, where, unless otherwise specified, ‖ · ‖ = ‖ · ‖2 is the Euclidean norm;

AS.3: there exists a constant flow such that, for all x, f(x) ≥ flow.

AS.1, AS.2 and AS.3 are standard for the complexity analysis of optimization methods seeking
first-order critical points, AS.3 guaranteeing in particular that the problem is well-posed. We
stress once more that we do not assume that the gradient are uniformly bounded, at variance
with [29, 10, 31, 18].

The class of methods of interest here are iterative and generate a sequence of iterates
{xk}k≥0. The move from an iterate to the next directly depends on the gradient at xk and
algorithm-dependent scaling factors {wk = w(x0, . . . , xk)} whose main purpose is to control
the move’s magnitude. In our analysis, we will assume that

AS.4: for each i ∈ {1, . . . , n} there exists a constant ςi ∈ (0, 1] such that, wi,k ≥ ςi for all
k ≥ 0.

Since scaling factors are designed to control the length of the step, they are strongly
reminiscent of the standard mechanism of the much studied trust-region optimization methods
(see [8] for an extensive coverage and [30] for a more recent survey). In trust-region algorithms,
a model of the objective function at an iterate xk is built, typically using a truncated Taylor
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series, and a step sk is chosen that minimizes this model with a trust-region, that is a region
where the model is assumed to represent the true objective function sufficiently well. This
region is a ball around the current iterate, whose radius is updated adaptively from iteration
to iteration, based on the quality of the prediction of the objective function value at the
trial point xk + sk. For methods using gradient only, the model is then chosen as the first
two terms of the Taylor’s expansion of f at the iterate xk. Although, we are interested here
in methods where the objective function’s value is not evaluated, and therefore cannot be
used to accept/reject iterates and update the trust-region radius, a similar mechanism may
be designed, this time involving the scaling factors {wk}. The resulting algorithm, which we
call ASTR1 (for Adaptively Scaled Trust Region using 1rst order information) is stated on the
following page.

The algorithm description calls for some comments.

1. Observe that we allow the use of second-order information by effectively defining a
quadratic model

gTk s+ 1
2
sTBks (2.10)

where Bk can of course be chosen as the true second-derivative matrix of f at xk
(provided it remains bounded to satisfy (2.3)) or any approximation thereof. Choosing
Bk = 0 results in a purely first-order algorithm.

The condition (2.3) on the Hessian approximations is quite weak, and allows in particular
for a variety of quasi-Newton approaches, limited-memory or otherwise. In a finite-sum
context, sampling bounded Hessians is also possible.

2. Conditions (2.5)–(2.8) define a “generalized Cauchy point”, much in the spirit of stan-
dard trust-region methodology (see [8, Section 6.3] for instance), where the quadratic
model (2.10) is minimized in (2.8) along a good first-order direction (sLk ) to obtain a

“Cauchy step” sQk . Any step sk can then be accepted provided it remains in the trust
region (see (2.4)) and enforces a decrease in the quadratic model which is a least a
fraction τ of that achieved at the Cauchy step (see (2.5)).

3. At variance with many existing trust-region algorithms, the radius ∆k of the trust-region
(2.2) is not recurred adaptively from iteration to iteration depending on how well the
quadratic model predicts function values, but is directly defined as a scaled version
of the local gradient. This is not without similarities with the trust-region method
proposed by [13], which corresponds to a scaling factor equal to ‖gk‖−1.

4. As stated, the ASTR1 algorithm does not include a termination rule, but such a rule can
easily be introduced by terminating the algorithm in Step 1 if ‖gk‖ ≤ ε, where ε > 0 is
a user-defined first-order accuracy threshold.

5. It may seem to the reader that we have introduced two algorithmic parameters typically
not present in existing OFFO methods. As it turns out, this is standard practice for
trust-region methods and it is widely acknowledged that the behaviour of the algorithm
is relatively insensitive to the choice made. Typically value are

τ = 1
10

and κB = 105,
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Algorithm 2.1: ASTR1

Step 0: Initialization. A starting point x0 is given. Constants κB ≥ 1 and τ ∈ (0, 1]
are also given. Set k = 0.

Step 1: Define the TR. Compute gk = g(xk) and define

∆i,k =
|gi,k|
wi,k

(2.2)

where wk = w(x0, . . . , xk).

Step 2: Hessian approximation. Select a symmetric Hessian approximation Bk
such that

‖Bk‖ ≤ κB. (2.3)

Step 3: GCP. Compute a step sk such that

|si,k| ≤ ∆i,k (i ∈ {1, . . . , n}), (2.4)

and
gTk sk + 1

2
sTkBksk ≤ τ

(
gTk s

Q
k + 1

2
(sQk )TBks

Q
k

)
, (2.5)

where
sLi,k = −sgn(gi,k)∆i,k, (2.6)

sQk = γks
L
k , (2.7)

with

γk =

 min

[
1,

|gTk sLk |
(sLk )TBks

L
k

]
if (sLk )TBks

L
k > 0,

1 otherwise.
(2.8)

Step 4: New iterate. Define
xk+1 = xk + sk, (2.9)

increment k by one and return to Step 1.
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the last one being possibly adapted to reflect the problem scaling. Note that these values
are constant thoughout the execution of the algorithm. At variance, γk is the iteration
dependent stepsize, a quantity present in every first-order minimization method. Obseve
that we do not impose restrictions of the stepsize (beyond being positive), thereby
covering most standatd choices.

The algorithm being defined, the first step of our analysis is to derive a fundamental property
of objective-function decrease, valid for all choices of the scaling factors satisfying AS.4.

Lemma 2.1 Suppose that AS.1, AS.2 and AS.4 hold. Then we have that, for all k ≥ 0,

f(xj+1) ≤ f(xj)−
n∑
i=1

τςming
2
i,j

2κBwi,j
+ 1

2
(κB + L)

n∑
i=1

g2i,j
w2
i,j

(2.11)

and

f(x0)− f(xk+1) ≥
k∑
j=0

n∑
i=1

g2i,j
2κBwi,j

[
τςmin −

κBBL

wi,j

]
(2.12)

where ςmin
def
= mini∈{1,...,n} ςi and κBBL

def
= κB(κB + L).

Proof. Using (2.6) and AS.4, we deduce that, for every j ≥ 0,

|gTj sLj | =
n∑
i=1

g2i,j
wi,j

=

n∑
i=1

wi,jg
2
i,j

w2
i,j

≥
n∑
i=1

ςig
2
i,j

w2
i,j

≥ ςmin‖sLj ‖2. (2.13)

Suppose first that (sLj )TBjs
L
j > 0 and γj < 1. Then, in view of (2.7), (2.8), (2.13) and

(2.3),

gTj s
Q
j + 1

2
(sQj )TBjs

Q
j = γjg

T
j s

L
j + 1

2
γ2j (sLj )TBjs

L
j = −

(gTj s
L
j )2

2(sLj )TBjsLj
≤ −

ςmin|gTj sLj |
2κB

.

Combining this inequality with the first equality in (2.13) then gives that

gTj s
Q
j + 1

2
(sQj )TBjs

Q
j ≤ −

ςmin

2κB

n∑
i=1

g2i,j
wi,j

. (2.14)

Suppose now that (sLj )TBjs
L
j ≤ 0 or γj = 1. Then, using (2.7), (2.14) and (2.6),

gTj s
Q
j + 1

2
(sQj )TBjs

Q
j = gTj s

L
j + 1

2
(sLj )TBjs

L
j ≤ 1

2
gTj s

L
j < 0

and (2.14) then again follows from the bound κB ≥ 1. Successively using AS.1–AS.2, (2.5),
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(2.14), (2.3) and (2.2) then gives that, for j ≥ 0,

f(xj+1) ≤ f(xj) + gTj sj + 1
2
sTj Bjsj − 1

2
sTj Bjsj + 1

2
L‖sj‖2

≤ f(xj) + τ
(
gTj s

Q
j + 1

2
(sQj )TBjs

Q
j

)
+ 1

2
(κB + L)‖sj‖2

≤ f(xj)−
n∑
i=1

τςming
2
i,j

2κBwi,j
+ 1

2
(κB + L)

n∑
i=1

∆2
i,j

≤ f(xj)−
n∑
i=1

τςming
2
i,j

2κBwi,j
+ 1

2
(κB + L)

n∑
i=1

g2i,j
w2
i,j

This is (2.11). Summing up this inequality for j ∈ {0, . . . , k} then yields (2.12). 2

Armed with Lemma 2.1, we are now in position to specify particular choices of the scaling
factors wi,k and derive the convergence properties of the resulting variants of ASTR1.

3 An Adagrad-like variant of ASTR1 using second-order models

We first consider a choice of scaling factors directly derived from the definition of the Adagrad
algorithm [12]. For given ς ∈ (0, 1], ϑ ∈ (0, 1] and µ ∈ (0, 1), define, for all i ∈ {1, . . . , n} and
for all k ≥ 0,

wi,k ∈
[√

ϑ vi,k, vi,k

]
where vi,k

def
=

(
ς +

k∑
`=0

g2i,`

)µ
. (3.1)

The Adagrad scaling factors are recovered by µ = 1
2

and ϑ = 1, and ASTR1 with (3.1) and
Bk = 0 is then the standard (deterministic) Adagrad method. Our formulation with µ ∈ (0, 1)
allows a parametric analysis of methods “in the neighbourhood” of Adagrad, using first-order
information or approximate secon-order one. The ϑ parameter is introduced for flexibility, in
particular allowing non-monotone scaling factors(4).

Before stating the global rate of convergence of the variant of ASTR1 using (3.1), we first
prove a lemma, partly inspired by [29, 10].

Lemma 3.1 Let {ak}k≥0 be a non-negative sequence, α > 0, ξ > 0 and define, for each

k ≥ 0, bk =
∑k

j=0 aj . Then if α 6= 1,

k∑
j=0

aj
(ξ + bj)α

≤ 1

(1− α)
((ξ + bk)

1−α − ξ1−α). (3.2)

Otherwise (i.e. if α = 1),
k∑
j=0

aj
(ξ + bj)

≤ log

(
ξ + bk
ξ

)
. (3.3)

(4)Typical values are ςi = 1
100

and ϑ = 1
1000

.
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Proof. Consider first the case where α 6= 1 and note that 1
(1−α)x

1−α is then a non-

decreasing and concave function on (0,+∞). Setting b−1 = 0 and using these properties,
we obtain that, for j ≥ 0,

aj
(ξ + bj)α

≤ 1

1− α
(
(ξ + bj)

1−α − (ξ + bj − aj)1−α
)

≤ 1

1− α
(
(ξ + bj)

1−α − (ξ + bj−1)
1−α) .

We then obtain (3.2) by summing this inequality for j ∈ {0, . . . , k}.
Suppose now that α = 1, we then use the concavity and non-decreasing character of the
logarithm to derive that

aj
(ξ + bj)α

=
aj

(ξ + bj)
≤ log(ξ + bj)− log(ξ + bj − aj) ≤ log(ξ + bj)− log(ξ + bj−1).

The inequality (3.3) then again follows by summing for j ∈ {0, . . . , k}. 2

From (3.2), we also obtain that, for α < 1,

k∑
j=0

aj
(ξ + bj)α

≤ 1

(1− α)
(ξ + bk)

1−α (3.4)

while, for α > 1,
k∑
j=0

aj
(ξ + bj)α

≤ ξ1−α

(α− 1)
. (3.5)

Note that both the numerator and the denominator of the right-hand side of (3.2) tend to zero
when α tends to one. Applying l’Hospital rule, we then see that this right-hand side tends to
the right-hand side of (3.3) and the bounds on

∑k
j=0 aj/(ξ + bj)

α are therefore continuous at
α = 1.

Lemma 3.1 is crucial in the proof of our main complexity result, which we now state.
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Theorem 3.2 Suppose that AS.1–AS.3 hold and that the ASTR1 algorithm is applied to
problem (2.1) with its scaling given by (3.1). If we define

Γ0
def
= f(x0)− flow,

then,

(i) if 0 < µ < 1
2
,

average
j∈{0,...,k}

‖gj‖2 ≤
κ1
k + 1

, (3.6)

with

κ1 = max

ς,
[

4nκBBL

(1− 2µ)τςµϑ
3
2

] 1
µ

,

[
22µϑ(1− 2µ)Γ0

n(κB + L)

] 1
1−2µ

 ; (3.7)

(ii) if µ = 1
2
,

average
j∈{0,...,k}

‖gj‖2 ≤
κ2
k + 1

, (3.8)

with

κ2 = max

ς, 1

2
e

2Γ0ϑ
n(κB+L) ,

1

2ς

(
8nκB(κB + L)

τϑ
3
2

)2
∣∣∣∣∣W−1

(
− τςϑ

3
2

8nκB(κB + L)

)∣∣∣∣∣
2
 ,

(3.9)
where W−1 is the second branch of the Lambert function [9];

(iii) if 1
2
< µ < 1,

average
j∈{0,...,k}

‖gj‖2 ≤
κ3
k + 1

(3.10)

with

κ3
def
= = max

{
ς,

[
21+µκB

τςµ
√
ϑ

(
Γ0 +

n(κB + L)ς1−2µ

2ϑ(2µ− 1)

)] 1
1−µ
}

(3.11)

Proof. We see from (3.1) that wi,k verifies AS.4. We may thus use Lemma 2.1.
Moreover, (3.1) also implies that

ςµ
√
ϑ ≤ wi,j ≤

(
ς +

j∑
`=0

‖g`‖2
)µ

(3.12)

for all j ≥ 0 and all i ∈ {1, . . . , n}. We now deduce from (2.2) and (2.12) that, for k ≥ 0,

f(xk+1) ≤ f(x0)−
k∑
j=0

τςµ
√
ϑ ‖gj‖2

2κB max
i∈{1,...,n}

wi,k
+ 1

2
(κB + L)

n∑
i=1

k∑
j=0

∆2
i,j . (3.13)

For each i ∈ {1, . . . , n}, we then apply Lemma 3.1 with a` = g2i,`, ξ = ς and α = 2µ < 1,
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and obtain from (2.2) and (3.1) that,

k∑
j=0

∆2
i,j ≤

1

ϑ(1− 2µ)

(ς +
k∑
`=0

g2i,`

)1−2µ

− ς1−2µ
 ≤ 1

ϑ(1− 2µ)

(
ς +

k∑
`=0

g2i,`

)1−2µ

.

(3.14)
Now

n∑
i=1

k∑
j=0

∆2
i,j ≤

n∑
i=1

1

ϑ(1− 2µ)

(
ς +

n∑
i=1

k∑
`=0

g2i,`

)1−2µ

≤ n

ϑ(1− 2µ)

(
ς +

k∑
`=0

‖g`‖2
)1−2µ

(3.15)
and thus substituting this bound in (3.13) and using AS.3 gives that

k∑
j=0

τςµ
√
ϑ‖gj‖2

2κB max
i∈{1,...,n}

wi,k
≤ Γ0 +

n(κB + L)

2ϑ
(1− 2µ)

ς +
k∑
j=0

‖gj‖2
1−2µ

. (3.16)

Suppose now that

k∑
j=0

‖gj‖2 ≥ max

{
ς,

[
22µϑ(1− 2µ)Γ0

n(κB + L)

] 1
1−2µ

}
, (3.17)

implying

ς +

k∑
j=0

‖gj‖2 ≤ 2

k∑
j=0

‖gj‖2 and Γ0 ≤
n(κB + L)

2ϑ(1− 2µ)

2

k∑
j=0

‖gj‖2
1−2µ

.

Then, using (3.16) and (3.12),

τςµ
√
ϑ

21+µ κB

[∑k
`=0 ‖g`‖2

]µ k∑
j=0

‖gj‖2 ≤
21−2µ n (κB + L)

ϑ(1− 2µ)

 k∑
j=0

‖gj‖2
1−2µ

.

Solving this inequality for
∑k

j=0 ‖gj‖2 gives that

k∑
j=0

‖gj‖2 ≤

[
4n κBBL

(1− 2µ)τςµϑ
3
2

] 1
µ

and therefore

average
j∈{0,...,k}

‖gj‖2 ≤

[
4nκBBL

(1− 2µ)τςµϑ
3
2

] 1
µ

· 1

k + 1
. (3.18)

Alternatively, if (3.17) fails, then

average
j∈{0,...,k}

‖gj‖2 < max

{
ς,

[
22µϑ(1− 2µ)Γ0

21−2µn(κB + L)

] 1
1−2µ

}
· 1

k + 1
. (3.19)
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Combining (3.18) and (3.19) gives (3.6).

Let us now consider the case where µ = 1
2
. For each i ∈ {1, . . . , n}, we apply Lemma 3.1

with ak = g2i,k, ξ = ς and α = 2µ = 1 and obtain that,

n∑
i=1

k∑
j=0

∆2
i,j ≤

1

ϑ

n∑
i=1

log

(
1

ς

(
ς +

k∑
`=0

g2i,`

))
≤ n

ϑ
log

(
1 +

1

ς

k∑
`=0

‖g`‖2
)
.

and substituting this bound in (3.13) then gives that

k∑
j=0

τ
√
ςϑ‖gj‖2

2κB max
i∈{1,...,n}

wi,k
≤ Γ0 +

n(κB + L)

2ϑ
log

1 +
1

ς

k∑
j=0

‖gj‖2
 .

Suppose now that
k∑
j=0

‖gj‖2 ≥ max

[
ς,

1

2
e

2ϑΓ0
n(κB+L)

]
, (3.20)

implying that

1 +
1

ς

k∑
j=0

‖gj‖2 ≤
2

ς

k∑
j=0

‖gj‖2 and Γ0 ≤
n(κB + L)

2ϑ
log

2

ς

k∑
j=0

‖gj‖2
 .

Using (3.12) for µ = 1
2
, we obtain then that

τ
√
ςϑ

2
√

2κB

√√√√ k∑
`=0

‖g`‖2

k∑
j=0

‖gj‖2 ≤
n(κB + L)

ϑ
log

2

ς

k∑
j=0

‖gj‖2
 ,

that is

τ
√

2ςϑ
3
2

4κB

√√√√ k∑
j=0

‖gj‖2 ≤ 2n(κB + L) log

√√√√2

ς

k∑
j=0

‖gj‖2
 . (3.21)

Now define

γ1
def
=

τςϑ
3
2

4κB

, γ2
def
= 2n(κB + L) and u

def
=

√√√√2

ς

k∑
j=0

‖gj‖2 (3.22)

and observe that that γ2 > 3γ1 because τ
√
ςϑ

3
2 ≤ 1 and κB ≥ 1. The inequality (3.21)

can then be rewritten as
γ1u ≤ γ2 log(u). (3.23)

Let us denote by ψ(u)
def
= γ1u − γ2 log(u). Since γ2 > 3γ1, the equation ψ(u) = 0 admits

two roots u1 ≤ u2 and (3.23) holds for u ∈ [u1, u2]. The definition of u2 then gives that

log(u2)−
γ1
γ2
u2 = 0
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which is
u2e
− γ1
γ2
u2 = 1.

Setting z = −γ1

γ2
u2, we obtain that

zez = −γ1
γ2

Thus z = W−1(−γ1

γ2
) < 0, where W−1 is the second branch of the Lambert function defined

over [−1
e , 0). As −γ1

γ2
≥ −1

3 , z is well defined and thus

u2 = −γ2
γ1
z = −γ2

γ1
W−1

(
−γ1
γ2

)
> 0.

As a consequence, we deduce from (3.23) and (3.22) that

k∑
j=0

‖gj‖2 =
ς

2
u22 =

1

2ς

(
8nκB(κB + L)

τϑ
3
2

)2
∣∣∣∣∣W−1

(
− τςϑ

3
2

8nκB(κB + L)

)∣∣∣∣∣
2

.

and

average
j∈{0,...,k}

‖gj‖2 ≤
1

2ς

(
8nκB(κB + L)

τϑ
3
2

)2
∣∣∣∣∣W−1

(
− τςϑ

3
2

8nκB(κB + L)

)∣∣∣∣∣
2

· 1

k + 1
. (3.24)

If (3.20) does not hold, we have that

average
j∈{0,...,k}

‖gj‖2 < max

{
ς,

1

2
e

2Γ0ϑ
n(κB+L)

}
· 1

k + 1
. (3.25)

Combining (3.24) and (3.25) gives (3.8).

Finally, suppose that 1
2
< µ < 1. Once more, we apply Lemma 3.1 for each i ∈ {1, . . . , n}

with a` = g2i,`, ξ = ς and α = 2µ > 1 and obtain that

k∑
j=1

∆2
k,j ≤

1

ϑ(1− 2µ)

((
ς +

k∑
`=0

g2i,`

)1−2µ
− ς1−2µ

)
≤ ς1−2µ

ϑ(2µ− 1)
. (3.26)

Substituting the bound (3.26) in (3.13) and using (3.12) and AS.3 gives that

k∑
j=0

1

(ς +
∑k

j=0 ‖gj‖2)µ
τςµ
√
ϑ‖gj‖2

2κB

≤ Γ0 +
n(κB + L)ς1−2µ

2ϑ(2µ− 1)
.

If we now suppose that
k∑
j=0

‖gj‖2 ≥ ς, (3.27)

then

average
j∈{0,...,k}

‖gj‖2 ≤
[

21+µκB

τςµ
√
ϑ

(
Γ0 +

n(κB + L)ς1−2µ

2ϑ(2µ− 1)

)] 1
1−µ
· 1

k + 1
. (3.28)
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If (3.27) does not hold, we derive that

average
j∈{0,...,k}

‖gj‖2 ≤
ς

(k + 1)
. (3.29)

Thus, (3.28) and(3.29) finally imply (3.10). 2

These result suggest additional remarks.

1. A comparison of the 3 bounds ??? Any suggestion?

2. That the bounds given are not continuous as a function µ at µ = 1
2

is a result of our
bounding process within the proof of Theorem 3.2 (for instance in the last inequality of
(3.14)). Continuous bounds have been proved (see[17]) if one is ready to assume that
the objective functions’ gradients remain uniformly bounded.

3. If the algorithm is terminated as soon as ‖gk‖ ≤ ε (which is customary for deterministic
algorithms searching for first-order points), it must stop at the latest at iteration

k = κ2?ε
−2, (3.30)

where κ? = κ1 for µ ∈ (0, 1
2
), κ? = κ2 for µ = 1

2
and κ? = κ3 for µ ∈ ( 1

2
, 1). It is

truly remarkable that there exist first-order OFFO methods whose global complexity
order is identical to that of standard first-order methods using function evaluations (see
[25, 19, 3] or [6, Chapter 2]), despite the fact that the latter exploit significantly more
information.

4. If Bk = 0 for all k and µ = 1
2
, (3.8) gives an upper complexity bound for the deterministic

momentum-less Adagrad algorithm which is significantly better than that proposed
(using bounded gradients) by [10, 18] and more recently by [31] for a very specific
choice of the stepsize (learning rate).

5. It is possible to give a more explicit bound on κ2 by finding an upper bound on the
value of the involved Lambert function. This can be obtained by using [7, Theorem 1]
which states that, for x > 0,∣∣W−1(−e−x−1)∣∣ ≤ 1 +

√
2x+ x. (3.31)

Remembering that, for γ1 and γ2 given by (3.22), log
(
γ2

γ1

)
≥ log(3) > 1 and taking

x = log
(
γ2

γ1

)
− 1 > 0 in (3.31) then gives that

∣∣∣∣W−1(−γ1γ2
)∣∣∣∣ ≤ log

(
γ2
γ1

)
+

√
2

(
log

(
γ2
γ1

)
− 1

)
.

6. It is also possible to extend the definition of sLk in (2.6) by premultiplying it by a stepsize
αk ∈ [αmin, 1] for some αmin ∈ (0, 1]. Our results again remain valid (with modified
constants). Covering a deterministic momentum-less Adam would require extending
the results to allow for (3.1) to be replaced by

wi,k = ς +

k∑
j=0

βk−j2 g2i,j (i ∈ {1, . . . , n}) (3.32)
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for some β2 < 1. This can be done by following the argument of Theorem 2 in [10].
However, as in this reference, the final bound on the squared gradient norms does not
tend to zero when k grows(5), illustrating the (known) lack of convergence of Adam. We
therefore do not investigate this option in detail.

7. The ε-order (3.30) also improves slightly on the O(ε−2 + | log(ε)|) ε-order obtained for
the DFO-based approach mentioned in the introduction (which, we recall, requires very
strong assumptions on global minimization).

Are the (good) upper bound given by this theorem sharp?

Theorem 3.3 The bounds (3.6), (3.8) and (3.10) are essentially sharp in that, for each
µ ∈ (0, 1) and each η ∈ (0, 1], there exists a univariate function fµ,η satisfying AS.1-AS.3
such that, when applied to minimize fµ,η from the origin, the ASTR1 algorithm with (3.1)
and ϑ = 1 produces a sequence of gradient norms given by ‖gk‖ = 1

k
1
2

+η
.

Proof. Following ideas of [6, Theorem 2.2.3], we first construct a sequence of iterates
{xk} for which fµ,η(xk) = fk and ∇1

xfµ,η(xk) = gk for associated sequences of function
and gradient values {fk} and {gk}, and then apply Hermite interpolation to exhibit the
function fµ,η itself. We start by defining

g0
def
= −2, gk

def
= − 1

k
1
2
+η

(k > 0), (3.33)

s0
def
=

2

(ς + 4)µ
, sk

def
=

1

k
1
2
+η(ς +

∑k
j=0 g

2
j )
µ

(k > 0) (3.34)

yielding that

|g0s0| =
4

(ς + 4)µ
, |gksk| =

1

k1+2η(ς +
∑k

j=0 g
2
j )
µ
≤ 1

k1+2η
(k > 0) (3.35)

(remember that g20 = 4). We then define Bk
def
= 0 for all k ≥ 0,

x0 = 0, xk+1 = xk + sk (k > 0) (3.36)

and

f0 =
4

(ς + 4)µ
+ ζ(1 + 2η) and fk+1 = fk + gksk (k ≥ 0), (3.37)

where ζ(·) is the Riemann zeta function. Observe that the sequence {fk} is decreasing
and that, for all k ≥ 0,

fk+1 = f0 −
k∑
k=0

|gksk| ≥ f0 −
4

(ς + 4)µ
−

k∑
k=1

1

k1+2η
≥ f0 −

4

(ς + 4)µ
− ζ(1 + 2η)

(5)A constant term in − log(β2) refuses to vanish.
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where we used (3.37) and (3.35). Hence (3.37) implies that

fk ∈ [0, f0] for all k ≥ 0. (3.38)

Also note that, using (3.37),
|fk+1 − fk − gksk| = 0, (3.39)

while, using (3.34),

|g0 − g1| = 1 ≤ 1

2
(ς + 4)µ s0.

Moreover, using the fact that 1/x
1
2
+η is a convex function of x over [1,+∞), and that

from (3.34) sk ≥ 1

k
1
2

+η(ς+4+k)µ
, we derive that, for k > 0,

|gk+1 − gk| =

∣∣∣∣∣ 1

(k + 1)
1
2
+η
− 1

k
1
2
+η

∣∣∣∣∣
≤
(

1

2
+ η

)
1

k
3
2
+η

≤ 3

2

(ς + 4 + k)µ

kk
1
2
+η(ς + 4 + k)µ

≤ 3

2

(ς + 4 + k)µ

k
sk

≤ 3

2
(ς + 5)µ sk.

These last bounds and (3.38) allow us to use standard Hermite interpolation on the data
given by {fk} and {gk}: see, for instance, Theorem A.9.1 in [6] with p = 1 and

κf = max

[
3

2
(ς + 5)µ, f0, 2

]
(3.40)

(the second term in the max bounding |fk| because of (3.38) and the third bounding |gk|
because of (3.33)). We then deduce that there exists a continuously differentiable function
fµ,η from IR to IR with Lipschitz continuous gradient (i.e. satisfying AS.1 and AS.2) such
that, for k ≥ 0,

fµ,η(xk) = fk and ∇1
xfµ,η(xk) = gk.

Moreover, the range of fµ,η and ∇1
xfµ,η are constant independent of η, hence guaranteeing

AS.3 and AS.3. The definitions (3.33), (3.34), (3.36) and (3.37) imply that the sequences
{xk}, {fk} and {gk} can be seen as generated by the ASTR1 algorithm (with Bk = 0)
applied to fµ,η, starting from x0 = 0 and the desired conclusion follows. 2

The bounds (3.6), (3.8) and (3.10) are therefore essentially sharp (in the sense of [5]) for the
ASTR1 algorithm with (3.1) and ϑ = 1, which is to say that the lower complexity bound for
the algorithm is arbitrarily close to its upper bound. Interestingly, the argument in the proof
of the above theorem fails for η = 0, as this choice yields that

k∑
j=0

gTj sj ≥
k∑
j=0

1

k(ς + log(k + 1))µ
.
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Since ∫ k

1

dt

t(log(t+ 1))µ
>

∫ k

1

dt

(t+ 1)(log(t+ 1))µ
=

(log(k + 1))1−µ

1− µ
− log(2)1−µ

1− µ

tends to infinity as k grows, this indicates (in view (3.37)) that AS.3 cannot hold. Also note
that (4.14) implies that the gradients remain uniformly bounded.

Figure 1 shows the behaviour of fµ,η(x) for µ = 1
2

and η = ς = 1
100

, its gradient and
Hessian. The top three panels show the interpolated function resulting from the first 100
iterations of the ASTR1 algorithm with (3.1), while the bottom three panels report using
104 iterations. (We have chosen to shift f0 to 100 in order to avoid large numbers on the
vertical axis of the left panels.) One verifies that the gradient is continous and converges to
zero. Since the Hessian remains bounded where defined, this indicates that the gradient is

Lipschitz continuous. Due to the slow convergence of the series
∑

j 1/j
1

1+2/100 , illustrating
the boundeness of f0 − fk+1 would require many more iterations. One also notes that the
gradient is not monotonically increasing, which implies that fµ,η(x) is nonconvex, although
this is barely noticeable in the left panels of the figure. Note finally that the fact that the
example is unidimensional is not restrictive, since it is always possible to make the value of
its objective function and gradient independent of all dimensions but one.
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Figure 1: The function fµ,η(x) (left), its gradient∇1
xfµ,η(x) (middle) and its Hessian∇2

xfµ,η(x)
(right) plotted as a function of x, for the first 100 (top) and 104 (bottom) iterations of the
ASTR1 algorithm with (3.1) (µ = 1

2
, η = ς = 1

100
)
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4 A further “divergent stepsizes” variation on this theme

We now use a different proof technique to design new variants of ASTR1 with a fast global k-
order. This is achieved by modifying the definition of the scaling factors wi,k, requiring them
to satisfy a fairly general growth condition explicitly depending on k, the iteration index.
More specifically, we will assume, in this section, that the scaling factors wi,k are chosen
such that, for some power parameter 0 < ν ≤ µ < 1, all i ∈ {1, . . . , n} and some constants
ςi ∈ (0, 1],

max[ςi, vi,k] (k + 1)ν ≤ wi,k ≤ max[ςi, vi,k] (k + 1)µ (k ≥ 0), (4.1)

where, for each i, the vi,k satisfy the properties that

vi,k+1 > vi,k implies that vi,k+1 ≤ |gi,k+1| (4.2)

and
vi,k ≥ |gi,k|/h(k) (4.3)

for some positive function h(k) only depending on k. The motivation for introducing these
new variants is the remarkable numerical performance [18] of particular choices where

vi,k = max
j∈{0,...,k}

|gi,j | and vi,k =
1

k + 1

∑
j∈{0,...,k}

|gi,j |

which both satisfy (4.2) and (4.3) (with h(k) = 1 for the first and h(k) = k+1 for the second).
We further illustrate this in Section 5.

We start by proving a useful technical result.

Lemma 4.1 Consider and arbitrary i ∈ {1, . . . , n} and suppose that there exists a jς
such that

min

[
g2i,j
ςi
,
g2i,j
vi,j

]
≤ ςi for j ≥ jς . (4.4)

Then

min

[
g2i,j
ςi
,
g2i,j
vi,j

]
≥
g2i,j
2ςi

for j ≥ jς . (4.5)

Proof. Suppose that there exists a j > jς such that vi,j > 2ςi. Assume, without loss
of generality that j is the smallest such index. Then vi,j > vi,j−1 and (4.2) implies that
|gi,j | ≥ vi,j ≥ 2ςi. As a consequence,

min

[
g2i,j
ςi
,
g2i,j
vi,j

]
≥ min[4ςi, 2ςi] > ςi,

which contradicts (4.4). Thus no such j can exists and vi,j ≤ 2ςi for all j > j∗ and (4.5)
follows. 2
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We are now in position to state our complexity result for the ASTR1 algorithm using weight
defined by (4.1), (4.2) and (4.3).

Theorem 4.2 Suppose that AS.1, AS.2 and AS.3 hold and that the ASTR1 algorithm is
applied to problem (2.1), where the scaling factors wi,k are chosen in accordance with
(4.1), (4.2) and (4.3). Then, for any θ ∈ (0, τ ςmin) and

jθ
def
=

(
κB(κB + L)

ςmin(τςmin − θ)

) 1
ν

, (4.6)

there exist a constant κ�, a subsequence {k`} ⊆ {k}∞jθ+1 and an index kς (where κ� and
kς only depend on the problem and the algorithmic constants) such that, for all k` ≥ kς ,

min
j∈{0,...,k`}

‖gj‖2 ≤ κ�
(k` + 1)µ

k` − jθ
≤ 2κ�(jθ + 1)

k1−µ`

. (4.7)

Proof. From (2.12) and AS.3, using wmin,j
def
= mini∈{1,...,n}wi,k ensures that

Γ0 ≥ f(x0)− f(xk+1) ≥
k∑
j=0

n∑
i=1

g2i,j
2κBwi,j

[
τςmin −

κBBL

wmin,j

]
. (4.8)

Consider now an arbitrary θ ∈ (0, τ ςmin) and suppose first that, for some j,[
τςmin −

κBBL

wmin,j

]
≤ θ, (4.9)

i.e., using (4.1),

ςmin j
ν ≤ wmin,j ≤

κBBL

τςmin − θ
.

But this is impossible for j > jθ for jθ given by (4.6), and hence (4.9) fails for all j > jθ.
As a consequence, we have that, for k > jθ,

f(xjθ+1)− f(xk) ≥ θ
k∑

j=jθ+1

n∑
i=1

g2i,j
2κBwi,j

≥ θ

2κB

k∑
j=jθ+1

n∑
i=1

g2i,j
max[ςi, vi,j ] (j + 1)µ

≥ θ

2κB(k + 1)µ

k∑
j=jθ+1

n∑
i=1

min

[
g2i,j
ςi
,
g2i,j
vi,j

]

≥ θ(k − jθ)
2κB(k + 1)µ

min
j∈{jθ+1,...,k}

(
n∑
i=1

min

[
g2i,j
ςi
,
g2i,j
vi,j

])
(4.10)
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But we also know from (2.11), (4.1) and (4.3) that

f(x0)− f(xjθ+1) ≥
jθ∑
j=0

n∑
i=1

τςming
2
i,j

2κBwi,j
− 1

2
(κB + L)

jθ∑
j=0

n∑
i=1

g2i,j
w2
i,j

≥ − 1
2
(κB + L)

jθ∑
j=0

n∑
i=1

g2i,j
w2
i,j

≥ − 1
2
(κB + L)

jθ∑
j=0

n∑
i=1

g2i,j
max[ς, vi,k]2(j + 1)2ν

≥ − 1
2
(κB + L)

jθ∑
j=0

n∑
i=1

g2i,j
v2i,k(j + 1)2ν

≥ − 1
2
n(κB + L)

jθ∑
j=0

h(j)2. (4.11)

Combining (4.10) and (4.11), we obtain that

Γ0 ≥ f(x0)−f(xk+1) ≥ − 1
2
n(κB+L)

jθ∑
j=0

h(j)2+
θ(k − jθ)

2κB(k + 1)µ
min

j∈{jθ+1,...,k}

(
n∑
i=1

min

[
g2i,j
ςi
,
g2i,j
vi,j

])

and thus that

min
j∈{jθ+1,...,k}

(
n∑
i=1

min

[
g2i,j
ςi
,
g2i,j
vi,j

])
≤ 2κB(k + 1)µ

θ(k − jθ)

Γ0 + 1
2
n(κB + L)

jθ∑
j=0

h(j)2


and we deduce that there must exist a subsequence {k`} ⊆ {k}∞jθ+1 such that, for each `,

n∑
i=1

min

[
g2i,k`
ςi

,
g2i,jk`
vi,k`

]
≤ 2κB(k` + 1)µ

θ(k` − jθ)

Γ0 + 1
2
n(κB + L)

jθ∑
j=0

h(j)2

 . (4.12)

But

(k` + 1)µ

k` − jθ
<

2µkµ`
k` − jθ

<
2kµ`

k` − jθ
=

2kµ` k`
(k` − jθ)k`

=
k`

k` − jθ
· 2

k1−µ`

≤ 2(jθ + 1)

k1−µ`

, (4.13)

where we used the facts that µ < 1 and that k`
k`−jθ is a decreasing function for k` ≥ jθ + 1.

Using this inequality, we thus obtain from (4.12) that, for each `,

n∑
i=1

min

[
g2i,k`
ςi

,
g2i,jk`
vi,k`

]
≤ 4κB(jθ + 1)

θ k1−µ`

Γ0 + 1
2
n(κB + L)

jθ∑
j=0

h(j)2

 .
As a consequence,

kς
def
=

4κB(jθ + 1)
[
Γ0 + 1

2
n(κB + L)

∑jθ
j=0 h(j)2

]
θςmin


1

1−µ
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is such that, for all k` ≥ kς ,

min

[
g2i,k`
ςi,

,
g2i,`
vi,k`

]
≤ ςmin.

Lemma 4.1 then yields that, for all k` ≥ kς ,

n∑
i=1

g2i,k`
2ςi
≤ 2κB(k` + 1)µ

θ(k` − jθ)

Γ0 + 1
2
n(κB + L)

jθ∑
j=0

h(j)2


which, because ςi ≤ 1, gives that, for all k` ≥ kς ,

‖gk`‖
2 ≤ (k` + 1)µ

k` − jθ

(
4κB

θ

)Γ0 + 1
2
n(κB + L)

jθ∑
j=0

h(j)2

 ,
finally implying (4.7) because of (4.13). 2

We again provide some comments on this last result.

1. The choice (4.1) is of course reminiscent, in a smooth and nonconvex setting, of the
“divergent stepsize” subgradient method for non-smooth convex optimization (see [2]
and the many references therein), for which a O(1/

√
k) global rate of convergence is

known (Theorems 8.13 and 8.30 in this last reference).

2. Theorem 4.2 provides information on the speed of convergence for iterations that are
beyond an a priori computable iteration index. Indeed jθ and kς only depends on ν
h(`) and problem’s constants and, in particular do not depend on k. However, the
formulation of the theorem is slightly weaker than that of Theorem 3.2. Because (4.7)
only holds for iterates along the subsequence {k`}, there is no guarantee that the bounnd
given by the right-hand-side is valid at other iterations. But note that this right-hand
side depends on k`, which is an index in the complete sequence of iterates, rather than
on ` (the subsequence index).

This slightly weaker formulation is no longer necessary if one is ready to assume bounded
gradients, as can be seen in Theorem 4.1 in [17].

3. As the chosen values of µ and ν approach zero, then the k-order of convergence beyond
jθ tends to O(1/

√
k`), which the order derived for the methods of the previous section

and is the standard k-order for first-order methods using evaluations of the objective
function, albeit the value of jθ might increase.

We are now again interested to estimate how sharp the k-order bound (4.7) in O( 1
k(1−µ)/2 ) is.

Theorem 4.3 The bound (4.7) is essentially sharp in that, for any ω > 1
2
(1− ν), there

exists a univariate function fω(x) satisfying AS.1–AS.3 such that the ASTR1 algorithm
with (4.1) applied to this function produces a sequence of gradient norms given by ‖gk‖ =

1
(k+1)ω .
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Proof. Consider the sequence defined, for some ω ∈ ( 1
2
(1− ν), 1] and all k ≥ 0, by

gk = − 1

(k + 1)ω
wk = max

[
ς, max
`∈{0,...,k}

|g`|
]

(k + 1)ν = (k + 1)ν , (4.14)

sk =
1

(k + 1)2ω−ν
< 1 and fk+1 = fk + gksk, (4.15)

where we have chosen ς ∈ (0, 1) and f0 = ζ(2ω + 1
2
) where ζ(·) is the Riemann zeta

function. Immediately note that
lim
k→∞

|gk| = 0,

and |gk| ≤= 1 = κg for all k. We now verify that, if

x0 = 0 and xk = xk−1 + sk−1 for k ≥ 1,

then exists a function fω(x) satisfying AS.1–AS.3 such that, for all k ≥ 0,

fω(xk) = fk, and gω(xk) = gk,

and such that the sequence defined by (4.14)-(4.15) is generated by applying the ASTR1

algorithm using Bk = 0. The function fω(x) is constructed using Hermite interpolation
on each interval [xk, xk+1] (note that the xk are monotonically increasing), which known
(see [3] or [6, Th. A.9.2]) to exist whenever there exists a constant κf ≥ 0 such that, for
each k,

|fk+1 − fk − gksk| ≤ κf |sk|2 and |gk+1 − gk| ≤ κf |sk|.

The first of these conditions holds by construction of the {fk}k≥0. To verify the second,
we first note that, because 1/(k + 1)ω is a convex function of k and |1/(k + 1)| ≤ 1,

|gk+1 − gk|
|sk|

≤ ω(k + 1)2ω−ν

(k + 1)1+ω
≤ ω

(k + 1)ν−ω+1
≤ ω (k ≥ 0), (4.16)

where ν − ω + 1 ≥ ν > 0, so that the desired inequality holds with κf = ω.

Moreover, Hermite interpolation guarantees that fω(x) is bounded below whenever |fk|
and |sk| remain bounded. We have already verified the second of these conditions in (4.15).
We also have from (4.15) that

f0 − fk+1 =
k∑
j=0

1

j + 1)2ω(j + 1)ν
(4.17)

which converges to the finite limit ζ(2ω + ν) because we have chosen ω > 1
2
(1− ν). Thus

fk ∈ (0, ζ(2ω + ν)] for all k and the first condition is also satisfied and AS.3 holds. This
completes our proof. 2

The conclusions which can be drawn from this theorem parallel those drawn after Theorem 3.3.
The bound (4.7) is essentially sharp (in the sense of [5](6)) for the ASTR1 algorithm with (4.1).

(6)Observe that f0 now tends to infinity when ω tends to 1
2
(ν − 1) and hence that AS.3 fails in the limit. As

before, the structure of (4.7) implies that the complexity bound deteriorates when the gap Γ0 = f(x0)− flow

grows.
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Figure 2 shows the behaviour of fω(x) for ν = 1
9

and ω = 4
9

+ 1
100

, its gradient and Hessian.
The top three panels show the interpolated function resulting from the first 100 iterations of
the ASTR1 algorithm with (4.1), while the bottom three panels report using 5.104 iterations.
(We have again chosen to shift f0 to 100 in order to avoid large numbers on the vertical
axis of the left panels.) As above, one verifies that the gradient is continous, non-monotone
and converges to zero and that the Hessian remains bounded where defined, illustrating the
gradient’s Lipschitz continuity. Finally, as for Theorem 3.3, the argument in the proof of
Theorem 4.3 fails for ω = 1

2
(1− ν) because the sum in (4.17) is divergent in this case, which

prevents AS.3 to hold.
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Figure 2: The function fω(x) (left), its gradient ∇1
xfω(x) (middle) and its Hessian ∇2

xfω(x)
(right) plotted as a function of x, for the first 100 (top) and 5.104 (bottom) iterations of the
ASTR1 algorithm with (4.1) (ν = 1

9
, ω = 4

9
+ 1

100
)

5 Numerical illustration

Because the numerical behaviour of the methods discussed above is not well-known(7), we
now provide some numerical illustration. For the sake of clarity and conciseness, we needed
to keep the list of algorithmic variants reported here reasonably limited, and have taken the
following considerations into account for our choice.

1. Both scaling techniques (3.1) and (4.1) are illustrated. Moreover, since the Adam
algorithm using (3.32) is so commonly used the stochastic context, we also included

(7)Except for stochastic finite sum minimization.
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it in the comparison.

2. Despite Theorems 3.2 and 4.2 covering a wide choice of the parameters µ and ν, we
have chosen to focus here on the most common choice for (3.1) and (3.32) (i.e. µ = 1

2

and β2 = 9
10

, corresponding to Adagrad and Adam). When using (4.1), we have also
restricted our compararison to the single choice of µ and ν used (with reasonable success)
in [18], namely µ = ν = 1

10
.

3. In order to be able to test enough algorithmic variants on enough problems in reasonable
computing time, we have decided to limit our experiments to low-dimensional problems.
For the same reason, we have focused our experiments on the case where ϑ = 1.

4. We have chosen to define the step sk in Step 3 of the ASTR1 algorithm by approximately
minimizing the quadratic model (2.10) within the `∞ trust-region using a projected
truncated conjugate-gradient approach [23, 24] which is terminated as soon as

‖gk +Bksk‖2 ≤ max
[
10−12, 10−5‖gk‖2

]
.

We also considered an alternative, namely that of minimizing the quadratic model in
an Euclidean `2 trust region (with the same accuracy requirement) using a Generalized
Lanczos Trust Region (GLTR) technique [14].

5. We thought it would be interesting to compare “purely first-order” variants (that is
variants for which Bk = 0 for all k) with methods using some kind of Hessian ap-
proximation. Among many possibilities, we selected three types of approximations of
interest. The first is the diagonal Barzilai-Borwein approximation [1]

Bk+1 =
‖sk‖22
yTk sk

In (5.1)

where In is the identity matrix of dimension n, yk = gk+1−gk and yTk sk >= 10−15‖sk‖22.
The second is limited-memory BFGS approximations [22], where a small number of
BFGS updates are added to the matrix (5.1), each update corresponding to a secant
pair (yk, sk). The third is not to approximate the Hessian at all, but to use its exact
value, that is Bk = ∇2

xf(xk) for all k.

Given these considerations, we have selected the following algorithmic variants:
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adag1 : the ASTR1 algorithm using the Euclidean ‖ · ‖2 norm and

wi,k =

ς +

k∑
j=0

‖gj‖22

 1
2

for i ∈ {1, . . . , n},

adagi1 : the ASTR1 algorithm using the ‖ · ‖∞ norm and (3.1) with µ = 1
2
,

adag2 : the ASTR1 algorithm using the Euclidean ‖ · ‖2 norm and

wi,k =

ς +
k∑
j=0

βk−j2 ‖gj‖22

 1
2

for i ∈ {1, . . . , n},

with β2 = 9
10

,
adagi2 : the ASTR1 algorithm using the ‖ · ‖∞ norm and (3.32) with µ = 1

2
and

β2 = 9
10

,
maxg01 : the ASTR1 algorithm using (4.1) with

wi,k = (k + 1)
1
10 max

[
ς, max
j∈{0,...,k}

‖gj‖2
]

for i ∈ {1, . . . , n},

maxgi01 : the ASTR1 algorithm using (4.1) with

wi,k = (k + 1)
1
10 max

[
ς, max
j∈{0,...,k}

|gi,j |
]

for i ∈ {1, . . . , n},

sdba : the standard steepest-descent algorithm using Armijo backtracking (see
[6, Algorithm 2.2.1], for instance),

b1adagi1 : adagi1 where Bk is the Barzilai-Borwein Hessian approximation (5.1),
lmadagi3b : adagi1 where Bk is a limited-memory BFGS Hessian approximation

with 3 secant pairs,
Eadagi1 : adagi1 using the exact Hessian, i.e. Bk = ∇2f(xk) for all k.

When relevant, all variants use ς = 0.01. The first seven algorithms are “purely first-order”
in the sense discussed above. Note that, under AS.3, maxg01 and maxgi01 satisfy (4.1) with
µ = ν = 1

10
, ςi = ς and κw = κg. Also note that adagi1 and adagi2 are nothing but the

deterministic versions of Adagrad and Adam, respectively. All on the algorithms were run(8)

on the low dimensional instances of the problems(9) of the OPM collection (January 2022)
[20] listed with their dimension in Table 1, until either ‖∇1

xf(xk)‖2 ≤ 10−6, or a maximum of
100000 iterations was reached, or evaluation of the gradient returned an error.

Before considering the results, we make two additional comments. The first is that very
few of the test functions satisfy AS.3 on the whole of IRn. While this is usually not a problem
when testing standard first-order descent methods (because AS.3 may then be true in the
level set determined by the starting point), this is no longer the case for significantly non-
monotone methods like the ones tested here. As a consequence, it may (and does) happen
that the gradient evaluation is attempted at a point where its value exceeds the Matlab
overflow limit, causing the algorithm to fail on the problem. The second comment is that the

(8)In Matlab® on a Lenovo ThinkPad X1 Carbon with four cores and 8 GB of memory.
(9)From their standard starting point.
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Problem n Problem n Problem n Problem n Problem n Problem n

argauss 3 chebyqad 10 dixmaanl 12 heart8ls 8 msqrtals 16 scosine 10
arglina 10 cliff 2 dixon 10 helix 3 msqrtbls 16 sisser 2
arglinb 10 clplatea 16 dqartic 10 hilbert 10 morebv 12 spmsqrt 10
arglinc 10 clplateb 16 edensch 10 himln3 2 nlminsurf 16 tcontact 49
argtrig 10 clustr 2 eg2 10 himm25 2 nondquar 10 trigger 7
arwhead 10 cosine 10 eg2s 10 himm27 2 nzf1 13 tridia 10
bard 3 crglvy 4 eigfenals 12 himm28 2 osbornea 5 tlminsurfx 16
bdarwhd 10 cube 2 eigenbls 12 himm29 2 osborneb 11 tnlminsurfx 16
beale 2 curly10 10 eigencls 12 himm30 3 penalty1 10 vardim 10
biggs5 5 dixmaana 12 engval1 10 himm32 4 penalty2 10 vibrbeam 8
biggs6 6 dixmaanb 12 engval2 3 himm33 2 penalty3 10 watson 12
brownden 4 dixmaanc 12 expfit 2 hypcir 2 powellbs 2 wmsqrtals 16
booth 2 dixmaand 12 extrosnb 10 indef 10 powellsg 12 wmsqrtbls 16
box3 3 dixmaane 12 fminsurf 16 integreq 10 powellsq 2 woods 12
brkmcc 2 dixmaanf 12 freuroth 4 jensmp 2 powr 10 yfitu 3
brownal 10 dixmaang 12 genhumps 5 kowosb 4 recipe 2 zangwill2 2
brownbs 2 dixmaanh 12 gottfr 2 lminsurg 16 rosenbr 10 zangwill3 3
broyden3d 10 dixmaani 12 gulf 4 macino 10 sensors 10
broydenbd 10 dixmaanj 12 hairy 2 mexhat 2 schmvett 3
chandheu 10 dixmaank 12 heart6ls 6 meyer3 3 scurly10 10

Table 1: The OPM test problems and their dimension

(sometimes quite wild) non-monotonicity of the methods considered here has another practical
consequence: it happens on several nonconvex problems(10) that convergence of different
algorithmic variants occurs to points with gradient norm within termination tolerance (the
methods are thus achieving their objective), but these points can be quite far apart and
have very different function values. It is therefore impossible to meaningfully compare the
convergence performance to such points across algorithmic variants. This does reduce the set
of problems where several variants can be compared.

We discuss the results of our tests from the efficiency and reliability points of view. Effi-
ciency is measured in number of derivatives’ evaluations (or, equivalently, iterations)(11): the
fewer evaluations the more efficient the algorithm. In addition to presenting the now standard
performance profile [11] for our selection of algorithms in Figure 3, we follow [26] and consider
the derived “global” measure πalgo to be 1

50
of the area below the curve corresponding to algo

in the performance profile, for abscissas in the interval [1, 50]. The larger this area and closer
πalgo to one, the closer the curve to the right and top borders of the plot and the better the
global performance. When reporting reliability, we say that the run of an algorithmic variant
on a specific test problem is successful if the gradient norm tolerance has been achieved, or
if the final relative error on the objective-function value is below 10−7 or, should the optimal
value be below 10−7, if the final absolute error is below 10−7. These last two criteria were
applied to instances of a total of 21 problems(12). In what follows, ρalgo denotes the percent-
age of successful runs taken on all problems were comparison is meaningful. Table 2 presents
the values of these statistics in two columns: for easier reading, the variants are sorted by

(10)broyden3d, broydenbd, curly10, gottfr, hairy, indef, jensmp, osborneb, sensors, wmsqrtals, wmsqrtbls,
woods.
(11)For sdba, gradient and objective-function evaluations.
(12)biggs6, brownden, box3, chebyqad, crglvy, cube, dixmaanb, dixmaanh, dixmaani, dixmaanj, dixmaanl,

edensch, engval2, freuroth, indef, msqrtbls, osborneb, powellsq, rosenbr, vardim, zangwil3.
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algo πalgo ρalgo algo πalgo ρalgo
lmadagi3b 0.72 74.79 adagi1 0.70 75.63
adagi1 0.70 75.63 b1adagi1 0.68 74.79
maxgi01 0.70 71.43 lmadagi3b 0.72 74.79
sdba 0.69 73.95 sdba 0.69 73.95
b1adagi1 0.68 74.79 maxgi01 0.70 71.43
Eadagi1 0.60 67.23 adag1 0.54 68.91
adag1 0.54 68.91 Eadagi1 0.60 67.23
adag2 0.52 36.13 maxg01 0.52 63.03
maxg01 0.52 63.03 adag2 0.52 36.13
adagi2 0.51 31.09 adagi2 0.51 31.09

Table 2: Performance statistics for deterministic OFFO algorithms on OPM problems

decreasing global performance (πalgo) in the first, and by decreasing reliability (ρalgo) in the
second.
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Figure 3: Performance profile for deterministic OFFO algorithms on OPM problems

A total of 22 problems(13) could not be successfully solved by any of the above algorithms,
we believe mostly because of ill-conditioning.

The authors are of course aware that the very limited experiments presented here do
not replace extended numerical practice and could be completed in various ways. They
nevertheless suggest the following (very tentative) comments.

1. There seems to be a definite advantage in using the ‖ · ‖∞ norm over ‖ · ‖2, as can be
seen by comparing adag1 with adagi1, adag2 with adagi2, and maxg01 with maxgi01.
While this may be due in part to the fact that the trust region in `∞ norm is larger than
that in `2 norm (and thus allows larger steps), it is also the case that the disaggregate

(13)biggs5, brownal, brownbs, cliff, eg2s, genhumps, gulf, heart8ls, himm29, mexhat, meyer3, nondquar, os-
bornea, penalty2, powellbs, powellsg, scurly10, scosine, trigger, vibrbeam, watson, yfitu.
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definition of the scaling factors wi,k ((3.1), (3.32) or (4.1)) used in conjunction with the
`∞ norm may allow a better exploitation of differences of scale between coordinates.

2. Among the ”purely first-order” methods, sdba, maxgi01 and adagi1 are almost undis-
tinguishable form the performance point of view, with a small reliability advantage
for adagi1 (Adagrad). This means that, at least in those experiments, the suggestion
resulting from the theory that OFFO methods may perform comparably to standard
first-order methods seems vindicated.

3. The Adam variants (adag2 and adagi2) are clearly outperformed in our tests by the
Adagrad ones (adag1 and adagi1). We recall that analytical examples where Adam
fails do exist, while the convergence of Adagrad is covered by our theory.

4. The theoretical difference in global rate of convergence between adagi1 and maxgi01

does not seem to have much impact on the relative performance of these two methods.

5. The use of limited memory Hessian approximation (lmadagi1) appears to enhance the
performance of adagi1, but this is not the base of the Barzilai-Borwein approximation
(b1adagi1) or, remarkably, for the use of the exact Hessian (Eadagi1). When these
methods fail, this is often because the steplength is too small to allow the truncated
conjugate-gradient solver to pick up second-order information in other directions than
the negative gradient. What favours the limited memory approach remains unclear at
this stage.

Finally, and although this is a slight digression from the paper’s main topic, we report in
Table 3 how reliability of our selection of OFFO variants is impacted by noise. To obtain these
results, we ran the considered methods on all test problems where the evaluations (function(14)

and derivatives) are contaminated by 5, 15, 25 or 50 % of relative Gaussian noise with unit
variance. The reliability percentages in the table result from averaging ten sets of independent
runs.

ρalgo/relative noise level
algo 0% 5% 15% 25% 50%

adagi1 75.63 70.42 70.34 72.02 72.77
b1adagi1 74.79 75.38 75.13 75.38 75.88
lmadagi3b 74.79 74.79 70.67 71.34 71.09
sdba 73.95 34.29 35.04 36.30 36.89
maxgi01 71.43 70.59 70.42 73.61 74.45
adag1 68.91 64.12 68.91 71.09 71.01
Eadagi1 67.23 67.98 68.74 70.17 70.08
maxg01 63.03 63.28 59.50 61.60 63.70
adag2 36.13 28.74 30.76 39.16 42.35
adagi2 31.09 24.12 25.88 28.66 31.93

Table 3: Reliability of OFFO algorithms as a function of the relative Gaussian noise level

(14)For sdba.
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As can be seen in the table, the reliability of the sdba methods dramatically drops as
soon as noise is present, while that of the other OFFO methods is barely affected and remains
globally unchanged for increasing noise levels. This is consistent with widespread experience in
the deep learning context, where noise is caused by sampling among the very large number of
terms defining the objective function. This observation vindicates the popularity of methods
such as Adagrad in the noisy context and suggests that the new OFFO algorithms may have
some practical potential.

6 Conclusions

We have presented a parametric class of deterministic “trust-region minded” extensions of
the Adagrad method, allowing for the use of second-order information, should it be available.
We then prove that, for OFFO algorithms in this class, minj∈{0,...,k} ‖gj‖ = O(1/

√
k + 1). We

have shown that this bound, which does not require any uniform bound on the gradient, is
essentially sharp. It is identical to the global rate of convergence of standard first-order methods
using both objective-function and gradient evaluations, despite the fact that the latter exploit
significantly more information. Thus, if one considers the order of global convergence only,
evaluating the objective-function values is an unnecessary effort. We have also considered
another class of OFFO algorithms inspired by the “divergent stepsize” paradigm in non-
smooth convex optimization and have provided an essentially sharp (but slighlty worse) global
rate of convergence for this latter class. Limited numerical experiments suggest that the above
theoretical conclusions may translate to practice and remain, for OFFO methods, relatively
independent of noise.

Although discussed here in the context of unconstrained optimization, adaptation of the
above OFFO algorithms to problems involving convex constraints (such as bounds on the
variables) is relatively straightforward and practical: one then needs to intersect the trust-
region with the feasible set and minimize the quadratic model in this intersection (see [8,
Chapter 12]). It will be also of interest to further analyze the possible links between our
proposals and those of [16], both from the theoretical and practical perspectives.
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[10] A. Défossez, L. Bottou, F. Bach, and N. Usunier. A simple convergence proof for Adam and Adagrad.
Transactions on Machine Learning Research, October 2022.
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