
Trust-region algorithms: probabilistic complexity and intrinsic

noise with applications to subsampling techniques

S. Bellavia∗, G. Gurioli†, B. Morini‡ and Ph. L. Toint§

Abstract

A trust-region algorithm is presented for finding approximate minimizers of smooth
unconstrained functions whose values and derivatives are subject to random noise. It is
shown that, under suitable probabilistic assumptions, the new method finds (in expecta-
tion) an ε-approximate minimizer of arbitrary order q ≥ 1 in at most O(ε−(q+1)) inexact
evaluations of the function and its derivatives, providing the first such result for general
optimality orders. The impact of intrinsic noise limiting the validity of the assumptions
is also discussed and it is shown that difficulties are unlikely to occur in the first-order
version of the algorithm for sufficiently large gradients. Conversely, should these assump-
tions fail for specific realizations, then “degraded” optimality guarantees are shown to
hold when failure occurs. These conclusions are then discussed and illustrated in the
context of subsampling methods for finite-sum optimization.

Keywords: evaluation complexity, trust-region methods, inexact functions and deriva-
tives, probabilistic analysis, finite-sum optimization, subsampling methods.

1 Introduction

This paper is concerned with trust-region methods for solving the unconstrained optimization
problem

min
x∈Rn

f(x), f : Rn → R, (1.1)

where we assume that the values of the objective function f and its derivatives are computed
subject to random noise. Our objective is twofold. Firstly, we introduce a version of the de-
terministic method proposed in [10] which is able to handle the random context and provide,
under reasonable probabilistic assumptions, a sharp evaluation complexity bound (in expecta-
tion) for arbitrary optimality order. Secondly, we investigate the effect of intrinsic noise (that
is noise whose level cannot be assumed to vanish) on a first-order version of our algorithm and
prove “degraded” optimality, should this noise limit the validity of our assumptions. The new

∗Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Italy. Member of the INdAM
Research Group GNCS. Email: stefania.bellavia@unifi.it
†Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Italy. Member

of the INdAM Research Group GNCS. Email: gianmarco.gurioli@unifi.it
‡Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Italy. Member of the INdAM

Research Group GNCS. Email: benedetta.morini@unifi.it
§Namur Center for Complex Systems (naXys), University of Namur, 61, rue de Bruxelles, B-5000 Namur,

Belgium. Email: philippe.toint@unamur.be

1

2

results are then detailed and illustrated in the framework of finite-sum minimization using
subsampling.

Minimization algorithms using adaptive steplength and allowing for random noise in the
objective function or derivatives’ evaluations have already generated a significant literature
(e.g. [1, 13, 6, 16, 7, 4, 2]). We focus here on trust-region methods, which are methods
in which a trial step is computed by approximately minimizing a model of the objective
function in a “trust region” where this model is deemed sufficiently accurate. The trial
step is then accepted or rejected depending on whether a sufficient improvement in objective
function value predicted by the model is obtained or not, the radius of trust-region being
then reduced in the latter case. We refer the reader to [15] for an in-depth coverage of this
class of algorithms and to [17] for a more recent survey. Trust-region methods involving
stochastic errors in function/derivatives values were considered in particular in [1, 12] and
[7, 13], the latter being the only methods (to the author’s knowledge) handling random
perturbations in both the objective function and its derivatives. The complexity analysis of
the STORM (STochastic Optimization with Random Models) algorithm described in [7, 13]
is based on supermartingales and makes probabilistic assumptions on the accuracy of these
evaluations which become tighter when the trust-region radius becomes small. It also hinges
on the definition of a monotonically decreasing “merit function” associated with the stochastic
process corresponding to the algorithm. The method proposed in this paper can be viewed as
an alternative in the same context, but differs from the STORM approach in several aspects.
The first is that the method discussed here uses a model whose degree is chosen adaptively
at each iteration, requiring the (noisy) evaluation of higher derivatives only when necessary.
The second is that its scope is not limited to searching for first- and second-order approximate
minimizers, but is capable of computing them to arbitrary optimality order. The third is that
the probabilistic accuracy conditions on the derivatives’ estimations no longer depends on the
trust-region radius, but rather on the predicted reduction in objective function values, which
may be less sensitive to problem conditioning. Finally, its evaluation complexity analysis
makes no use of a merit function of the type used in [7].

In [5], the impact of intrinsic random noise on the evaluation complexity of a deter-
ministic “noise-aware” trust-region algorithm for unconstrained nonlinear optimization was
investigated and constrasted with that of an inexact version where noise is fully controllable.
The current paper considers the question in the more general probabilistic framework.

Even if the analysis presented below does not depend in any way on the choice of the
optimality order q, the authors are well aware that, while requests for optimality of orders
q ∈ {1, 2} lead to practical, implementable algorithms, this may no longer be the case for
q > 2. For high orders, the methods discussed in the paper therefore constitute an “idealized”
setting (in which complicated subproblems can be approximately solved without affecting the
evaluation complexity) and thus indicate the limits of achievable results.

The paper is organized as follows. After introducing the new stochastic trust-region algo-
rithm in Section 2, its evaluation complexity analysis is presented in Section 3. Section 4 is
then devoted to an in-depth discussion of the impact of noise on the first-order instantiation
of the algorithm, with a particular emphasis on the case where noise is generated by subsam-
pling in finite-sum minimization context. Conclusions and perspectives are finally proposed
in Section 5. Because our contribution borrows ideas from [4], themselves being partly in-
spired by [12], repeating some material from these sources is necessary to keep our argument
understandable. We have however done our best to limit this repetition as much as possible.

Basic notations. Unless otherwise specified, ‖ · ‖ denotes the standard Euclidean norm

3

for vectors and matrices. For a general symmetric tensor S of order p, we define

‖S‖[p]
def
= max
‖v‖=1

|S[v]p| = max
‖v1‖=···=‖vp‖=1

|S[v1, . . . , vp]|

the induced Euclidean norm. We also denote by ∇jxf(x) the j-th order derivative tensor of
f evaluated at x and note that such a tensor is always symmetric for any j ≥ 2. ∇0

xf(x) is
a synonym for f(x). dαe denotes the smallest integer not smaller than α. Moreover, given
a set B, |B| denotes its cardinality, 1B refers to its indicator function and Bc indicates its
complement. All stochastic quantities live in a probability space denoted by (Ω,A,Pr) with
the probability measure Pr and the σ-algebra A containing subsets of Ω. We never explicitly
define Ω, but specify it through random variables. Pr[event] finally denotes the probability of
an event and E[X] the expectation of a random variable X.

2 A trust-region minimization method for problems with
randomly perturbed function values and derivatives

We make the following assumptions on the optimization problem (1.1).

AS.1 The function f is q-times continuously differentiable in Rn, for some q ≥ 1. Moreover,
its j-th order derivative tensor is Lipschitz continuous for j ∈ {1, . . . , q} in the sense
that, for each j ∈ {1, . . . , q}, there exists a constant ϑf,j ≥ 0 such that, for all x, y ∈ Rn,

‖∇jxf(x)−∇jxf(y)‖ ≤ ϑf,j‖x− y‖. (2.1)

AS.2 f is bounded below in Rn, that is there exists a constant flow such that f(x) ≥ flow

for all x ∈ Rn.

AS.2 ensures that the minimization problem (1.1) is well-posed. AS.1 is a standard assumption
in evaluation complexity analysis(1). It is important because we consider algorithms that are
able to exploit all available derivatives of f and, as in many minimization methods, our
approach is based on using the Taylor expansions (now of degree j for j ∈ {1, . . . , q}) given
by

tf,j(x, s)
def
= f(x) +

j∑
`=1

∇`xf(x)[s]`. (2.2)

AS.1 then has the following crucial consequence.

Lemma 2.1 Suppose that AS.1 holds. Then for all x, s ∈ Rn,

|f(x+ s)− tf,j(x, s)| ≤
ϑf,j

(j + 1)!
‖s‖j+1. (2.3)

(1)It is well-known that requesting (2.1) to hold for all x, y ∈ Rn is strong. The weakest form of AS.1 which
we could use in what follows is to require (2.1) to hold for all x = xk (the iterates of the minimization algorithm
we are about to describe) and all y = xk + ξsk (where sk is the associated step and ξ is arbitrary in [0,1]).
However, ensuring this condition a priori, although maybe possible for specific applications, is hard in general,
especially for a non-monotone algorithm with a random element.

4

Proof. See [9, Lemma 2.1] with β = 1. 2

At a given iterate xk of our algorithm, we will be interested in finding a step s ∈ Rn which
makes the Taylor decrements

∆tf,j(xk, s)
def
= f(xk)− tf,j(xk, s) = tf,j(xk, 0)− tf,j(xk, s) (2.4)

large (note that ∆tf,j(x, s) is independent of f(x)). When this is possible, we anticipate from
the approximating properties of the Taylor expansion that some significant decrease is also
possible in f . Conversely, if ∆tf,j(x, s) cannot be made large in a neighbourhood of x, we
must be close to an approximate minimizer. More formally, we define, for some θ ∈ (0, 1] and
some optimality radius δ ∈ (0, θ], the measure

φδf,j(x) = max
‖d‖≤δ

∆tf,j(x, d), (2.5)

that is the maximal decrease in tf,j(x, d) achievable in a ball of radius δ centered at x. (The
practical purpose of introducing θ is to avoid unnecessary computations, as discussed below.)
We then define x to be a q-th order (ε, δ)-approximate minimizer (for some accuracy requests
ε ∈ (0, 1]q) if and only if

φδf,j(x) ≤ εj
δj

j!
for j ∈ {1, . . . , q}, (2.6)

(a vector d solving the optimization problem defining φδf,j(x) in (2.5) is called an optimality
displacement) [8, 10]. In other words, a q-th order (ε, δ)-approximate minimizer is a point
from which no significant decrease of the Taylor expansions of degree one to q can be obtained
in a ball of optimality radius δ. This notion is coherent with standard optimality measures
for low orders(2) and has the advantage of being well-defined and continuous in x for every
order. Note that φδf,j(x) is always non-negative.

This paper is concerned with the case where the values of the objective function f and
of its derivatives ∇jxf are subject to random noise and can only be computed inexactly (our
assumptions on random noise will be detailed below). Our notational convention will be to

denote inexact quantities with an overbar, so f(x, ξ) and ∇jxf(x, ξ) denote inexact values of
f(x) and ∇jxf(x), where ξ is a random variable causing inexactness. Thus (2.2) and (2.4) are
unavailable, and we have to consider

tf,j(xk, s, ξ)
def
= f(xk, ξ) +

j∑
`=1

∇`xf(xk, ξ)[s]
`

and the associated decrement

∆tf,j(x, sk, ξ)
def
= tf,j(xk, 0, ξ)− tf,j(xk, sk, ξ) = −

j∑
`=1

∇`xf(xk, ξ)[s]
` (2.7)

instead. For simplicity, we will often omit to mention the dependence of inexact values on
the random variable ξ in what follows, so (2.7) is rewritten as

∆tf,j(x, sk)
def
= tf,j(xk, 0)− tf,j(xk, sk) = −

j∑
`=1

∇`xf(xk)[s]
`. (2.8)

(2)It is easy to verify that, irrespective of δ, (2.6) holds for j = 1 if and only if ‖∇1
xf(x)‖ ≤ ε1 and that, if

‖∇1
xf(x)‖ = 0, λmin[∇2

xf(x)] ≥ −ε2 if and only if φδf,2(x) ≤ 1
2
ε2δ

2.

5

This in turn would require that we measure optimality using

φ
δ
f,j(x)

def
= max
‖d‖≤δ

∆tf,j(x, d) (2.9)

instead of (2.5). However, computing this exact global maximizer may be costly, so we choose
to replace the computation of (2.9) by an approximation, that is with the computation of an

optimality displacement d with ‖d‖ ≤ δ such that ςφ
δ
f,j(x) ≤ ∆tf,j(x, d) for some constant

ς ∈ (0, 1]. We state the Trust-Region with Noisy Evaluations (TRqNE) algorithm on the
following page using all the ingredients we have described. The trust region radius at iteration
k is denoted by rk instead of the standard notation ∆k.

A feature of the TRqNE algorithm is that it uses an adaptive strategy (in Step 1) to choose the
model’s degree in view of the desired accuracy and optimality order. Indeed, the model of
the objective function used to compute the step is tf,jk(xk, s), whose degree jk can vary from
an iteration to the other, depending on the “order of (inexact) optimality” achieved at xk (as
determined by Step 1). Also observe that, if the trust-region radius is small (that is rk ≤ θ),
the optimality displacement dk,jk is an approximate global minimizer of the model within the
trust region, which justifies the choice sk = dk,jk in this case. If rk > θ, the step computation
is allowed to be fairly approximate as the only requirement for a step in the trust region is
(2.13). This can be interpreted as a generalization of the familiar notions of “Cauchy” and
“eigen” points (see [15, Chapter 6]). In addition, note that, while nothing guarantees that
f(xk) ≥ f(xk+1), the mechanism of the algorithm ensures that f(xk) ≥ f(xk+1).

The TRqNE algorithm generates a random process. Randomness occurs because of the ran-
dom noise present in the Taylor decreases and objective function values, the former resulting
itself from the randomly perturbed derivatives values and, as the algorithm proceeds, from
the random realizations of the iterates xk and steps sk. In the following analysis, uppercase
letters denote random quantities, while lowercase ones denote realizations of these random
quantities. Thus, given ω ∈ Ω, xk = Xk(ω), gk = Gk(ω), etc. In particular, we distinguish

• ∆tf,j(x, s), the value at a (deterministic) x, s of the exact Taylor decrement, that is of
the Taylor decrement using the exact values of its derivatives at x;

• ∆tf,j(x, s) = ∆tf,j(x, s, ξ), the value at a (deterministic) x, s of an inexact Taylor decre-
ment, that is of a Taylor decrement using the inexact values of its derivatives (at x)
resulting from the realization of random noise;

• ∆tf,j(X,S), the random variable corresponding to the exact Taylor decrement taken at
the random variables X,S;

• ∆Tf,j(X,S), the random variable giving the value of the Taylor decrement using ran-
domly perturbed derivatives, taken at the random variables X,S.

Analogously, F 0
k

def
= F (Xk) and F sk

def
= F (Xk + Sk) denote the random variables associated

with the estimates of f(Xk) and f(Xk + Sk), with their realizations f0
k = f̄(xk) = f̄(xk, ξ)

and fsk = f̄(xk + sk) = f̄(xk + sk, ξ). Similarly, the iterates Xk, as well as the trust-region
radiuses Rk, the indeces Jk, the optimality radiuses ∆k, displacements Dk,j and the steps Sk

6

Algorithm 2.1: The TRqNE algorithm

Step 0: Initialisation. A criticality order q, a starting point x0 and accuracy levels
ε ∈ (0, 1)q are given. For a given constant η ∈ (0, 1), define

εmin
def
= min

j∈{1,..,q}
εj and ν

def
= min

[
1
2
η, 1

4
(1− η)

]
. (2.10)

The constants θ ∈ [εmin, 1], ς ∈ (0, 1], γ > 1, rmax ≥ 1 and an initial trust-region
radius r0 ∈ (εmin, rmax] are also given. Set k = 0.

Step 1: Derivatives estimation. Set δk = min[rk, θ]. For j = 1, . . . , q,

1. Compute derivatives’ estimates ∇jxf(xk) and find an optimality displacement
dk,j with ‖dk,j‖ ≤ δk such that

ςφ
δk
f,j(xk) ≤ ∆tf,j(xk, dk,j). (2.11)

2. If

∆tf,j(xk, dk,j) >

(
ςεj

1 + ν

)
δjk
j!
, (2.12)

go to Step 2 with jk = j.

Set jk = q.

Step 2: Step computation. If rk = δk, set sk = dk,jk and ∆tf,j(xk, sk) =
∆tf,j(xk, dk,jk). Otherwise, compute a step sk such that ‖sk‖ ≤ rk and

∆tf,j(xk, sk) ≥ ∆tf,j(xk, dk,jk). (2.13)

Step 3: Function decrease estimation. Compute the estimate f(xk)−f(xk +sk) of
f(xk)− f(xk + sk).

Step 4: Test of acceptance. Compute

ρk =
f(xk)− f(xk + sk)

∆tf,j(xk, sk)
. (2.14)

If ρk ≥ η (successful iteration), then set xk+1 = xk + sk; otherwise (unsuccessful
iteration) set xk+1 = xk.

Step 5: Trust-region radius update. Set

rk+1 =

{ 1
γ rk, if ρk < η,

min[rmax, γrk], if ρk ≥ η,

Increment k by one and go to Step 1.

7

are random variables while xk, rk, jk, δk, dk,j , and sk denote their realizations. Hence, the
TRqNE algorithm generates the random process

{Xk, Rk,Mk, Jk,∆k, {Dk,j}Jkj=1, Sk, Fk} (2.15)

in which X0 = x0 (the initial guess) and R0 = r0 (the initial trust-region radius) are deter-
ministic quantities, and where

Mk = {∇1
xf(Xk), . . . ,∇jkx f(Xk)} and Fk = {F (Xk), F (Xk + Sk)}.

2.1 The probabilistic setting

We now state our probabilistic assumptions on the TRqNE algorithm. For k ≥ 0, our as-
sumption on the past is formalized by considering Ak−1 the σ-algebra induced by the random
variables M0, M1,..., Mk−1 and F 0

0 , F s0 , F 0
1 , F s1 , ..., F 0

k−1, F sk−1 and let Ak−1/2 be that induced
by M0, M1,..., Mk and F 0

0 , F s0 , ..., F 0
k−1, F sk−1, with A−1 = σ(x0).

We first define an event ensuring that the model is accurate enough at iteration k. At the
end of Step 2 of this iteration and given Jk ∈ {1, . . . , q}, we now define,

M(1)
k,j =

{
φ∆k
f,j (Xk) ≤

(
1 + ν

ς

)
∆Tf,j(Xk, Dk,j)

}
(j ∈ {1, . . . , Jk}),

M(2)
k = {(1− ν)∆Tf,Jk(Xk, Sk) ≤ ∆tf,Jk(Xk, Sk) ≤ (1 + ν)∆Tf,Jk(Xk, Sk)} ,

Mk =

 ⋂
j∈{1,...,Jk}

M(1)
k,j

 ∩M(2)
k . (2.16)

The event M(1)
k,j occurs when the j-th order optimality measure (j ≤ jk) at iteration k is

meaningful, while M(2)
k occurs when this is the case for the model decrease. At first sight,

these events may seem only vaguely related to the accuracy of the function’s derivatives but
a closer examination gives the following sufficient condition for Mk to happen.

Lemma 2.2 At iteration k of any realization, the inequalities defining the eventMk are
satisfied if, for j ∈ {1, . . . , jk} and ` ∈ {1, . . . , jk}

‖
(
∇`xf(xk)−∇`xf(xk)

)
[sk]

`‖ ≤ ν

2
∆tf,jk(xk, sk) (2.17)

and
‖
(
∇`xf(xk)−∇`xf(xk)

)
[d̂k,j]

`‖ ≤ ν

2
∆tf,j(xk, d̂k,j), (2.18)

where
d̂k,j = arg max

‖d‖≤δk
∆tf,j(xk, d). (2.19)

8

Proof. If (2.18) holds, we have that, for every j ∈ {1, . . . , jk} and vk ∈ {d̂k,1, . . . , d̂k,j},
with d̂k,`, ` = 1, . . . , j, given in (2.19),

|∆tf,j(xk, vk)−∆tf,j(xk, vk)| ≤
j∑
`=1

1

`!

∥∥∥(∇`xf(xk)−∇`xf(xk)
)

[vk]
`
∥∥∥

≤ 1
2ν∆tf,j(xk, vk)

j∑
`=1

1

`!

< ν∆tf,j(xk, vk)

(2.20)

where we have used the bound

j∑
`=1

1

`!
< e−1 < 2. Now note that the definition of φ

δk
f,j(xk)

in (2.9), (2.20) for vk = d̂k,j and (2.11) imply that, for any j ∈ {1, . . . , jk},

φδkf,j(xk) = ∆tf,j(xk, d̂k,j) ≤ ∆tf,j(xk, d̂k,j) + |∆tf,j(xk, d̂k,j)−∆tf,j(xk, d̂k,j)|

≤
(
1 + ν

)
∆tf,j(xk, d̂k,j)

≤
(
1 + ν

)
max‖d‖≤δk ∆tf,j(xk, d)

=
(
1 + ν

)
φ
δk
f,j(xk)

≤
(

1 + ν
ς

)
∆tf,j(xk, dk,j).

Hence the inequality in the definition of M(1)
k,j holds for j ∈ {1, . . . , jk}. The proof of the

inequalities defining M(2)
k is analog to that of (2.20). We have from (2.17) that

|∆tf,jk(xk, sk)−∆tf,jk(xk, sk)| ≤
jk∑
`=1

1

`!

∥∥∥(∇`xf(xk)−∇`xf(xk)
)

[sk]
`
∥∥∥

≤ 1
2ν∆tf,jk(xk, sk)

jk∑
`=1

1

`!

< ν∆tf,jk(xk, sk)

(2.21)

where we have again used the bound

jk∑
`=1

1

`!
< 2. 2

This result immediately suggests a few comments.

• The conditions (2.17)-(2.18) are merely sufficient, not necessary. In particular, they
ignore any possible cancellation of errors between terms of the Taylor expansion of
different degree.

• We note that (2.17)-(2.18) require the `-th derivative to be relatively accurate along a
finite and limited set of directions, independent of problem dimension.

• Since ‖dk,j‖ and ‖d̂k,j‖ are bounded by δk ≤ θ ≤ 1, we also note that the accuracy
required by these conditions decreases when the degree ` increases. Moreover, for a

9

fixed degree, the request is weaker for small displacements (a typical situation when a
solution is approached) than for large ones.

• Requiring

‖∇`xf(xk)−∇`xf(xk)‖ ≤
ν

2‖d̂k,j‖`
∆tf,j(xk, d̂k,j), (2.22)

instead of (2.18) is of course again sufficient to ensure the desired conclusions. These
conditions are reminiscent of the conditions required in [7] for the STORM algorithm
with p = 2, namely that, for some constant κ` and all y in the trust-region {y ∈ Rn |
‖y − xk‖ ≤ rk},

‖∇`xf(y)−∇`xf(y)‖ ≤ κ` r3−`
k (` ∈ {0, 1, 2}).

This latter condition is however stronger than (2.17)–(2.18) because it insists on a
uniform accuracy guarantee in the full-dimensional trust region.

Having considered the accuracy of the model, we now turn to that on the objective function’s
values. At the end of Step 3 of the k-th iteration, we define the event

Fk = {|∆f(Xk, Sk)−∆F (Xk, Sk)| ≤ 2ν∆Tf,jk(Xk, Sk)} (2.23)

where ∆f(Xk, Sk)
def
= f(Xk) − f(Xk + Sk) and ∆F (Xk, Sk)

def
= F (Xk) − F (Xk + Sk). This

occurs when the difference in function values used in the course of iteration k are reasonably
accurate relative to the model decrease obtained in that iteration. Note that, because of the
triangular inequality,

|∆f(Xk, Sk)−∆F (Xk, Sk)| = |(f(Xk)− f(Xk + Sk))− (F (Xk)− F (Xk + Sk))|
≤ |f(Xk)− F (Xk)|+ |f(Xk + Sk)− F (Xk + Sk)|

so that Fk must occur if both terms on the right-hand side are bounded above by ν∆Tf,jk(Xk, Sk).
Combining accuracy requests on model and function values, we define

Ek
def
= Fk ∩Mk (2.24)

and say that iteration k is accurate if 1Ek = 1Fk1Mk
= 1 and the iteration k is inaccurate

if 1Ek = 0. Moreover, we say that the iteration k has accurate model if 1Mk
= 1 and that

iteration k has accurate function estimates if 1Fk = 1. Finally we let

pMk

def
= Pr

[
Mk | Ak−1

]
, pFk

def
= Pr

[
Fk | Ak−1

]
.

We will verify in what follows that the TRqNE algorithm does progress towards an approx-
imate minimizer satisfying (2.6) as long as the following holds.

AS.3 There exists α∗, γ∗ ∈ (1
2
, 1] such that p∗ = α∗γ∗ > 1

2
,

pMk
≥ α∗, pFk ≥ γ∗ and E

[
1Sk(1− 1Fk)∆f(Xk, Sk) | Ak−1

]
≥ 0, (2.25)

where Sk is the event Sk
def
= {iteration k is successful}.

10

We notice that due to the tower property for conditional expectations

Pr
[
Fk | Ak−1

]
= E

[
1Fk | Ak−1

]
= E

[
E
[
1Fk | Ak− 1

2

]
| Ak−1

]
.

and hence that assuming, as in [16] and [7],

Pr
[
Fk | Ak− 1

2

]
> γ∗

is stronger than assuming pFk ≥ γ∗. Similarly,

E
[
1Sk(1− 1Fk)∆f(Xk, Sk) | Ak− 1

2

]
≥ 0 implies E

[
1Sk(1− 1Fk)∆f(Xk, Sk) | Ak−1

]
≥ 0.

(2.26)
Assuming AS.3 is not unreasonable as it merely requires that an accurate model and

accurate functions “happen more often than not”, and that the discrepancy between true
and inexact function values at successful iterations does not, on average, prevent decrease of
the objective function. If either of these condition fails, it is easy to imagine that the TRqNE

algorithm could be completely hampered by noise and/or diverge completely. Because the last
condition in (2.25) is less intuitive, we now show that it can be realistic in the specific context
where reasonable assumptions are made on the (possibly extended) cumulative distribution
of the error on the function decreases (conditioned to Ak− 1

2
).

Theorem 2.3 Let Gk : R+ → [0, 1] be a differentiable monotone increasing random
function which is measurable for Ak−1 and such that

Gk(0) = 0 and lim
τ→∞

Gk(τ) = 1, (2.27)

lim
τ→∞

τ (1−Gk(τ)) = 0, (2.28)∫ ∞
0

(1−Gk(τ)) dτ <∞, (2.29)

and
Pr
[
∆F (Xk, Sk)−∆f(Xk, Sk) > τ | Ak− 1

2

]
≤ 1−Gk(τ) (2.30)

for τ > 0. Then,

E
[
1Sk(1− 1Fk)(f(Xk)− f(Xk+1)) | Ak−1

]
≥ 0 (2.31)

for each k such that

∆Tf,jk(Xk, Sk) ≥
1

η

∫ ∞
0

(1−Gk(τ)) dτ.

Proof. Consider ω ∈ Ω, an arbitrary realization of the stochastic process defined by

the TRqNE algorithm. Suppose first that E
[
1Sk(1−1Fk) | Ak− 1

2

]
(ω) = 0. We then deduce

that
E
[
1Sk(1− 1Fk)(f(Xk)− f(Xk+1)) | Ak− 1

2

]
(ω) = 0. (2.32)

11

Assume therefore that
E
[
1Sk(1− 1Fk) | Ak− 1

2

]
(ω) = p̄k (2.33)

for some p̄k > 0. To further simplify notations, set

∆Tk
def
= ∆Tf,jk(Xk, Sk)η and Ek = ∆F (Xk, Sk)−∆f(Xk, Sk). (2.34)

If we define I def
= {Ek(ω) > 0}, the definition of successful iterations, (2.14) and the

triangular inequality then imply that, if 1Sk(ω) = 1 then

∆f(Xk, Sk)(ω) = ∆F (Xk, Sk)(ω)− Ek(ω) ≥ η∆Tk(ω)− 1IEk(ω). (2.35)

This in turn ensures that

E
[
1Sk(1− 1Fk)∆f(Xk, Sk) | Ak− 1

2

]
(ω) ≥ η∆Tk(ω)E

[
1Sk(1− 1Fk) | Ak− 1

2

]
(ω)

− E
[
1Sk(1− 1Fk)1IEk | Ak− 1

2

]
(ω). (2.36)

Moreover, we have that

E
[
1Sk(1− 1Fk)1IEk | Ak− 1

2

]
(ω)

= E
[
1Sk(1− 1Fk)1IEk | Ak− 1

2
,Sk ∩ Fck

]
(ω) · Pr[Sk ∩ Fck | Ak− 1

2
](ω)

+ E
[
1Sk(1− 1Fk)1IEk | Ak− 1

2
, (Sk ∩ Fck)c

]
(ω) · Pr[(Sk ∩ Fck)c | Ak− 1

2
](ω)

= p̄k E
[
1IEk | Ak− 1

2
,Sk ∩ Fck

]
(ω)

≤ p̄k E
[
1IEk | Ak− 1

2

]
(ω),

where we used the fact that [1Sk(1−1Fk)](ω) = 0 whenever (Sck ∪ Fk)(ω) happens, (2.33)
to derive the second equality, and the bound 1IEk(ω) ≥ 0 to obtain the final inequality.
Now, (2.30) implies that, for τ > 0

Pr
[
1IEk > τ | Ak− 1

2

]
(ω) = Pr

[
Ek > τ | Ak− 1

2

]
(ω) ≤ 1− gk(τ)

where gk(τ)
def
= Gk(ω)(τ), and thus

Pr
[
1Sk(1− 1Fk)1IEk > τ | Ak− 1

2

]
(ω) ≤ (1− gk(τ)) p̄k = p̄k

∫ ∞
τ

g′k(t)dt.

Then, employing (2.27)–(2.30), and integrating by parts

E
[
1Sk(1− 1Fk)1IEk | Ak− 1

2

]
(ω) ≤ p̄k

∫ ∞
0

t g′k(t)dt = p̄k

∫ ∞
0

(1− gk(t))dt <∞.

Finally, using (2.36),

E
[
1Sk(1− 1Fk)∆f(Xk, Sk) | Ak− 1

2

]
(ω) ≥ p̄k

[
η∆Tk(ω)−

∫ ∞
0

(1− gk(t)) dt
]

12

and thus
E
[
1Sk(1− 1Fk)(f(Xk)− f(Xk+1)) | Ak− 1

2

]
(ω) ≥ 0 (2.37)

holds when

∆Tk(ω) ≥ 1

η

∫ ∞
0

(1− gk(t)) dt.

Combining (2.32) and (2.37) and taking into account that ω is arbitrary give that

E
[
1Sk(1− 1Fk)(f(Xk)− f(Xk+1)) | Ak− 1

2

]
≥ 0,

which, in view of (2.26), yields (2.31). 2

Note that the assumptions of the theorem are for instance satisfied for the exponential case
where Gk(τ) = e−Tτ for T > 0 and measurable for Ak−1. We will return to this result in
Section 4 and discuss there the condition that ∆Tf,jk(Xk, Sk) should be sufficiently large.

3 Worst-case evaluation complexity

We now turn to the evaluation complexity analysis for the TRqNE algorithm, whose aim is to
derive a bound on the expected number of iterations for which optimality fails. This number
is given by

Nε
def
= inf

{
k ≥ 0 | φ∆k,j

f,j (Xk) ≤ εj
∆j
k,j

j!
for j ∈ {1, . . . , q}

}
. (3.1)

We first state a crucial lower bound on the model decrease, in the spirit of [10, Lemma 3.4].

Lemma 3.1 Consider any realization of the algorithm and assume that Mk occurs.
Assume that (2.6) fails at iteration k. Then, there exists a jk ∈ {1, . . . , q} such that
∆tf,jk(xk, dk,jk) > ςεjkδ

jk
k /(jk!(1 + ν)) at Step 1 of the iteration. Moreover,

∆tf,jk(xk, sk) ≥ φ̂f,k
δjkk
jk!

(3.2)

where

φ̂f,k
def
=

jk! ∆tf,jk(xk, dk,jk)

δjkk
>
ςεmin

1 + ν
. (3.3)

Proof. We proceed by contradiction and assume that

∆tf,j(xk, dk,j) ≤
ςεj

1 + ν

δjk
j!
, (3.4)

for all j ∈ {1, . . . , q}. Since Mk occurs, we have that, for all j ∈ {1, . . . , q},

φδkf,j(xk) ≤
(

1 + ν

ς

)
∆tf,j(xk, dk,j) ≤ εj

δjk
j!
, j ∈ {1, ..., q},

13

which contradicts the assumption that (2.6) does not hold for xk and δk. The bound (3.2)
directly results from

∆tf,jk(xk, sk) ≥ ∆tf,jk(xk, dk,jk) = φ̂f,k
δjkk
jk!

,

where we have used (2.13) to derive the first inequality and the definition (3.3) to obtain
the equality. The rightmost inequality in (3.3) trivially follows from the negation of (3.4)
and (2.10). 2

We now search for conditions ensuring that the iteration is successful. For simplicity of
notation, given ϑf,j , j ∈ {1, . . . , q}, as in (2.1), we define

ϑf
def
= max[1, max

j∈{1,...,q}
ϑf,j]. (3.5)

Lemma 3.2 Suppose that AS.1 holds. Consider any realization of the algorithm and
suppose that (2.6) does not hold for xk and δk and that Ek occurs. If

rk ≤ r
def
= min

{
θ,

ς(1− η)

4(1 + ν)ϑf
εmin

}
=

ς(1− η)

4(1 + ν)ϑf
εmin

def
= κrεmin, (3.6)

κr ∈ (0, 1), holds, then iteration k is successful.

Proof. First, note that the minimum in (3.6) is attained at κrεmin since θ ≥ εmin

and κr ∈ (0, 1). Suppose now that (3.6) holds, which implies that δk = min[θ, rk] = rk.
Let jk be as in Lemma 3.1, and denote ∆f(xk, sk) = f(xk) − f(xk + sk), ∆f(xk, sk) =
f(xk)− f(xk + sk).

Using (2.14), the triangle inequality and 1Ek = 1Mk
1Fk = 1, we obtain

|ρk − 1| =

∣∣∣∣∣∆f(xk, sk)−∆tf,jk(xk, sk)

∆tf,jk(xk, sk)

∣∣∣∣∣
≤
|∆f(xk, sk)−∆tf,jk(xk, sk)|

∆tf,jk(xk, sk)
+

∣∣∆tf,jk(xk, sk)−∆tf,jk(xk, sk)
∣∣

∆tf,jk(xk, sk)

+

∣∣∆f(xk, sk)−∆f(xk, sk)
∣∣

∆tf,jk(xk, sk)

≤
|f(xk + sk)− tf,jk(xk, sk)|

∆tf,jk(xk, sk)
+

3ν∆tf,jk(xk, sk)

∆tf,jk(xk, sk)
.

Invoking (2.3), the bound ‖sk‖ ≤ rk = δk, (3.5), (3.2) and ν ≤ 1
4(1− η) we get

|ρk − 1| <
ϑfrk

φ̂f,k
+

3

4
(1− η).

14

Using (3.3) and (3.6) we deduce that

|ρk − 1| ≤
(1 + ν)ϑfrk

ςεmin
+

3

4
(1− η) ≤ 1− η. (3.7)

Thus, ρk ≥ η and the iteration k is successful. 2

The following crucial lower bound on ∆Tf,jk(xk, sk) for accurate iterations k can now be
proved.

Lemma 3.3 Suppose that AS.1 holds. Consider any realization of the algorithm and
suppose that (2.6) does not hold for xk and δk, Ek occurs, and that rk ≥ r̄ with r̄k defined
in (3.6). Then

∆tf,jk(xk, sk) = tf,jk(xk, 0)− tf,jk(xk, sk)>
ς

q!
(κδεmin)q+1, (3.8)

where κδ ∈ (0, 1) is defined by

κδ
def
=

κr
1 + ν

(3.9)

with κr defined in (3.6).

Proof. Let jk be as in Lemma 3.1. By (3.2), (3.3) we obtain

∆tf,jk(xk, sk)>
ςεmin

1 + ν

δqk
q!
.

If rk > θ then δk = θ and the bound θ ≥ εmin implies

∆tf,j(xk, sk)>
ςεq+1

min

q!(1 + ν)
.

Thus (3.8) holds by definition of κδ and the fact that κr ∈ (0, 1). If r̄ < rk ≤ θ, then
δk = rk. The proof is completed by noting that the form of r̄ in (3.6) gives that rk > κrεmin.
2

3.1 Bounding the expected number of steps with Rk ≤ r

We now return to the general stochastic process generated by the TRqNE algorithm and bound
the expected number of steps in Nε from above. For this purpose, let us define, for all
0 ≤ k ≤ Nε − 1, the events

Λk
def
= {Rk > r}, Λck

def
= {Rk ≤ r},

where r is given by (3.6), and let

NΛ
def
=

Nε−1∑
k=0

1Λk , NΛc
def
=

Nε−1∑
k=0

1Λck
, (3.10)

15

be the number of steps, in the stochastic process induced by the TRqNE algorithm and before
Nε, such that Rk > r or Rk ≤ r, respectively. In what follows we suppose that AS.1–AS.2
hold.
An upper bound on E

[
NΛc

]
can be derived as follows.

(i) We apply [12, Lemma 2.2] to deduce that, for any ` ∈ {0, . . . , Nε − 1} and for all
realizations of Algorithm 2.1, one has that

∑̀
k=0

1Λck
1Sk ≤

`+ 1

2
. (3.11)

(ii) Both σ(1Λk) and σ(1Λck
) belong to Ak−1, because the random variable Λk is fully de-

termined by the first k− 1 iterations of the TRqNE algorithm. Setting ` = Nε− 1 we can
rely on [12, Lemma 2.1] (with Wk = 1Λck

), whose proof is detailed in the appendix, to
deduce that

E

[
Nε−1∑
k=0

1Λck
1Ek

]
≥ p∗ E

[
Nε−1∑
k=0

1Λck

]
. (3.12)

(iii) As a consequence, given that Lemma 3.2 ensures that each iteration k where Ek occurs
and rk ≤ r is successful, we have that

Nε−1∑
k=0

1Λck
1Ek ≤

Nε−1∑
k=0

1Λck
1Sk ≤

Nε

2
,

in which the last inequality follows from (3.11), with ` = Nε − 1. Taking expectation
in the above inequality, using (3.12) and recalling the rightmost definition in (3.10), we
obtain, as in [12, Lemma 2.3], that

E[NΛc] ≤
1

2p∗
E[Nε]. (3.13)

3.2 Bounding the expected number of steps with Rk > r

For analyzing E[NΛ], where NΛ is defined in (3.10), we now introduce the following variables.

Definition 1 Consider the random process (2.15) generated by the TRqNE algorithm and de-
fine:

16

• Λk = { iteration k is such that Rk ≥ r };

• NI =

Nε−1∑
k=0

1Λk
1Eck : the number of inaccurate iterations with Rk ≥ r;

• NA =

Nε−1∑
k=0

1Λk
1Ek : the number of accurate iterations with Rk ≥ r;

• NAS =

Nε−1∑
k=0

1Λk
1Ek1Sk : the number of accurate successful iterations with Rk ≥ r;

• NAU =

Nε−1∑
k=0

1Λk1Ek1Sck : the number of accurate unsuccessful iterations with Rk > r;

• NIS =

Nε−1∑
k=0

1Λk
1Eck1Sk : the number of inaccurate successful iterations with Rk ≥ r;

• NS =

Nε−1∑
k=0

1Λk
1Sk : the number of successful iterations with Rk ≥ r;

• NU =

Nε−1∑
k=0

1Λk1Sck : the number of unsuccessful iterations with Rk > r.

(3.14)

Observe that Λk is the “closure” of Λk in that the inequality in its definition is no longer
strict. We immediately notice that an upper bound on E[NΛ] is available, once an upper
bound on E[NI] + E[NA] is known, since

E[NΛ] ≤ E

[
Nε−1∑
k=0

1Λk

]
= E

[
Nε−1∑
k=0

1Λk
1Eck +

Nε−1∑
k=0

1Λk
1Ek

]
= E[NI] + E[NA]. (3.15)

Using again [12, Lemma 2.1] (with Wk = 1Λk
) to give an upper bound on E[NI], we obtain

the following result, whose proof is detailed in the appendix.

Lemma 3.4 [12, Lemma 2.6] Suppose that AS.1-AS.3 hold and let NI , NA be defined
as in Definition 1 in the context of the stochastic process (2.15) generated by the TRqNE

algorithm. Then,

E[NI] ≤
1− p∗
p∗

E[NA]. (3.16)

Turning to the upper bound for E[NA], we observe that

E[NA] = E[NAS] + E[NAU] ≤ E[NAS] + E[NU]. (3.17)

Hence, bounding E[NA] can be achieved by providing upper bounds on E[NAS] and E[NU].
Regarding the latter, we first note that the process induced by the TRqNE algorithm ensures
that Rk is increased by a factor γ on successful steps and decreased by the same factor on
unsuccessful ones. Consequently, based on [12, Lemma 2.5], we obtain the following bound.

17

Lemma 3.5 For any ` ∈ {0, ..., Nε−1} and for all realisations of Algorithm 2.1, we have
that

∑̀
k=0

1Λk1Sck ≤
∑̀
k=0

1Λk
1Sk +

⌈∣∣∣ logγ−1

(
r

r0

) ∣∣∣⌉ =
∑̀
k=0

1Λk
1Sk +

⌈
logγ

(r0

r

)⌉
.

From the inequality stated in the previous lemma with ` = Nε − 1, recalling Definition 1 and
taking expectations, we therefore obtain that

E[NU] ≤ E[NS] +
⌈
logγ

(r0

r

)⌉
= E[NAS] + E[NIS] +

⌈
logγ

(r0

r

)⌉
. (3.18)

An upper bound on E[NAS] is given by the following lemma.

Lemma 3.6 Suppose that AS.1, AS.2 and AS.3 hold. Then we have that

E[NAS] ≤ 2q!(f0 − flow)

ςη (κδεmin)q+1 + 1, (3.19)

where κδ is defined in (3.9).

Proof. Consider any realization of the TRqNE algorithm.

i) If iteration k is successful and the functions are accurate (i.e., 1Sk1Fk = 1) then
(2.14), (2.10) and (2.23) imply that

f(xk)− f(xk+1) ≥ [f(xk)− f(xk+1)]− 2ν∆tf,jk(xk, sk)

≥ η∆tf,jk(xk, sk)− 2ν∆tf,jk(xk, sk)

= (η − 2ν)∆tf,jk(xk, sk)

≥ 1

2
η∆tf,jk(xk, sk)≥ 0. (3.20)

Thus
1Sk1Fk = 1Sk1Fk1{∆Fk,+≥0}, (3.21)

where ∆Fk,+ = f(Xk) − f(Xk+1). Moreover, if Mk also occurs with rk ≥ r̄ (i.e., if
1Sk1Ek1Λk

= 1) and (2.6) fails for xk and δk, we may then use (3.8) to deduce from
(3.20) that

f(xk)− f(xk+1) ≥ ςη

2q!
(κδεmin)q+1 > 0, (3.22)

which implies that, as long as (2.6) fails,

1Sk1Ek1Λk
= 1Sk1Ek1Λk

1{∆Fk,+>0}. (3.23)

18

ii) If iteration k is unsuccessful, the mechanism of the TRqNE algorithm guarantees that
xk = xk+1 and, hence, that f(xk+1) = f(xk), giving that (1− 1Sk)∆Fk,+ = 0.

Setting f0
def
= f(X0) and using this last relation and AS.2, we have that, for any ` ∈

{0, ..., Nε − 1},

f0 − flow ≥ f0 − f(X`+1) =
∑̀
k=0

∆Fk,+ =
∑̀
k=0

1Sk∆Fk,+ (3.24)

Remembering that X0 and thus f0 are deterministic and taking the total expectation on
both sides of (3.24) then gives that

f0 − flow = E[f0 − flow] ≥
∑̀
k=0

E
[
1Sk∆Fk,+

]
=
∑̀
k=0

E
[
E
[
1Sk∆Fk,+ | Ak−1

]]
. (3.25)

Now, for k ∈ {0, . . . , `},

1Sk∆Fk,+ = 1Sk1Fk∆Fk,+ + 1Sk(1− 1Fk)∆Fk,+

and so, using the second part of (2.25),

E
[
1Sk∆Fk,+ | Ak−1

]
= E

[
1Sk1Fk∆Fk,+ | Ak−1

]
+ E

[
1Sk(1− 1Fk)∆Fk,+ | Ak−1

]
≥ E

[
1Sk1Fk∆Fk,+ | Ak−1

]
. (3.26)

Thus, again using the law of total expectations, (3.25) yields that

f0 − flow ≥
∑̀
k=0

E
[
E
[
1Sk1Fk∆Fk,+ | Ak−1

]]
=
∑̀
k=0

E
[
1Sk1Fk∆Fk,+

]
. (3.27)

Moreover, successively using (3.21), (2.24), (3.23) and (3.22),

1Sk1Fk∆Fk,+ = 1Sk1Fk1{∆Fk,+>0}∆Fk,+

= 1Sk1Fk1Mk
1{∆Fk,+>0}∆Fk,+ + 1Sk1Fk(1− 1Mk

)1{∆Fk,+>0}∆Fk,+

≥ 1Sk1Ek1{∆Fk,+>0}∆Fk,+

≥ 1Sk1Ek1Λk
1{∆Fk,+>0}∆Fk,+

≥ ςη

2q!
(κδεmin)q+1

(
1Sk1Ek1Λk

)
. (3.28)

Substituting this bound in (3.27) then gives that, as long as (2.6) fails for iterations
{1, . . . , `},

f0 − flow ≥
ςη

2q!
(κδεmin)q+1

∑̀
k=0

E
[
1Sk1Ek1Λk

]
. (3.29)

We now notice that, by Definition 1,

NAS − 1 ≤
Nε−2∑
k=0

1Sk1Ek1Λk
,

19

and therefore

E[NAS − 1] ≤
Nε−2∑
k=0

E
[
1Sk1Ek1Λk

]
. (3.30)

Hence, letting ` = Nε − 2, substituting (3.30) in (3.29), we deduce that

E[NAS − 1]
ςη

2q!
(κδεmin)q+1 ≤ f0 − flow

and (3.19) follows. 2

While inequalities (3.18) and (3.19) provide upper bounds on E[NAS] and E[NU], as desired,
the first still depends on E[NIS], which has to be bounded from above as well. This can be
done by following [12] once more: Definition 1, (3.16) and (3.17) directly imply that

E[NIS] ≤ E[NI] ≤
1− p∗
p∗

E[NA] ≤ 1− p∗
p∗

(E[NAS] + E[NU]) (3.31)

and hence

E[NIS] ≤ 1− p∗
2p∗ − 1

(
2E[NAS] +

⌈
logγ

(r0

r

)⌉)
(3.32)

follows from (3.18) (remember that 1
2
< p∗ ≤ 1). Thus, the right-hand side in (3.16) is in

turn bounded above because of (3.17), (3.18), (3.32) and (3.19), giving

E[NA] ≤ E[NAS] + E[NU] ≤ 2E[NAS] + E[NIS] +
⌈
logγ

(r0

r

)⌉
≤

(
1− p∗
2p∗ − 1

+ 1

)(
2E[NAS] +

⌈
logγ

(r0

r

)⌉)
≤ p∗

2p∗ − 1

[
4q!(f0 − flow)

ςη (κδεmin)q+1 +
⌈
logγ

(r0

r

)⌉
+ 2

]
. (3.33)

This inequality, together with (3.15) and (3.16), finally gives the desired bound

E[NΛ] ≤ 1

p∗
E[NA] ≤ 1

2p∗ − 1

[
4q!(f0 − flow)

ςη (κδεmin)q+1 +
⌈
logγ

(r0

r

)⌉
+ 2

]
. (3.34)

We can now express our final complexity result in full.

Theorem 3.7 Suppose that AS.1–AS.3 hold, then

E[Nε] ≤
2p∗

(2p∗ − 1)2

[
4q!(f0 − flow)

ςη (κδεmin)q+1 +
⌈
logγ

(r0

r

)⌉
+ 2

]
, (3.35)

with Nε, r and κδ defined as in (3.1), (3.6) and (3.9), respectively.

20

Proof. Recalling the definitions (3.10) and the bound (3.13), we obtain that

E[Nε] = E[N c
Λ] + E[NΛ] ≤ E[Nε]

2p∗
+ E[NΛ],

which implies, using (3.34), that

2p∗ − 1

2p∗
E[Nε] ≤

1

2p∗ − 1

[
4q!(f0 − flow)

ςη (κδεmin)q+1 +
⌈
logγ

(r0

r

)⌉
+ 2

]
.

This bound and the inequality 1
2
< p∗ ≤ 1 yield the desired result. 2

We note that the O
(
ε
−(q+1)
min

)
evaluation bound given by (3.35) is known to be sharp in order

of εmin for trust-region methods using exact evaluations of functions and derivatives (see [11,
Theorem 12.2.6]), which implies that Theorem 3.7 is also sharp in order.

We conclude this section by noting that alternatives to the second part of (2.25) do exist.
For instance, we could assume that

E
[
1Sk∆Fk,+ | Ak−1

]
≥ µE

[
1Sk1Fk∆Fk,+ | Ak−1

]
for some µ > 0. This condition can be used to replace the second part of (2.25) to ensure
(3.26) in the proof of Lemma 3.6 and all subsequent arguments.

4 The impact of noise for first-order minimization

While the above theory covers inexact evaluations of the objective function and its derivatives,
it does rely on AS.3. Thus, as long as the inexactness/noise on these values remains small
enough for this assumption to hold, the TRqNE algorithm iterates ultimately produce an
approximate local minimizer. There are however practical applications, such as minimization
of finite sum using sampling strategies (discussed in more detail below), where AS.3 may
be unrealistic because of noise intrinsic to the application. We already saw that, under the
assumptions of Theorem 2.3, a large enough value of ∆Tf,jk(Xk, Sk) is sufficient for ensuring
the third condition in AS.3, but we also know from (2.23),(2.34), (2.35) and the definition of
ν that, at successful iterations,

∆f(Xk, Sk) ≥ η∆Tf,jk(Xk, Sk)− Ek ≥ (η − 2ν)∆Tf,jk ≥ 1
2
η∆Tf,jk

whenever Fk holds. Thus a large ∆Tf,jk(Xk, Sk) is only possible if either ∆f(Xk, Sk) is large
or Fk fails. But a large ∆f(Xk, Sk) is impossible close to a (global) minimizer, and thus
either Fk (and AS.3) fails, or the guarantee that the third condition of AS.3 holds vanishes
when approaching a minimum.

Clearly, the above theory does not say anything about what happens for the algorithm
once AS.3 fails due to intrinsic noise. Of course, this does not mean it will not proceed
meaningfully, but we can’t guarantee it. In order to improve our understanding of what can
happen, we need to consider particular realizations of the iterative process where AS.3 fails.
This is the objective of this section where we focus on the instantiation TR1NE of TRqNE for
first-order optimality. Fortunately, limiting one’s ambition to first order results in subtantial
simplifications in the TRqNE algorithm. We first note that the mechanism of Step 1 of TRqNE

21

(whose purpose is to determine jk) is no longer necessary since jk must be equal to one if
only (approximate) gradients are available, so we can implicitly set

Dk,1 =
∇1
xf(Xk)

‖∇1
xf(Xk)‖

∆k and ∆Tf,1(Xk, Dk,1) = −∇1
xf(Xk)

TDk,1 = ‖∇1
xf(Xk)‖∆k

and immediately branch to the step computation. This in turn simplifies to

Sk =
∇1
xf(Xk)

‖∇1
xf(Xk)‖

Rk and ∆Tf,1(Xk, Sk) = ‖∇1
xf(Xk)‖Rk

irrespective of the value of θ, and (2.13) automatically holds. We thus observe that the

simplified algorithm no longer needs δk,j (since neither φ
δk
f,j(xk) or ∆tf,j(xk, dk,j) needs to be

effectively calculated), that the computed step sk is the global minimizer within the trust-
region and that the constant θ (used in Step 1 and the start of Step 2 of the TRqNE algorithm)
is no longer necessary. The resulting streamlined TR1NE algorithm is stated as Algorithm 4.1
on the current page.

Algorithm 4.1: The TR1NE algorithm

Step 0: Initialisation. A starting point x0, a maximum radius rmax > 0 and an accu-
racy level ε ∈ (0, 1) are given. The initial trust-region radius r0 ∈ (ε, rmax] is also

given. For a given constant η ∈ (0, 1), define ν
def
= min

[
1
2
η, 1

4
(1− η)

]
. Set k = 0.

Step 1: Derivatives estimation. Compute the derivative estimate ∇xf(xk).

Step 2: Step computation. Set sk = − ∇
1
xf(xk)

‖∇1
xf(xk)‖

rk.

Step 3: Function decrease estimation. Compute the estimate f(xk)−f(xk +sk) of
f(xk)− f(xk + sk).

Step 4: Test of acceptance. Compute ρk =
f(xk)− f(xk + sk)

‖∇1
xf(xk)‖rk

.

If ρk ≥ η (successful iteration), then set xk+1 = xk + sk; otherwise (unsuccessful
iteration) set xk+1 = xk.

Step 5: Trust-region radius update. Set

rk+1 =

{ 1
γ rk, if ρk < η

min[rmax, γrk], if ρk ≥ η.

Increment k by one and go to Step 1.

The definition of the eventMk in (2.16) ensures thatM(2)
k impliesM(1)

k when first-order
models are considered, and thus, using also (2.23), that Mk and Fk then reduce to

Mk = {|‖∇1
xf(Xk)‖ − ‖∇1

xf(Xk)‖| ≤ ν‖∇1
xf(Xk)‖}

22

and
Fk = {|∆F (Xk, Sk)−∆f(Xk, Sk)| ≤ 2ν‖∇1

xf(Xk)‖Rk},
respectively. Observe now that, because of the triangle inequality, Mk is true whenever the
event

M̃k
def
= {‖∇1

xf(Xk)−∇1
xf(Xk)‖ ≤ ν‖∇1

xf(Xk)‖} (4.1)

holds, and, since ν‖∇1
xf(Xk)‖min{1, Rk} ≤ ν‖∇1

xf(Xk)‖, it also follows that Fk is true
whenever the event

F̃k
def
= {|∆F (Xk, Sk)−∆f(Xk, Sk)| ≤ 2ν‖∇1

xf(Xk)‖min{1, Rk}} (4.2)

holds. As a consequence,

Pr
[
Mk | Ak−1

]
≥ Pr

[
M̃k | Ak−1

]
and Pr

[
Fk | Ak−1

]
≥ Pr

[
F̃k | Ak−1

]
. (4.3)

Our analysis of the impact of noise on the TR1NE algorithm starts by considering a relatively
general form for error distributions (as we did in Theorem 2.3) and we then specialize our
arguments to the particular case of finite sum minimization with subsampling.

4.1 Failure of AS.3 for general error distributions

At a generic iteration k, suppose that H0,k and H1,k, are continuous and increasing random
functions from R+ to [0, 1] which are measurable for Ak−1 and such that H0,k(0) = H1,k(0) =
0, limτ→+∞H0,k(τ) = limτ→+∞H1,k(τ) = 1 and,

Pr
[
|∆F (Xk, Sk)−∆f(Xk, Sk)| < τ |Ak−1

]
≥ H0,k(τ)

Pr
[
‖∇1

xf(Xk)−∇1
xf(Xk)‖ < τ |Ak−1

]
≥ H1,k(τ) (4.4)

For sake of simplicity, assume α∗ = γ∗ ≥
√

1
2

in AS.3 and let B0 and B1 such that H0,k(B0) =√
α∗ and H1,k(B1) =

√
α∗, and B = max[B0, B1]. Then,

Pr
[
|∆F (Xk, Sk)−∆f(Xk, Sk)| < τ | Ak−1, τ ≥ B

]
≥
√
α∗, (4.5)

Pr
[
‖∇1

xf(Xk)−∇1
xf(Xk)‖ < τ | Ak−1, τ ≥ B

]
≥
√
α∗. (4.6)

Define

B̄ =
B

νmin{1, Rk}
≥ B

ν
> B, (4.7)

and note that B̄ is measurable for Ak−1. Then (4.5) and (4.6) ensure that

Pr
[
|∆F (Xk, Sk)−∆f(Xk, Sk)| ≤ B̄ | Ak−1

]
≥
√
α∗ (4.8)

Pr
[
‖∇1

xf(Xk)−∇1
xf(Xk)‖ ≤ B̄ | Ak−1

]
≥
√
α∗. (4.9)

Finally, define the events

Gk
def
= {‖∇1

xf(Xk)‖ ≥ 2B̄}, (4.10)

Ḡk
def
= {‖∇1

xf(Xk)‖ ≥ B̄}, (4.11)

Vk
def
= {‖∇1

xf(Xk)−∇1
xf(Xk)‖ <

B

ν
}, (4.12)

23

and observe that (4.6) implies that

Pr
[
Vk | Ak−1

]
≥
√
α∗. (4.13)

Theorem 4.1 Let B̄ as in (4.7). Then, for each iteration k of the TR1NE algorithm,

Pr
[
Ḡk | Ak−1,Gk

]
≥
√
α∗. (4.14)

Proof. For any realization of the TR1NE algorithm we have that

‖∇1
xf(xk)‖ ≥

∣∣∣‖∇1
xf(xk)‖ − ‖∇1

xf(xk)−∇1
xf(xk)‖

∣∣∣ .
Therefore, ‖∇1

xf(xk)‖ ≥ 2β̄ (where β̄ is the realization of B̄) and ‖∇1
xf(xk)−∇1

xf(xk)‖ ≤
β/ν < β̄ ensure that ‖∇1

xf(xk)‖ ≥ β̄. Then, Gk ∩ Vk implies Ḡk, where the events Gk, Vk
and Ḡk are defined in (4.10)-(4.12), and Pr

[
Ḡk | Ak−1,Gk,Vk

]
= 1. We therefore have that

E
[
1Ḡk | Ak−1,Gk

]
≥ E

[
1Ḡk | Ak−1,Gk,Vk

]
Pr
[
Vk | Ak−1,Gk

]
≥ 1 ·

√
α∗,

where we have used (4.13) and the fact that

E
[
1Vk | Ak−1,Gk

]
= E

[
E
[
1Vk | Ak−1

]
| Ak−1,Gk

]
to derive the last inequality. The conclusion (4.14) then follows. 2

Theorem 4.2 Let B̄ be defined by (4.7). Then, for each iteration k of the TR1NE

algorithm,

Pr
[
Mk | Ak−1,

{
‖∇1

xf(Xk)‖ ≥ 2B̄
}]
≥ α∗. (4.15)

Moreover, if ω is a realization for which Pr
[
Mk | Ak−1

]
(ω) < α∗, then

‖∇1
xf(xk)‖ < 2B̄(ω). (4.16)

Proof. We obtain from (4.3) and (4.14) that

Pr
[
Mk | Ak−1,Gk

]
≥ Pr

[
M̃k | Ak−1,Gk

]
= E

[
1M̃k

| Ak−1,Gk
]

≥ E
[
1M̃k

| Ak−1,Gk, Ḡk
]
Pr
[
Ḡk | Ak−1,Gk

]
≥
√
α∗ E

[
1M̃k

| Ak−1,Gk, Ḡk
]
. (4.17)

24

If Ḡk is true, then it follows from (4.7) and (4.11) that ν‖∇1
xf(Xk)‖ ≥ B. Then, (4.1) and

(4.6) yield

E
[
1M̃k

| Ak−1, Ḡk
]
≥
√
α∗. (4.18)

Because the trace σ-algebra {Ak−1, Ḡk} contains the trace σ- algebra {Ak−1,Gk, Ḡk}, the
tower property and (4.18) then imply that

E
[
1M̃k

| Ak−1,Gk, Ḡk
]

= E
[
E
[
1M̃k

| Ak−1, Ḡk
]
| Ak−1,Gk, Ḡk

]
≥ E

[√
α∗ | Ak−1,Gk, Ḡk

]
=
√
α∗

which, together with (4.17) gives (4.15). Since Gk is measurable for Ak−1 we have

Pr
[
Mk | Ak−1

]
≥ Pr

[
Mk | Ak−1,Gk

]
E
[
1Gk | Ak−1

]
= Pr

[
Mk | Ak−1,Gk

]
1Gk .

If we now consider a realization ω such that Pr
[
Mk | Ak−1

]
(ω) < α∗, we therefore obtain,

using (4.15) taken for the realization ω, that

α∗ > Pr
[
Mk | Ak−1,Gk

]
(ω)1Gk(ω) ≥ α∗ 1Gk(ω),

which implies that 1Gk(ω) = 0, and thus that (4.16) holds. 2

Theorem 4.3 Let B̄ be defined by (4.7). Then, for each iteration k of the TR1NE

algorithm,

Pr
[
Fk | Ak−1,

{
‖∇1

xf(Xk)‖ ≥ 2B̄
}]
≥ α∗. (4.19)

Moreover, if ω is a realization for which Pr
[
Fk | Ak−1

]
(ω) < α∗, then

‖∇1
xf(xk)‖ < 2B̄(ω). (4.20)

Proof. The proof is similar to that of Theorem 4.2, and is given in appendix for com-
pleteness. 2

Theorems 4.2 and 4.3 indicate that the assumptions made in AS.3 aboutMk and Fk are likely
to be satisfied as long as the gradients remain sufficiently large, allowing the TR1NE algorithm
to iterate meaningfully. Conversely, they show that, should these assumptions fail for a
particular realization of the algorithm because of a high level of intrinsic noise, “degraded”
versions of first-order optimality conditions given by (4.16) and (4.20) nevertheless hold when
this failure occurs.

25

4.2 A subsampling example

We finally illustrate how intrinsic noise might affect our probabilistic framework on an exam-
ple. Suppose that

f(x) =
1

m

m∑
i=1

fi(x), (4.21)

where the fi are functions from R to R having Lipschitz continuous gradients and where m
is so large that computing the complete value of f(x) or its derivatives is impractical. Such
a situation occurs for instance in algorithms for deep-learning, an application of growing
importance. A well-known strategy to obtain approximations of the desired values at an
iterate xk is to sample the fi(xk) and compute the sample averages, that is

f(xk) =
1

|b0(xk)|
∑

i∈b0(xk)

fi(xk), ∇1
xf(xk) =

1

|b1(xk)|
∑

i∈b1(xk)

∇1
xfi(xk), (4.22)

where b0(x) and b1(x) are realizations of random “batches”, that is randomly selected(3)

subsets of {1, . . . ,m}. Observe that Step 3 of the TR1NE algorithm computes the estimate
f(xk)− f(xk + sk), which we assume, in the context of (4.21), to be

f(xk)− f(xk + sk) =
1

|b0(xk)|
∑

i∈b0(x)

(fi(xk)− fi(xk + sk)), (4.23)

(using a single batch for both the function estimates). Observe that our choice to make b0

and b1 dependent on xk implies that their random counterparts B0(Xk) and B1(Xk) are
measurable for Ak−1 (clearly we could have chosen a more complicated dependence on the
past of the random process). The mean-value theorem then yields that, for some {yi}i∈b0(xk)

in the segment [xk, xk + sk],

|f(xk)− f(xk + sk)| ≤

 1

|b0(xk)|
∑

i∈b0(xk)

∇1
xfi(yi)

 ‖sk‖ ≤ rk max
y∈[xk,xk+sk]
i∈b0(xk)

‖∇1
xfi(y)‖

Note that one expects the right-hand side of this inequality to be quite small when the
trust-region radius is small or when convergence to a local minimizer occurs and ∇1

xf(xk) is
a reasonable approximation of ∇1

xf(xk). To simplify our illustration, we assume, for the rest
of this section, that there exists a constant κf such that for any y ∈ Rn, for every realization
b0(xk),

rk max
i∈{1,...,n}

‖∇1
xfi(y)‖ ≤ κf .

Returning to the random process and using the Bernstein concentration inequality, it results
from [3, Relation (7.8)] that, for any k and deterministic τ > 0,

Pr
[
∆F (Xk, Sk)−∆f(Xk, Sk) > τ

]
≤ e−W0(τ) where W0(τ) =

τ2|B0(Xk)|
4κf (2κf + 1

3
τ)
. (4.24)

(3)With uniform distribution.

26

Similarly,

Pr
[
‖∇1

xF (Xk, Sk)−∇1
xf(Xk, Sk)‖ > τ

]
≤ min

[
1, (n+ 1)e−W1(τ)

]
, W1(τ) =

τ2|B1(Xk)|
4κg(2κg + 1

3
τ)
,

(4.25)
for some constant κg > 0. One also checks that, since B0(Xk) and B1(Xk) are measurable
for Ak−1, so are W0 and W1. One then easily verifies that W0(τ) is an increasing function
of τ , and hence e−W0(τ) is decreasing. Letting Gk(τ) = 1 − e−W0(τ), we immediately obtain
that conditions (2.27) and (2.28) hold. Let us now analyze condition (2.29) and consider any

realization ω, where w0(τ)
def
= W0(ω)(τ). Note that w0(τ) ≥ |b0(xk)|

1
2 τ when

τ ≥ τ∗
def
=

8κ2
f

|b0(xk)|
1
2 − 4

3κf
(4.26)

and |b0(xk)|
1
2

κf
is large enough so that

|b0(xk)|
1
2

κf
>

4

3
. (4.27)

Hence e−w0(τ) ≤ e−|b0(xk)|
1
2 τ for all τ ≥ τ∗ and∫ ∞

0
e−w0(τ) dτ ≤

∫ τ∗

0
e−w0(τ) dτ +

∫ ∞
τ∗

e−|b0(xk)|
1
2 τ dτ.

In addition, since e−w0(τ) is decreasing and non-negative, we have that∫ τ∗

0
e−w0(τ) dτ ≤ τ∗e−w0(0) = τ∗.

This bound and (4.26) then imply that

∫ ∞
0

(1− gk(τ)) dτ =

∫ ∞
0

e−w0(τ) dτ ≤ τ∗ +
e−|b0(xk)|

1
2 τ∗

|b0(xk)|
1
2

< +∞, (4.28)

proving that (2.29) also holds for the arbitrary realization ω. We may therefore apply The-
orem 2.3 provided B0(Xk) is sufficiently large(4) to ensure (4.27) and (4.26), and conclude
that, under these conditions, (2.31) holds whenever

∆tf,1(xk, sk) ≥
1

η

∫ ∞
0

(1− gk(τ)) dτ.

We can also apply the analysis in Section 4.1 with

H0,k(τ) = 1− e−W0(τ) and H1,k(τ) = max
[
0, 1− (n+ 1)e−W1(τ)

]
.

(4)While the bound given by (4.28) is adequate for our proof, this inequality can be pessimistic. For instance,
if we set κf = 1 and |b0(Xk)| = 2056, the numerically computed value of the left-hand side is 0.0556 while
that of the right-hand side is 0.1818.

27

A short calculation shows that B0 = O(κf |B0|−
1
2 |) and B1 = O(κg|B1|−

1
2 |), where B0 and B1

are defined below (4.4). Then, Theorems 4.2 and 4.3 hold with B̄ = O
(max{κf |B0|−

1
2 |,κg |B1|−

1
2 |}

νmax{1,Rk}
)
.

We finally illustrate the impact of intrinsic noise on the (admittedly ad-hoc) problem of
minimizing

f(x) =
1

2m

∑
i∈Z

[
1
2
x2 + 1

2
α sgn(i) e−x

2
]

def
=

1

2m

∑
i∈Z

fi(x), (4.29)

where α > 0 is a noise level and where Z = {−m, . . . ,m} \ {0} for some large integer
m. Suppose furthermore that the {fi(x)}i∈Z and {∇1

xfi(x)}i∈Z are computed by black-box
routines, therefore hiding their relationships. Consider an iterate xk at the start of iteration
k of an arbitrary realization of the TR1NE algorithm(5) applied to this problem. We verify
that, for i ∈ Z,

∇1
xfi(xk) = xk

(
1− α sgn(i) e−x

2
k

)
and thus ∇1

xf(xk) = xk and, in view of (2.5),

φδkf,1(xk) = |xk| δk (4.30)

for all xk. As a consequence, x = 0 is the unique global minimizer of f(x). Suppose, for the

rest of this section, that B0,k
def
= B0(xk) = B0(xk + sk), B1,k

def
= B1(xk), and that nB0,k and

nB1,k, the cardinalities of these two sets are known parameters. We deduce from (4.22) that

∇1
xf(xk) = xk

(
1− αΨ(B1,k)e

−x2k
)

where Ψ(B)
def
=

1

|B|
∑
i∈B

sgn(i). (4.31)

Thus Ψ(B) is a zero-mean random variable with values in [−1, 1], depending on the randomly
chosen batch B ⊆ Z of size |B|. Using the hypergeometric distribution, it is possible to show
that |Ψ(B)| is (in probability) a decreasing function of |B|.

Moreover, the use of standard tail bounds [14] reveals that, for any t ∈ (0, 1),

Pr
[
|Ψ(B1,k)| ≤ t

]
= Pr

[
Ψ(B1,k) ≤ t

]2
=
(

1− Pr
[
Ψ(B1,k) > t

])2
≥ (1− e−

1
2
t2nB

1,k)2, (4.32)

in turn indicating that Pr
[
|Ψ(B1,k)| ≤ t

]
> 1

2
whenever

nB1,k ≥
2

t2

∣∣∣∣log

(
1− 1√

2

)∣∣∣∣ ≈ 2.4559

t2
.

Occurence of M(1)
k and M(2)

k . Let us now examine at what conditions the events M(1)
k

andM(2)
k do occur for a specific realization b1,k of B1,k , and consider the occurence ofM(1)

k

first. Because the minimum of first-order models in a ball of radius δk must occur on the
boundary, we choose dk,1 = −sgn(∇1

xf(xk))δk so that

∆tf,1(xk, dk,1) = |∇1
xf(xk)| δk.

(5)With given ν and ς = 1.

28

Using (4.31), we then have that

∆tf,1(xk, dk,1) = |xk| δk
∣∣∣1− αΨ(b1,k) e

−x2k
∣∣∣ . (4.33)

Thus the quantity 1 − αΨ(b1,k) e
−x2k may be interpreted as the local noise relative to the

model decrease.
Taking (4.30) and (4.33) into account, M(1)

k occurs, in any realization, whenever∣∣∣1− αΨ(b1,k) e
−x2k
∣∣∣ ≥ 1

1 + ν
, (4.34)

that is

Ψ(b1,k) ≤
ex

2
k

α

(
1− 1

1 + ν

)
or Ψ(b1,k) ≥

ex
2
k

α

(
1 +

1

1 + ν

)
.

This condition may be quite weak, as shown in left picture in Figure 4.1, where the shape of
the left-hand side of (4.34) is shown for increasing values(6) of the local noise level α exp(−x2)
as a function of Ψ(b1,k), and where the lower bound 1/(1 + ν) is shown as a red horizontal
dashed line. The corresponding ranges of acceptable values of Ψ(b1,k) are shown below the

horizontal axis (in matching colours). The one-sided nature of the inequality defining M(1)
k

is apparent in the picture, where restrictions on the acceptable values of Ψ(b1,k) only occur
for positive values. This reflects the fact that the model may be quite inaccurate and yet
produce a decrease which is large enough for the condition to hold.

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.1: An illustration of conditions (4.34) (left) and (4.36) (right) as a function of
Ψ(b1,k), for ν = 1

4
and local relative noise levels αe−x

2
k = 1

2
(magenta), 4

3
(blue) and 4 (cyan).

Acceptable ranges for Ψ(b1,k) are shown below the horizontal axis in matching colours.

The constraints on Ψ(b1,k), and thus on nB1,k, become more stringent when considering

the occurence of M(2)
k . Since, for any realization, sk = −sgn

(
∇1
xf(xk)

)
rk, we deduce from

(4.31) that

∆tf,1(xk, sk) = −xksk = −xk
[
−sgn(xk) sgn

(
1− αΨ(b1,k) e

−x2k
)
rk

]
= |xk| rk sgn

(
1− αΨ(b1,k) e

−x2k
)

(6)Magenta for 0.5, blue for 4/3 and cyan for 4.

29

and
∆tf,1(xk, sk) = |xk| rk

∣∣∣1− αΨ(b1,k) e
−x2k
∣∣∣ . (4.35)

One then verifies that M(2)
k occurs whenever

1

1 + ν
≤ 1− αΨ(b1,k) e

−x2k ≤ 1

1− ν
. (4.36)

The acceptable values for Ψ(b1,k) are illustrated in the right picture of Figure 4.1, which
shows the shape of the central term in (4.36) using the same conventions than for the left
picture except that now the acceptable part of the curves lies between the lower and upper
bounds resulting from (4.36) (again shown as dashed red lines). A short calculation reveals
that (4.36) is equivalent to requiring

ex
2
k

α

(
1− 1

1− ν

)
≤ Ψ(b1,k) ≤

ex
2
k

α

(
1− 1

1 + ν

)
.

This therefore defines intervals around the origin, whose widths clearly decrease with the local
relative noise level. Because |Ψ(B1,k)| is (in probability) a decreasing function of nB1,k, this

indicates that nB1,k must increase with αe−x
2
k , that is when the local relative noise is large.

Occurence of Fk. A similar reasoning holds when considering the event Fk. Given (4.23),
we have that

|∆f(xk, sk)−∆f(xk, sk)| = 1
2
α |Ψ(b0,k)|

∣∣∣e−x2k − e−(xk+sk)2
∣∣∣ (4.37)

and, in view of (4.35), Fk thus occurs whenever

1
2
α |Ψ(b0,k)| e−x

2
k

∣∣∣1− e−(2xksk+s2k)
∣∣∣ ≤ 2ν|xk| rk

∣∣∣1− αΨ(b1,k) e
−x2k
∣∣∣ . (4.38)

Thus, if |xk| is small (e.g., if the optimum is close) then satisfying (4.38) requires the left-hand
side of this inequality to be small, putting a high request on nB0,k, while the inequality is more
easily satisfied if |xk| is large, irrespective of the batch sizes. Note that, in the first case (i.e.,
when |xk| is small), the request on nB0,k is stronger for smaller nB1,k.

Occurence of (2.31). Given (4.32) and (4.35), we see from Theorem 2.3 that (2.31) holds
whenever

∆tf,1(xk, sk) = |xk| rk
∣∣∣1− αΨ(b1,k) e

−x2k
∣∣∣ ≥ 1

η

∫ ∞
0

(1− gk(τ)) dτ =
1

η

√
π

2nB1,k

where we have used the definition of the erf function to derive the last equality. Thus, as
|Ψ(b1,k)| ≤ 1, gauranteeing (2.31) requires a larger nB1,k for small value of xk, that is when
the optimum is approached.

5 Conclusions and perspectives

We have considered a trust-region method for unconstrained minimization inspired by [10]
which is adapted to handle randomly perturbed function and derivatives values and is capable

30

of finding approximate minimizers of arbitrary order. Exploiting ideas of [12, 7], we have
shown that its evaluation complexity is (in expectation) of the same order in the requested
accuracy as that known for related deterministic methods [7, 10].

In [5], the authors have considered the effect of intrinsic noise on complexity of a de-
terministic, noise tolerant variant of the trust-region algorithm. This important question is
handled here by considering specific realizations of the algorithm under reasonable assump-
tions on the cumulative distribution of errors in the evaluations of the objective function and
its derivatives. We have shown that, for such realizations, a first-order version of our trust-
region algorithms still provides “degraded” optimality guarantees, should intrinsic noise cause
the assumptions used for the complexity analysis to fail. We have specialized and illustrated
those results in the case of sampling-based finite-sum minimization, a context of particular
interest in deep-learning applications.

We have so far developed and analyzed “noise-aware” deterministic and stochastic algo-
rithms for unconstrained optimization. Clearly, considering the constrained case is a natural
extension of the type of analysis presented here.

References

[1] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods based on prob-
abilistic models. SIAM Journal on Optimization, 24(3):1238–1264, 2014.

[2] S. Bellavia and G. Gurioli. Complexity analysis of a stochastic cubic regularisation method un-
der inexact gradient evaluations and dynamic Hessian accuracy. Optimization, (to appear), 2021,
https://doi.org/10.1080/02331934.2021.1892104.

[3] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Adaptive regularization algorithms with inexact
evaluations for nonconvex optimization. SIAM Journal on Optimization, 29(4):2881–2915, 2019.

[4] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Adaptive regularization for nonconvex optimization
using inexact function values and randomly perturbed derivatives. Journal of Complexity, 68, Article
number 101591, 2022.

[5] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. The impact of noise on evaluation complexity: The
deterministic trust-region case. arXiv:2104.02519, 2021.

[6] A. Berahas, L. Cao, and K. Scheinberg. Global convergence rate analysis of a generic line search algorithm
with noise. SIAM Journal on Optimization, 31(2):1489–1518, 2021.

[7] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence rate analysis of a stochastic trust
region method via supermartingales. INFORMS Journal on Optimization, 1(2):92–119, 2019.

[8] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Second-Order Optimality and Beyond: Characterization and
Evaluation Complexity in Convexly Constrained Nonlinear Optimization. Foundations of Computational
Mathematics, 18, 1073–1107, 2020.

[9] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Sharp worst-case evaluation complexity bounds for arbitrary-
order nonconvex optimization with inexpensive constraints. SIAM Journal on Optimization, 30(1):513–
541, 2020.

[10] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Strong evaluation complexity of an inexact trust-region
algorithm for arbitrary-order unconstrained nonconvex optimization. arXiv:2011.00854, 2020.

[11] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity of algorithms for nonconvex opti-
mization. MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, to appear, 2021.

31

[12] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Mathematical Programming, Series A, 159(2):337–375, 2018.

[13] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-region method and
random models. Mathematical Programming, Series A, 169(2):447–487, 2018.

[14] V. Chvátal. The tail of the hypergeometric distribution. Discrete Mathematics, 25:285–287, 1979.

[15] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on Optimization.
SIAM, Philadelphia, USA, 2000.

[16] C. Paquette and K. Scheinberg. A stochastic line search method with convergence rate analysis. SIAM
Journal on Optimization, 30(1):349–376, 2020.

[17] Y. Yuan. Recent advances in trust region algorithms. Mathematical Programming, Series A, 151(1):249–

281, 2015.

Appendix: additional proofs

Proof of (3.12)

Proof. Since σ(1Λck
) belong to Ak−1, because the random variable Λk is fully determined,

assuming Pr(1Λck
) > 0, the tower property yields:

E
[
1Ek | 1Λck

]
= E

[
E [1Ek | Ak−1] | 1Λck

]
≥ E

[
p∗ | 1Λck

]
= p∗.

Then, by the total expectation law we have

E
[
1Ek1Λck

]
= E

[
1Λck

E
[
1Ek | 1Λck

]]
≥ p∗E

[
1Λck

]
.

Similarly,
E
[
1{k<Nε}1Ek1Λck

]
≥ p∗E

[
1{k<Nε}1Λck

]
,

as 1{k<Nε} is also determined by Ak−1. In case Pr(1Λck
) = 0, the above inequality holds

trivially. Then

E

[
Nε−1∑
k=0

1Λck
1Ek

]
= E

[∞∑
k=0

1{k<Nε}1Λck
1Ek

]
≥ pME

[∞∑
k=0

1{k<Nε}1Λck

]
= p∗ E

[
Nε−1∑
k=0

1Λck

]
.

and (3.12) follows. 2

Proof of Lemma 3.4

Proof. Proceeding as in the proof of (3.12) with 1Λk in place of 1Λck
, we obtain:

E

[
Nε−1∑
k=0

1Λk1Ek

]
≥ p∗ E

[
Nε−1∑
k=0

1Λk

]
.

32

Moreover, proceeding again as in the proof of (3.12) and substituting 1Ek with 1Eck we
obtain

E

[
Nε−1∑
k=0

1Λck
1Eck

]
≤ (1− p∗)E

[
Nε−1∑
k=0

1Λk

]
.

Using the above inequalities we obtain (3.16). 2

Proof of Theorem 4.3

Proof. Because of (4.3) and (4.14), we have that

Pr
[
Fk | Ak−1,Gk

]
≥ Pr

[
F̃k | Ak−1,Gk

]
= E

[
1F̃k | Ak−1,Gk

]
≥ E

[
1F̃k | Ak−1,Gk, Ḡk

]
Pr
[
Ḡk | Ak−1,Gk

]
≥
√
α∗ E

[
1F̃k |Ak−1,Gk, Ḡk

]
. (A.1)

If Ḡk is true then by (4.7) it follows

2ν‖∇1
xf(Xk)‖min{1, Rk} ≥ B̄νmin{1, Rk} > B.

Then, (4.2) and (4.5) yield

E
[
1F̃k | Ak− 1

2
, Ḡk
]
≥
√
α∗. (A.2)

Because the trace σ-algebra {Ak−1, Ḡk} contains the trace σ- algebra {Ak−1,Gk, Ḡk}, the
tower property and (A.2) then imply that

E
[
1F̃k | Ak−1,Gk, Ḡk

]
= E

[
E
[
1F̃k | Ak−1, Ḡk

]
| Ak−1,Gk, Ḡk

]
≥ E

[√
α∗ | Ak−1,Gk, Ḡk

]
=
√
α∗

which, together with (A.1), implies (4.19). Since Gk is measurable for Ak−1 we have that

Pr
[
Fk | Ak−1

]
≥ Pr

[
Fk | Ak−1,Gk

]
E
[
1Gk | Ak−1

]
= Pr

[
Fk | Ak−1,Gk

]
1Gk .

Considering now a realization ω such that Pr
[
Fk | Ak−1

]
(ω) < α∗, we therefore obtain,

using (4.19) taken for this realization, that

α∗ > Pr
[
Fk | Ak−1,Gk

]
(ω)1Gk(ω) ≥ α∗ 1Gk(ω),

which implies that 1Gk(ω) = 0, in turn yielding (4.20). 2

