
An adaptive regularization algorithm for unconstrained

optimization with inexact function and derivatives values

N. I. M. Gould∗ and Ph. L. Toint†

21 XI 2021

Abstract

An adaptive regularization algorithm for unconstrained nonconvex optimization is pro-

posed that is capable of handling inexact objective-function and derivative values, and also

of providing approximate minimizer of arbitrary order. In comparison with a similar algo-

rithm proposed in Cartis, Gould, Toint (2021), its distinguishing feature is that it is based

on controlling the relative error between the model and objective values. A sharp evaluation

complexity complexity bound is derived for the new algorithm.

Keywords: nonconvex optimization, inexact functions and derivative values, evaluation

complexity, adaptive regularization.

1 Introduction: motivation, context, definitions

We consider the unconstrained minimization problem

min
x∈IRn

f(x), (1.1)

where f is a p-times continuously differentiable function from IRn to IR. In practice it sometimes

happens that the value of the objective function f and/or those of its derivatives may only be

computed inexactly, for a variety of reasons. It might be that the derivatives are not available,

and are estimated using, for example, finite differences. Or perhaps because the evaluation is

subject to intentional noise. For example, the values in question might be computed by some

kind of experimental process whose accuracy can be adjusted, with the understanding that more

accurate values may be, sometimes substantially, more expensive in terms of computational

effort. A related case is when objective-function or derivative values result from some (one

hopes, convergent) iteration—obtaining more accuracy is possible by letting the iteration converge

further, but again at the price of possibly significant additional computing. A third possibility,

currently much in vogue in the context of machine learning, is when the values of the objective

function and/or its derivatives are obtained by sampling—say from among the terms of a sum

∗Computational Mathematics Group, STFC-Rutherford Appleton Laboratory, Chilton OX11 0QX, England.

Email: nick.gould@stfc.ac.uk . The work of this author was supported by EPSRC grant EP/M025179/1
†Namur Center for Complex Systems (naXys), University of Namur, 61, rue de Bruxelles, B-5000 Namur,

Belgium. Email: philippe.toint@unamur.be

1

Gould & Toint — Adaptive regularization for inexact function and derivatives 2

of functions involving an enormous number of them. Again, using a larger sample size results in

probabilistically better accuracy, but at a cost. In this report, we are particularly interested in

a fourth case of growing relevance in high-performance computing, which is the emerging field

of “variable accuracy” or “multi-precision” optimization [1, 12, 2, 10], where the computation

of the objective function and its derivative(s) are intentionally truncated to significantly fewer

digits than would be required for an accurate calculation. Doing so allows the use of specialised

processing units whose chip surface, and hence power consumption, is much less than is needed

for standard double precision arithmetic [9].

It is therefore important to design and analyze algorithms which are tolerant to inexactness

or noise. This subject is not new. The main ideas developed in this report have their origin

in the paper [3], that considers the complexity of finding weak approximate minimizers using

an algorithm similar, at least in spirit, to the algorithm discussed here. Our new presentation

and its associated analysis merge the elaborate approximation techniques described in that paper

with techniques of [7, Chapter 12] for computing (strong) approximate minimizers and has been

explored at length in [7, Chapter 13]. It also avoids using a dynamic relative accuracy threshold

present in [3]. First-order trust-region methods with inexact evaluations and explicit dynamic

accuracy have been described in [4] and in Section 10.6 of [8]. The complexity analysis for the

first-order case was also discussed in [10].

The purpose of the report in hand is to present an alternative to one of the algorithms

described in [7, Chapter 13], namely ARqpEDA, the adaptive regularisation algorithm with explicit

dynamic accuracy, and to provide a sharp upper bound on its evaluation complexity. The variant

we will consider here, which we call ARqpEDA2, uses the same Explicit Dynamic Accuracy (EDA)

framework as ARqpEDA, but enforces its associated controls in a different way. Obviously, these

sentences require some clarification as to what these terms convey.

By “explicit dynamic accuracy”, we mean that, during the optimization process, the required

values (objective-function or derivatives) can always be computed with an accuracy that is explic-

itly(1) specified, before the calculation, by the algorithm itself. It is also understood in what follows

that the algorithm should require high accuracy only if necessary, but nonetheless guarantee final

results to full requested accuracy. In this situation, it is hoped that many function or derivative

evaluations can be carried out with a fairly loose accuracy (we will refer to these as “inexact

values”), thereby resulting in a significantly cheaper optimization process.

Different kinds of optimization method can be designed to work within this framework. We

focus here an “adaptive regularization” algorithms(see [11, 13, 5] among many other contribu-

tions), where, at a given iteration, a regularized local Taylor model of the objective function is

minimized to define the next trial iterate. The strength of the regularization is then adaptively

updated to guarantee convergence to approximate minimizers. In addition, we will consider a

variant of the adaptive regularization technique whose purpose is to find such approximate min-

imizers of arbitrary, but given, order. If an approximate minimizer of order q ≥ 1 is sought, this

requires the Taylor model of the objective function to have degree p ≥ q. Such a model is of the

form

Tf,j(x, s)
def
= f(x) +

j∑
i=1

1

i!
∇ixf(x)[s]i ≡ Tf,j(x, 0) +

j∑
i=1

1

i!
[∇ivTf,j(x, v)]v=0[s]i (1.2)

for perturbations s around x, where ∇jxf(x) is the j-th order tensor giving the the j-th derivative

(1)See [7, Chap. 13] for the description and analysis of an implicit dynamic accuracy framework.

Gould & Toint — Adaptive regularization for inexact function and derivatives 3

of f at x, and where the notation ∇jxf(x)[s]j means that it is applied on j copies of s

Given a Taylor model (1.2), we also have to define what we mean by an ε-approximate

minimizer of order q. Following [6] (and [7]), we say that x is an ε-approximate minimizer of

order q whenever, for some δ ∈ (0, 1]q and ε ∈ (0, 1]q,

φ
δj
f,j(x) ≤ εj

δj

j!
for j ∈ {1, . . . , q}, (1.3)

where

φ
δj
f,j(x) = f(x)− min

d∈IRn, ‖d‖≤δj
Tf,j(x, d). (1.4)

In other words, this is the case when the none of the Taylor approximations Tf,j (j ≤ q) at x can

be decreased by more than a scaled multiple of εj (the right-hand side of (1.3)) in a neighbourhood

of x of radius δj . (The δj are called the optimality radii.) We again refer the reader to [6] or [7]

for discussion of this optimality concept and of why it is a suitable genralization of the standard

low order optimality conditions to arbitrary order.

In our new EDA framework, we have to be content with an inexact equivalent of (1.2) given

by

T f,j(x, s) = f(x) +

j∑
i=1

1

i!
∇ixf(x)[s]i ≡ T f,j(x, 0) +

j∑
i=1

1

i!
[∇ivT f,j(x, v)]v=0[s]i. (1.5)

where, here and hereafter, we denote inexact quantities and approximations with an overbar. It

is therefore pertinent to investigate the effect of inexact derivatives on (1.5) and its uses. More

specifically, we will be concerned with the Taylor decrement ∆Tf,j(x, s) at x and for a step s,

defined as

∆Tf,j(x, s)
def
= Tf,j(x, 0)− Tf,j(x, s) = −

j∑
i=1

1

i!
[∇ivTf,j(x, v)]v=0[s]i ≡ −

j∑
i=1

1

i!
∇ixf(x)[s]i. (1.6)

While our traditional algorithms depend on this quantity, it is of course out of the question to

use it in the present context, as we only have approximate values. But an obvious alternative is

instead to consider the inexact Taylor decrement

∆T f,j(x, s)
def
= T f,j(x, 0)− T f,j(x, s) = −

j∑
i=1

1

i!
[∇ivT f,j(x, v)]v=0[s]i, (1.7)

itself resulting in an inexact version of (1.4) given by

φ
δk,j
f,j (x) = − max

d∈IRn, ‖d‖≤δj
∆T f,j(x, d). (1.8)

In the “Explicit Dynamic Accuracy” (EDA) framework, we assume that the conditions

‖∇ixf(x)−∇ixf(x)‖ ≤ ϕi (1.9)

for degrees i ≥ 0 of interest are enforced when demanded by the algorithm, where ϕi is the

required absolute error bound on the i-th derivative. It then follows that the error between the

exact and inexact Taylor expansions satisfies the bound

|∆T f,j(x, s)−∆Tf,j(x, s)| ≤
j∑
i=1

‖∇ixf(x)−∇ixf(x)‖ ‖s‖
i

i!
≤

j∑
i=1

ϕk,i
‖s‖i

i!
, (1.10)

Gould & Toint — Adaptive regularization for inexact function and derivatives 4

using the triangle inequality and the requirement (1.9).

The distingushing feature of the ARqpEDA2 algorithm—compared with ARqpEDA of [7, Chap-

ter 13]—is that it enforces convergence by controlling a (scaling independent) relative error bound

|∆T f,p(x, s)−∆Tf,p(x, s)| ≤ ω∆T f,p(x, s), (1.11)

for some fixed relative accuracy parameter ω ∈ (0, 1). Most of the difficulty in the forthcoming

analysis results from the need to impose this relative error bound and it is not obvious at this

point how it can be enforced using the absolute bounds (1.9). We now consider how this can be

achieved.

2 Enforcing accuracy of the Taylor decrements

For clarity, we temporarily neglect the iteration index k. While there may be circumstances in

which (1.11) can be enforced directly, we consider here that the only control the user has on the

accuracy of ∆T f,j(x, s) is by imposing the bounds (1.9) on the absolute errors of the derivative

tensors {∇ixf(x)}ji=1. As one may anticipate by examining (1.11), a suitable relative accuracy

requirement can be achieved so long as ∆T f,j(x, s) remains safely away from zero. However,

if exact computations are to be avoided, we may have to accept a simpler absolute accuracy

guarantee when ∆T f,j(x, s) is small, but one that still guarantees our final optimality conditions.

Of course, not all derivatives need to be inexact. If derivatives of order i ∈ E ⊆ {1, . . . , q}
are exact, then the left-hand side of (1.9) vanishes for i ∈ E and the choice ϕi = 0 for i ∈ E is

perfectly adequate. However, we avoid the notational complication that making this distinction

would entail.

We start by describing a crucial tool that we use to achieve (1.11). This is the CHECK algo-

rithm, stated as Algorithm 2.1 on the following page. We use this to assess the relative model

accuracy whenever needed in the algorithms we describe later in this section.

To put our exposition in a general context, we suppose that we have an r-th degree Taylor

series Tr(x, v) of a given function about x in the direction v, along with an approximation T r(x, v)

and its decrement ∆T r(x, v). Additionally, we suppose that a bound δ ≥ ‖v‖ is given, and that

required relative and absolute accuracies ω and ξ > 0 are on hand; the relative accuracy constant

ω ∈ (0, 1) will fixed throughout the forthcoming algorithms, and we assume that it is given

when needed in CHECK. Finally, we assume that the current upper bounds {ϕj}rj=1 on absolute

accuracies of the derivatives of T r(x, v) with respect to v at v = 0 are provided. Because it will

always be the case when we need it, for simplicity we will assume that ∆T r(x, v) ≥ 0.

Gould & Toint — Adaptive regularization for inexact function and derivatives 5

Algorithm 2.1: Verify the accuracy of ∆T r(x, v) (CHECK)

accuracy = CHECK

(
δ,∆T r(x, v), {ϕi}ri=1, ξ

)
.

If
∆T r(x, v) > 0 and

r∑
i=1

ϕi
δi

i!
≤ ω∆T r(x, v), (2.1)

set accuracy to relative.

Otherwise, if r∑
i=1

ϕi
δi

i!
≤ ωξ δ

r

r!
, (2.2)

set accuracy to absolute.

Otherwise set accuracy to insufficient.

It will be convenient to say informally that accuracy is sufficient, if it is either absolute

or relative. We may formalise the accuracy guarantees that result from applying the CHECK

algorithm as follows.

Lemma 2.1 Let ω ∈ (0, 1] and δ, ξ and {ϕi}ri=1 > 0. Suppose that ∆T r(x, v) ≥ 0, that

accuracy = CHECK

(
δ,∆T r(x, v), {ϕi}ri=1, ξ

)
,

and that ∥∥∥[∇ivT r(x, v)
]
v=0
−
[
∇ivTr(x, v)

]
v=0

∥∥∥ ≤ ϕi for i ∈ {1, . . . , r}. (2.3)

Then

(i) accuracy is sufficient whenever

r∑
i=1

ϕi
δi

i!
≤ ωξ δ

r

r!
. (2.4)

(ii) if accuracy is absolute,

max
[
∆T r(x,w),

∣∣∣∆T r(x,w)−∆Tr(x,w)
∣∣∣] ≤ ξ δr

r!
(2.5)

for all w with ‖w‖ ≤ δ.
(iii) if accuracy is relative, ∆T r(x, v) > 0 and∣∣∣∆T r(x,w)−∆Tr(x,w)

∣∣∣ ≤ ω∆T r(x,w), for all w with ‖w‖ ≤ δ. (2.6)

Proof. We first prove proposition (i), and assume that (2.4) holds, which clearly ensures

that (2.2) is satisfied. Thus either (2.1) or (2.2) must hold and termination occurs, proving

the first proposition.

Gould & Toint — Adaptive regularization for inexact function and derivatives 6

It follows by definition of the decrements (1.6) and (1.7), the triangle inequality and (2.3)

that ∣∣∣∆T r(x,w)−∆Tr(x,w)
∣∣∣ =

∣∣∣∣∣
r∑
i=1

([
∇ivT r(x, v)

]
v=0
−
[
∇ivTr(x, v)

]
v=0

)
[w]i

i!

∣∣∣∣∣
≤

r∑
i=1

∥∥[∇ivT r(x, v)
]
v=0
−
[
∇ivTr(x, v)

]
v=0

∥∥ ‖w‖i
i!

≤
r∑
i=1

ϕi
‖w‖i

i!
.

(2.7)

Consider now the possible sufficient termination cases for the algorithm and suppose first

that termination occurs with accuracy as absolute. Then, using (2.7), (2.2) and ω < 1, we

have that, for any w with ‖w‖ ≤ δ,∣∣∣∆T r(x,w)−∆Tr(x,w)
∣∣∣ ≤ r∑

i=1

ϕi
δi

i!
≤ ωξ δ

r

r!
≤ ξ δ

r

r!
. (2.8)

If ∆T r(x, v) = 0, we may combine this with (2.8) to derive (2.5). By contrast, if ∆T r(x, v) >

0, then since (2.1) failed but (2.2) holds,

ω∆T r(x,w) <
r∑
i=1

ϕi
δi

i!
≤ ωξ δ

r

r!
.

Combining this inequality with (2.8) yields (2.5). Suppose now that accuracy is relative.

Then (2.1) holds, and combining it with (2.7) gives that∣∣∣∆T r(x,w)−∆Tr(x,w)
∣∣∣ ≤ r∑

i=1

ϕi
δi

i!
≤ ω∆T r(x,w),

for any w with ‖w‖ ≤ δ, which is (2.6). 2

Clearly, the outcome corresponding to our initial aim to obtain a relative error at most ω corre-

sponds to the case where accuracy is relative. As we will shortly discover, the two other cases

are also needed.

3 The ARqpEDA2 algorithm

We now define our adaptive regularization algorithm, which approximately minimizes the regu-

larized, inexact Taylor-series model defined

mk(s)
def
= T f,p(xk, s) +

σk
(p+ 1)!

‖s‖p+1 (3.1)

at iteration k, where T f,p(x, s) is described in (1.5). Thus this model uses p > 0 inexact deriva-

tives, each of which is required to satisfy bounds of the form (1.9) for j ∈ {1, . . . , p}. Success or

failure is assessed by comparing the reduction in the Taylor series this gives compared to the in-

exact function value at the resulting trial point. Complications arise since optimality can only be

assessed using inexact problem data, and because of the need for the inexact function values and

derivatives to maintain appropriate coherence with their unknown true values. This makes both

the algorithm and its analysis significantly involved, particularly since we need to add explicit

dynamic-accuracy control to the mix.

Without further ado, and with no further apologies, here is the detailed algorithm.

Gould & Toint — Adaptive regularization for inexact function and derivatives 7

Algorithm 3.1: Adaptive-regularization algorithm with explicit dynamic

accuracy (ARqpEDA2)

Step 0: Initialisation. A criticality order q, a degree p ≥ q, an initial point x0 ∈ IRn and

an initial regularization parameter σ0 > 0 are given, as well as accuracy levels ε ∈ (0, 1)q

and an initial set of absolute derivative accuracies {ϕi,0}pi=1. The constants ω, ϕmax, ς,

δ0, θ, η1, η2, γ1, γ2, γ3 and σmin are also given and satisfy ϕmax ≥ 0, ς ∈ (0, 1], θ > 0,

δ0 ∈ (ε, 1]q, σmin ∈ (0, σ0],

0 < η1 ≤ η2 < 1, 0 < γ1 < 1 < γ2 < γ3, (3.2)

ω ∈ (0,min [1
2
η1, 1

4
(1− η2)]) and ϕi,0 ≤ ϕmax (i ∈ {1, . . . , p}). (3.3)

Set k = 0 and kϕ = 0.

Step 1: Compute the optimality measures and check for termination. Set δ
(0)
k =

δk and evaluate any unavailable {∇ixf(xk)}pi=1 to satisfy

‖∇ixf(xk)−∇ixf(xk)‖ ≤ ϕi,kϕ for i ∈ {1, . . . , p}. (3.4)

For j = 1, . . . , q:

Step 1.1: Compute a displacement dk,j ∈ Bδk,j such that the corresponding Taylor

decrement ∆T f,j(xk, dk,j) satisfies

ςφ
δk,j
f,j (xk) ≤ ∆T f,j(xk, dk,j). (3.5)

If the call

CHECK

(
δk,j ,∆T f,j(xk, dk,j), {ϕi,kϕ}

j
i=1,

1
2
εj

)
. (3.6)

returns insufficient, go to Step 5.

Step 1.2: If

∆T f,j(xk, dk,j) ≤
ςεj

(1 + ω)

δjk,j
j!
, (3.7)

consider the next value of j.

Step 1.3: Otherwise, if

∆mk(dk,j) ≥
ςεj

2(1 + ω)

δjk,j
j!
, (3.8)

go to Step 2 with the index jk = j, and δ
(1)
k = δk and dk = dk,j .

Step 1.4: Otherwise set δk,j = 1
2
δk,j and return to Step 1.1.

Terminate with xε = xk and δε = δk.

Gould & Toint — Adaptive regularization for inexact function and derivatives 8

Step 2: Step calculation.

Step 2.1: Compute a step sk and optimality radii δsk ∈ (0, 1]q by approximately

minimizing the model mk(s) from (3.1) in the sense that

∆mk(sk) ≥ ∆mk(dk), (3.9)

and either
‖sk‖ ≥ 1 (3.10)

or

ςφ
δsk,`
mk,`

(sk) ≤ ∆Tmk,`(sk, d
m
sk,`

) ≤ ςθ(1− ω)

(1 + ω)2
ε`
δ`sk,`
`!

for ` ∈ {1, . . . , q} (3.11)

for some radii δsk ∈ (0, 1]q and displacements dmsk,` ∈ Bδsk,` .

Step 2.2: If the call

CHECK

(
‖sk‖,∆T f,p(xk, sk), {ϕi,kϕ}

p
i=1,

ςεjk
2(1 + ω)

p!
(
δ

(1)
k,jk

)jk
jk! max

[
δ

(1)
k,jk

, ‖sk‖
]p)

or ‖sk‖ < 1 and any of the calls

CHECK

(
δsk,`,∆Tmk,`(sk, d

m
sk,`

), {3 max
t∈{`,...,p}

ϕt,kϕ}`i=1,
ςθ(1− ω)ε`
2(1 + ω)2

)
(` ∈ {1, . . . , q})

returns insufficient, then go to Step 5.

Step 3: Acceptance of the trial point. Compute f(xk + sk) ensuring that

|f(xk + sk)− f(xk + sk)| ≤ ω∆T f,p(xk, sk). (3.12)

Also ensure, either by setting f(xk) = f(xk−1 + sk−1) or recomputing f(xk), that

|f(xk)− f(xk)| ≤ ω∆T f,p(xk, sk). (3.13)

Then set
ρk =

f(xk)− f(xk + sk)

∆T f,p(xk, sk)
. (3.14)

If ρk ≥ η1, then define xk+1 = xk + sk and δk+1 = δsk if ‖sk‖ < 1 or δk+1 = δ
(1)
k

otherwise. If ρk < η1, define xk+1 = xk and δk+1 = δ
(1)
k .

Step 4: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,

[σk, γ2σk] if ρk ∈ [η1, η2),

[γ2σk, γ3σk] if ρk < η1.

(3.15)

Increment k by one and go to Step 1.

Gould & Toint — Adaptive regularization for inexact function and derivatives 9

Step 5: Improve accuracy. For i ∈ {1, . . . , p}, set

ϕi,kϕ+1 = γϕϕi,kϕ ,

increment k and kϕ by one and return to Step 1 with xk+1 = xk, δk+1 = δ
(0)
k and

σk+1 = σk.

Note that extensive use is made of the CHECK algorithm we developed above to ensure that

derivative approximations are sufficiently accurate. Nonetheless, a number of comments are in

order to clarify and motivate this extensive description.

• Starting with Step 0, notice that that we postpone the evaluation of the inexact objective

function f(x0) until Step 3 since Steps 1 and 2 do not depend on its value.

• Next, examining Step 1, we see that the initialization of Step 1 and Step 1.1 aim at comput-

ing, while (3.8) ensures a lower bound on the model decrease, which then guarantees both

that xk is not a global model minimizer and also that the first call to CHECK in Step 2 cannot

return absolute (see Lemma 4.7 below). Of course, we need to show that the loop within

Step 1 in which δk,j is reduced terminates finitely, and that the resulting value of δk,j is not

unduly small (as per Lemma 4.2 below); because of condition (3.8), this entails showing

that the model decrease at dk,j , the optimality displacement associated with the violated

optimality condition (3.7), is large enough. We also note that, unless termination occurs,

Step 1 specifies the first index j ∈ {1, . . . , q} for which j-th-order approximate-criticality

test (3.7) fails. It is then helpful to distinguish the vectors of radii

δ
(0)
k = δk at the start of Step 1, (3.16)

and inherited from iteration k − 1, from

δ
(1)
k = δk at the end of Step 1, (3.17)

after possible reductions within that step. Clearly, component-wise δ
(1)
k ≤ δ

(0)
k .

• Complications arise in Step 2.2 where the step itself and the optimality displacements

associated with model’s approximate optimality have to be checked for sufficient accuracy.

Just as was the case in Step 1, this entails possible accuracy improvements, re-evaluation of

the derivatives and the need to recompute the step for the improved model. The absolute

accuracy thresholds passed as the last argument to the two calls to CHECK undoubtedly

appear rather mysterious at this stage: the first is designed to ensure that an absolute

return from CHECK is impossible, and the second to ensure an optimality level for the exact

problem that is comparable to that revealed in Step 1. More details will obviously be given

in due course.

• Step 3 ensures coherence between accuracy on the function values and accuracy of the

model. We stress that the requirements (3.12) and (3.13) do not imply that we need to

know the true f , we only need some mechanism to ensure that xk and xk + sk satisfy the

Gould & Toint — Adaptive regularization for inexact function and derivatives 10

required bounds and that are needed to guarantee convergence. Again, a new value of f(xk)

has to be computed to ensure (3.13) in Step 3 only when k > 0 and ∆T f,p(xk−1, sk−1) >

∆T f,p(xk, sk), in which case the (inexact) function value is computed twice rather than once

during that iteration. As is standard, iteration k is said to be successful when ρk ≥ η1 and

xk+1 = xk + sk, and we define S, U , A, the sets of successful, unsuccessful and accuracy-

improving iterations, respectively, as well as T , Sk, Uk, Ak and Tk by

S def
= {k ∈ N | Step 5 is not executed and ρk ≥ η1},

U def
= {k ∈ N | Step 5 is not executed and ρk < η1} and

A def
= {k ∈ N | Step 5 is executed}.

(3.18)

If T def
= S ∪ U , we also define

Sk
def
= S ∩ {0, . . . , k}, Uk

def
= U ∩ {0, . . . , k},

Ak
def
= A ∩ {0, . . . , k} and Tk

def
= Tk ∩ {0, . . . , k},

(3.19)

the corresponding sets up to iteration k. Notice that xk+1 = xk + sk for k ∈ S, while

xk+1 = xk for k ∈ U ∪ A. Note also that the objective function is evaluated at most

twice per successful or unsuccessful iteration (i.e. once for every k ∈ T), and derivatives are

evaluated once per successful or accuracy improving iteration (i.e. once for every k ∈ S∪A).

• Step 4 is the standard regularization parameter update.

• Finally, Step 5 describes the accuracy improvement mechanism.

Given the definitions (3.19), we are now able to show that the number of iterations in Tk is at

most a multiple of that in Sk.

Lemma 3.1 Suppose that the ARqpEDA2 algorithm is used and that σk ≤ σmax for some

σmax > 0. Then

|Tk| ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (3.20)

Proof. Observe that σk+1 = σk for k ∈ A. The regularization parameter update (3.15)

now gives that, for each k,

γ1σj ≤ max[γ1σj , σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk.

Thus we deduce inductively that

σ0γ
|Sk|
1 γ

|Uk|
2 ≤ σk.

Therefore, using our assumption that σk ≤ σmax, we deduce that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(
σmax

σ0

)
,

Gould & Toint — Adaptive regularization for inexact function and derivatives 11

which then implies that

|Uk| ≤ −|Sk|
log γ1

log γ2
+

1

log γ2
log

(
σmax

σ0

)
,

since γ2 > 1. The desired result (3.20) then follows from the equality |Tk| = |Sk| + |Uk| and

the inequality γ1 < 1 given by (3.2). 2

4 Evaluation complexity for the ARqpEDA2 algorithm

Our analysis of the ARqpEDA2 algorithm will be carried out under the following assumptions.

f.D0qL: f is q times continuously differentiable in IRn and, for all j ∈ {0, . . . , q}, the j-th

derivative of f is Lipschitz continuous with Lipschitz constant Lf,j , that is there exist

constants Lf,j ≥ 1 such that

‖∇jxf(x)−∇jxf(y)‖ ≤ Lf,j‖x− y‖

for all x, y ∈ IRn and all j ∈ {0, . . . , q}.

f.Bb: There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.

We then define

Lf
def
= max

j∈{0,...,p}
Lf,j ≥ 1. (4.1)

We recall that the derivatives of the objective function at the iterates xk remain bounded under

f.D0pL. Moreover, the absolute accuracies {ϕi}pi=1 never increase in the course of the ARqpEDA2

algorithm, and are initialised so that ϕi ≤ ϕmax for all i ∈ {1, . . . , p}. As a consequence, f.D0pL,

standard error bounds for Lipschitz functions (see [7, Corollary A.8.4], for instance), (4.1) and

(3.4) imply that, for each ` ∈ {1, . . . , p},

‖∇`xf(xk)‖ ≤ ‖∇`xf(xk)‖+ ‖∇`xf(xk)−∇`xf(xk)‖ ≤ Lf + ϕmax
def
= Lf . (4.2)

4.1 The outcomes of Step 1

We start by considering the result of performing Step 1 and show that the loop reducing δk,j
generated by the possible return to Step 1.1 from Step 1.4 is finite. This is done in two stages:

we start by expressing a general property of the value of the model compared to the truncated

Taylor series, which we will subsequently apply to obtain the desired conclusion.

Gould & Toint — Adaptive regularization for inexact function and derivatives 12

Lemma 4.1 Suppose that f.D0pL holds, that mk(s) is the inexact model (3.1) correspond-

ing to some approximate derivatives values {∇`xf(xk)}p`=1, and that Lf is given by (4.2).

Given α > 0 and

δ ∈
(

0,min

(
1,

α

4 max[Lf , σk]

)]
, (4.3)

suppose that there is a displacement d ∈ Bδ for which

∆T f,j(xk, d) ≥ αδ
j

j!
(4.4)

for some j ∈ {1, . . . , q}. Then

∆mk(d) ≥ 1
2
α
δj

j!
. (4.5)

Proof. The proof is built on the sequence of inequalities

∆mk(dk) = ∆T f,j(xk, d) +

p∑
`=j+1

1

`!
∇`xf(xk)[d]` +

σk
(p+ 1)!

‖d‖p+1

≥ ∆T f,j(xk, d)−
p∑

`=j+1

δ`

`!
‖∇`xf(xk)‖ −

σk
(p+ 1)!

δp+1

≥ αδ
j

j!
−max[Lf , σk]

p+1∑
`=j+1

δ`

`!

≥ αδ
j

j!
− 2 max[Lf , σk]

δj+1

j!

= δj

j!

(
α− 2 max[Lf , σk]δ

)
that arise from the triangle inequality and because of the assumptions made. The required

bound (4.5) then follows because of (4.3). 2

We now show that looping inside Step 1 is impossible.

Lemma 4.2 Suppose that f.D0pL holds and that algorithm ARqpEDA2 has reached the test

(3.8) in Step 1.3. Suppose also that

δk,j ≤
ςεj

4(1 + ω) max[Lf , σk]
(4.6)

with Lf is given by (4.2). Then (3.8) holds, and thus no return from Step 1.5 to Step 1.2 is

possible.

Proof. That the algorithm has reached the test (3.8) in Step 1.3 implies that (3.7) failed

Gould & Toint — Adaptive regularization for inexact function and derivatives 13

and thus

∆T f,j(xk, dk) >

(
ςεj

1 + ω

)
δjk,j
j!
.

Hence, using Lemma 4.1 with and the fact that (4.6) implies (4.3) for δ = δk,j , we deduce

that (3.8) must hold from (4.5). 2

Thus the loop within Step 1 is finite, (3.8) eventually holds and we may therefore analyze the

possible outputs of Step 1.

Lemma 4.3 Suppose that f.D1pL holds, and that the ARqpEDA2 algorithm is applied. Then

one of three situations may occur at Step 1 of iteration k:

(i) the ARqpEDA2 algorithm terminates with xε an (ε, δ)-approximate q-th-order minimizer,

or

(ii) control is passed to Step 5, or

(iii) the call (3.6) returns relative for some j ∈ {1, . . . , q} for which (3.8) holds for a δ
(1)
k,j

satisfying

δ
(0)
k,j ≥ δk,j ≥ δ

(1)
k,j ≥ min

[
ςεj

8(1 + ω) max[Lf , σk]
, δ

(0)
k,j

]
. (4.7)

and control is then passed to Step 2 with

(1− ω)∆T f,j(xk, dk,j) ≤ φ
δ
(0)
k,

f,j (xk) ≤
(

1 + ω

ς

)
∆T f,j(xk, dk,j) (4.8)

being satisfied.

Moreover, outcome (ii) is impossible whenever

max
i∈{1,...,j}

ϕi ≤
ςω

4
min

[
ςεj

8(1 + ω) max[Lf , σk]
, δ

(0)
k,j

]j−1 εj
j!
. (4.9)

Proof.

Suppose first that branching to Step 5 does not occur in Step 1.2 for any j ∈ {1, . . . , q} (i.e.,

outcome (ii) does not occur). This ensures that the call (3.6) always returns either relative

or absolute. Consider any j ∈ {1, . . . , q} and notice that Step 1.1 yields (2.3) with Tr = Tf,j
and r = j, so that the assumptions of Lemma 2.1 are satisfied. Moreover, because of (3.5)

and the fact that φδkf,j(xk) ≥ 0 by definition, we have that ∆T f,j(xk, dk,j) ≥ 0.

If the call (3.6) returns absolute, then Lemma 2.1(ii) with ξ = 1
2
ςεj , ensures that

∆T f,j(xk, dk,j) ≤ 1
2
ςεj

δjk
j!
≤ ςεj

1 + ω

δjk
j!
, (4.10)

using the requirement that ω < 1. Moreover, if d∗k,j ∈ Bδk is a global maximizer of Tf,j(xk, d)

over all d ∈ Bδk , we may again invoke (2.5) with ξ = 1
2
ςεj together with the triangle inequality

Gould & Toint — Adaptive regularization for inexact function and derivatives 14

to see that

φδkf,j(xk) = ∆Tf,j(xk, d
∗
k,j)

≤ ∆T f,j(xk, d
∗
k,j) + |∆Tf,j(xk, d∗k,j)−∆T f,j(xk, d

∗
k,j)|

≤ εj
δjk
j!
.

(4.11)

By contrast, if the call (3.6) returns relative, observe that

ς∆T f,j(xk, d) ≤ ςφδkf,j(xk) ≤ ∆T f,j(xk, dk,j) (4.12)

for any d ∈ Bδk because of (3.5), and thus we have that

ς∆Tf,j(xk, d) ≤ ς
[
∆T f,j(xk, d) +

∣∣∣∆T f,j(xk, d)−∆Tf,j(xk, d)
∣∣∣]

≤ ς(1 + ω)∆T f,j(xk, d)

≤ (1 + ω)∆T f,j(xk, dk,j)

using Lemma 2.1(iii), and the second inequality in (4.8) follows by picking d = d∗k,j . Similarly

∆Tf,j(xk, d) ≥ ∆T f,j(xk, d)−
∣∣∣∆T f,j(xk, d)−∆Tf,j(xk, d)

∣∣∣ ≥ (1− ω)∆T f,j(xk, d)

for any d ∈ Bδk , again using Lemma 2.1(iii). Hence

max
‖d‖≤δk

∆Tf,j(xk, d) ≥ (1− ω) max
‖d‖≤δk

∆T f,j(xk, d) ≥ (1− ω)∆T f,j(xk, dk,j),

which is the first inequality in (4.8). Thus we obtain that, for any j ∈ {1, . . . , q}, either both

(4.10) and (4.11) hold, or (4.8) holds.

If the j loop continues to termination, then for each j ∈ {1, . . . , q}, we must have that either

(4.11) holds or

φδkf,j(xk) ≤
(

1 + ω

ς

)
∆T f,j(xk, dk,j) ≤ εj

δjk
j!
,

where we used (4.8) and the fact that (3.8) must be violated for the loop to continue. Thus

in either event (4.11) holds for all j ∈ {1, . . . , q}, and thus, as (1.3) holds with xε = xk and

δε = δk, outcome (i) will occur.

If, instead, control passes to Step 2, we must now show that the conclusions of outcome (iii)

hold. Firstly, observe that the mechanism of Step 1 ensures that the first inequality in (4.7) is

satisfied. Moreover, if the loop on j does not finish and branching to Step 5 does not happen,

there must be a j such that (3.7) is violated and the test (3.8) is reached. But we have shown

in Lemma 4.2 that the number of times that (3.8) is violated—and hence δk,j is halved—is

finite since (3.8) must hold as soon as (4.6) holds. At this stage, if one or more halvings

happened, the resulting value of δk,j cannot be smaller than half of the right-hand side of

(4.6), and so (4.7) also holds. If no halving of δk,j occurred, δ
(1)
k,j = δ

(0)
k,j and (4.7) obviously

holds. In addition, since (3.8) ultimately holds for some jk ∈ {1, . . . , q}, (3.6) cannot have

returned insufficient (by assumption) or absolute (because, in view of (3.1), (4.10) would

have prevented (3.8)), and thus it returned relative. Hence outcome (iii) occurs.

Gould & Toint — Adaptive regularization for inexact function and derivatives 15

Finally, Lemma 2.1 (i) shows that outcome (ii) cannot happen if (4.9) holds with δk being

the smallest δk,j that can occur during the execution of Step 1, which is δ
(1)
k,j . In other words,

outcome (ii) cannot happen if

max
i∈{1,...,j}

ϕi ≤
ςω

4
εj

(
δ

(1)
k,j

)j−1

j!
.

Substituting (4.7) into this bound then reveals (4.9). 2

4.2 The outcomes of Step 2

Our next task is to investigate Step 2 in more detail. Our aim is to show that it is possible to

compute a step sk that satisfies (3.9) and either (3.10) or (3.11). We start our analysis by stating

a suitable bound on model decrease, which now involves the inexact Taylor series T f,p(xk, sk) of

degree p.

Lemma 4.4 The mechanism of the ARqpEDA2 algorithm guarantees that

∆T f,p(xk, sk) ≥
σk

(p+ 1)!
‖sk‖p+1 (4.13)

for all k ∈ T , and (3.14) is well-defined.

Proof. Since k ∈ T , both (3.8) and (3.9) must hold at iteration k for some j ∈ {1, . . . , q}.
We then have that

0 <
ςεj
4

δjk,j
j!
≤ ∆mk(dk,j) ≤ ∆mk(sk) = ∆T f,p(xk, sk)−

σk
(p+ 1)!

‖sk‖p+1,

using (3.9) which ensures both that sk 6= 0 and (4.13) holds. 2

Because the second set of calls to CHECK in Step 2.2 aim to check the accuracy of the Taylor

expansion of the model, we need to consider {∇jdTmk,j(sk, 0)}pj=1 rather than the {∇jxf(xk)}pj=1

that we have used so far. It is easy to verify that these (approximate) derivatives are given by

∇jdTmk,j(sk, 0) =

p∑
`=j

∇`xf(xk)[sk]
`−j

(`− j)!
+

σk
(p+ 1)!

[
∇js‖s‖p+1

]
s=sk

, (4.14)

where the last term of the right-hand side is computed exactly. This yields the following error

bound.

Lemma 4.5 Suppose that ‖sk‖ ≤ 1. Then, for all j ∈ {1, . . . , p},∣∣∣∇jdTmk,j(sk, 0)−∇jdTmk,j(sk, 0)
∣∣∣ ≤ 3 max

`∈{j,...,p}
‖∇`xf(xk)−∇`xf(xk)‖

≤ 3 max
`∈{j,...,p}

ϕ`,kϕ .
(4.15)

Gould & Toint — Adaptive regularization for inexact function and derivatives 16

Proof. Using the triangle inequality, (4.14), the inequality ‖sk‖ ≤ 1, we have that

∣∣∣∇jdTmk,j(sk, 0)−∇jdTmk,j(sk, 0)
∣∣∣ ≤ p∑

`=j

∣∣∣∇jxf(xk)−∇jxf(xk)
∣∣∣ ‖sk‖`−j

(`− j)!

≤ max
`∈{j,...,p}

ϕ`,kϕ

p∑
`=j

1

(`− j)!

for all j ∈ {1, . . . , p}, and (4.15) then follows from the fact that

p∑
`=j

1

(`− j)!
≤ 1 +

p−j∑
`=1

1

`!
≤ 1 + e.

2

As a consequence, to be safe, we must require three times more accuracy for the derivatives of

the model at sk than what would be required at s = 0.

Next, we provide an upper bound on the norm of the step.

Lemma 4.6 Suppose that f.D0pL holds, that Lf is given by (4.2), and that a step sk has

been found such that (3.9) holds. Then we have that

‖sk‖ ≤ max

2Lf (p+ 1)!

σmin
,

(
2Lf (p+ 1)!

σmin

) 1
p

 def
= κs. (4.16)

Proof. Using (3.15), (4.13), the definition (1.6), the Cauchy-Schwarz inequality, and the

bounds (4.2) and
∑p

i=1 1/i! < e, we have that

σmin
(p+ 1)!

‖sk‖p+1 ≤ σk
(p+ 1)!

‖sk‖p+1 < ∆T f,p(xk, sk)

≤
p∑
i=1

1

i!
‖∇ixf(x)‖‖s‖i ≤ Lf max[‖sk‖, ‖sk‖p]

p∑
i=1

1

i!

≤ 2Lf max[‖sk‖, ‖sk‖p],

which then leads directly to (4.16). 2

We are now in position to elucidate the possible outcomes of Step 2.

Gould & Toint — Adaptive regularization for inexact function and derivatives 17

Lemma 4.7 Suppose that f.D0pL holds. Then, Step 2 of the ARqpEDA2 algorithm is well-

defined, and either branches to Step 5 or produces a pair (sk, δsk) such that∣∣∣∆T f,p(xk, sk)−∆Tf,p(xk, sk)
∣∣∣ ≤ ω∆T f,p(xk, sk), (4.17)

and, either

(i) ‖sk‖ ≥ 1, or

(ii) ‖sk‖ < 1 and

φ
δsk,j
mk,j

(sk) ≤
θ(1− ω)

1 + ω
εj
δjsk,j
j!

for j ∈ {1, . . . , q} (4.18)

for some δsk for which

δsk,j = 1 for j ∈ {1, . . . ,min(2, q)} (4.19)

and

δsk,j ≥ min
[
κδ(σk)εj , δ

(0)
k,j

]
for j ∈ {3, . . . , q}, (4.20)

where

κδ(σ)
def
=

ςθ(1− ω)

8(1 + ω)(3Lf + σ)
< 1 (4.21)

and Lf is given by (4.2). Moreover,

δ
(1)
k,j ≥ min

[
κδ(σk,max) εj , δ

(0)
k,j

]
(4.22)

for all k ≥ 1 and j ∈ {1, . . . , q}, where σk,max = max
i∈{0,...,k}

σi. Finally, k ∈ T whenever

max
i∈{1,...,j}

ϕi,kϕ ≤ εmin min[κstep2(σk,max) εmin, (δ
(0)
k,min)]q (4.23)

where κstep2(σ) is a continuous non-increasing function of σ, depending only on θ, ς, ω, σmin

and problem constants, and where

δ
(0)
k,min

def
= min

`∈{1,...,q}
δ

(0)
k,` . (4.24)

and εmin
def
= minj∈{1,...,q} εj .

Proof. The proof proceeds in several stages.

•We first verify that Step 2.1 is well defined. As it turns out, this conclusion follows from an

an almost identical situation arosing in the analysis of the adaptive regularization algorithm

ARqp (using exact function and derivatives values) when ensuring that a step sk could be

found for this algorithm. The only significant difference is that the former this proof used

exact derivatives and required that they were bounded, but now we use approximate ones.

Fortunately (4.2) provides a substitute bound, and as a consequence a straightforward variant

Gould & Toint — Adaptive regularization for inexact function and derivatives 18

of [7, Lemma 12.2.9] still holds with Lf from (4.2) replacing Lf . In particular, this lemma

(with εj replaced by εj(1 − ω)/(1 + ω)2) ensures that (4.18) is possible with δsk satisfying

(4.19) and (4.20) with (4.21). Thus Step 2.1 is well defined, (3.8) and (3.9) ensure that

∆mk(sk) ≥ ∆mk(dk) ≥
ςεjk

2(1 + ω)

(
δ

(1)
k,jk

)jk
jk!

, (4.25)

and thus that sk 6= 0, and control passes to Step 2.2.

• Consider now the evolution of the vector of δk as the algorithm proceeds. In particular, flow

is from Step 1 either to Step 4 (via Steps 2 and 3) or Step 5 (either directly or via Step 2).

The radii are unaltered on iterations that move via Step 5, and on others, they obey either

(4.7) or (4.19) and (4.20). Therefore,

δ
(1)
k,j ≥ min

[
ςθ(1− ω)εj

8(1 + ω)(3Lf + σk,max)
,

ςεj
8(1 + ω) max[Lf , σk,max]

, δ
(0)
k,j

]
= min

[
ςθ(1− ω)εj

8(1 + ω)(3Lf + σk,max)
, δ

(0)
k,j

]
since ω ∈ (0, 1), which is (4.22).

• The next step in the proof is to consider the outcome of the first call to CHECK in Step 2.2,

and we claim that it can only return insufficient or relative. Indeed, suppose it returns

absolute. Lemma 2.1(ii) then implies that

∆T f,p(xk, sk) ≤
ςεjk

2(1 + ω)

 p!
(
δ

(1)
k,jk

)jk
jk! max

[
δ

(1)
k,jk

, ‖sk‖
]p
 ‖sk‖p

p!
≤ ςεjk

2(1 + ω)

(
δ

(1)
k,jk

)jk
jk!

But the definition of mk and the fact that sk 6= 0 give that ∆T f,p(xk, sk) > ∆mk(sk) and

hence

∆mk(sk) <
ςεjk

2(1 + ω)

(
δ

(1)
k,jk

)jk
jk!

which contradicts (4.25). Our assumption that CHECK returned absolute is thus impos-

sible. As a consequence, and unless branching to Step 5 occurs because it has returned

insufficient, the first call to CHECK in Step 2.2 must return relative, which then ensures

(4.17) because of Lemma 2.1(iii)

• We now determine a value of the absolute accuracy below which the first call to CHECK

in Step 2.2 cannot return insufficient. Recall that the absolute accuracies {ϕi}pi=1 are

reduced by a factor γϕ in Step 5 each time Step 2 passes there. But (2.1) implies that this

will be impossible as soon as the accuracies are small enough that

p∑
i=1

ϕi.kϕ
‖sk‖i

i!
≤ ω∆T f,p(xk, sk). (4.26)

But

∆T f,p(xk, sk) > ∆mk(sk) ≥ ∆mk(dk) = ∆mk(dk,jk) ≥ ςεjk
2(1 + ω)

(δ
(1)
k,jk

)jk

jk!

Gould & Toint — Adaptive regularization for inexact function and derivatives 19

where we successively used the definition of mk (3.1), (3.9) and (3.8). Moreover, the inequality

δk,j ≤ 1 and (4.22) imply that

ςεj
2(1 + ω)

(δ
(1)
k,j)

j

j!
≥ ςεj

2(1 + ω)

(δ
(1)
k,j)

q

q!
≥ ςεj

2(1 + ω)

min[κδ(σk,max)εj , δ
(0)
k,j]

q

q!

so that

∆T f,p(xk, sk) ≥
ςεjk

2(1 + ω)

min[κδ(σk,max)εjk , δ
(0)
k,jk

]q

q!
. (4.27)

In addition, we know from Lemma 4.6 and the sum bound
∑p

i=1 1/i! < e that

p∑
i=1

ϕi.kϕ
‖sk‖i

i!
≤ 2 max[1, κps] max

i∈{1,...,p}
ϕi.kϕ ,

Combining this inequality with (4.27), we deduce that (4.26) holds, and consequently the

first call to CHECK in Step 2.2 returns relative (as we have just verified it cannot return

absolute), as soon as

max
i∈{1,...,p}

ϕi.kϕ ≤ ω
ςεjk

4(1 + ω)

1

max[1, κps]

min
[
κδ(σk,max)εjk , δ

(0)
k,jk

]q
q!

. (4.28)

Note that this conclusion is independent of ‖sk‖.

•We next consider what can be said of the optimality conditions on the model when ‖sk‖ < 1,

and start by finding values of the absolute accuracy that are acceptably small to prevent any

of the second set of calls to CHECK in Step 2.2 from returning insufficient. Lemmas 2.1(i)

and 4.5—notice that the latter ensures that (2.3) holds when we invoke the former—and the

argument list for CHECK suggest that this is impossible if

3 max
t∈{`,...,p}

ϕt,kϕ
∑̀
i=1

δisk,`
i!
≤ ςω θ(1− ω)

2(1 + ω)2
ε`
δ`sk,`
`!

(4.29)

for all ` ∈ {1, . . . , q}. But since δsk ≤ 1, the sum bound
∑p

i=1 1/i! < e again implies that

3 max
t∈{`,...,p}

ϕt,kϕ
∑̀
i=1

δisk,`
i!
≤ 6 max

t∈{1,...,p}
ϕt,kϕ , (4.30)

while (4.19) and (4.20), the requirement that εj ≤ 1 and the bounds κδ(σk,max) < 1 and ` ≤ q
give that

ςω
θ(1− ω)

2(1 + ω)2 ε`
δ`sk,`
`!

≥ ςω θ(1− ω)ε`
2(1 + ω)2

min[κδ(σk)ε`, δ
(0)
k,`]

`

`!

≥ ςω θ(1− ω)ε`
2(1 + ω)2

min[κδ(σk,max)ε`, δ
(0)
k,`]

`

`!

Therefore, in view of (4.30), (4.29) holds, and CHECK returns either absolute or relative,

whenever

max
t∈{1,...,p}

ϕt,kϕ ≤ ςω
θ(1− ω)εmin

12(1 + ω)2

min
[
κδ(σk,max)εmin, δ

(0)
k,min

]q
q!

(4.31)

Gould & Toint — Adaptive regularization for inexact function and derivatives 20

where δ
(0)
k,min is given by (4.24).

Consider the `-th such call, and note that

∆Tmk,`(sk, d) ≤ ∆Tmk,`(sk, d) + |∆Tmk,`(sk, d)−∆Tmk,`(sk, d)| (4.32)

for any d ∈ Bδsk,` because of the triangle inequality. If CHECK returns absolute, then (4.32),

Lemma 2.1 (ii) and the fact that ς ≤ 1 yield that

φ
δsk,`
mk,`

(sk) = max
‖d‖≤δsk,`

∆Tmk,`(sk, d) ≤ 2 ς
θ(1− ω)ε`

2(1 + ω)2

δ`sk,`
`!

and (4.18) holds. By contrast, if CHECK returns relative, then (4.32), Lemma 2.1(iii) and

(3.11) ensure that, for some d∗k,` ∈ Bδsk,` ,

ςφ
δsk,`
mk,`

(sk) ≤ ς (1 + ω) ∆Tmk,`(sk, d
∗
k,`)

≤ (1 + ω) ς φ
δsk,`
mk,`

(sk)

≤ ς θ(1− ω)ε`
(1 + ω)

δ`sk,`
`!

and (4.18) holds again. Thus (4.18) holds in both cases.

• We conclude from the above discussion, in particular from (4.28) and (4.31), that Step 2

terminates with a pair (sk, δsk), for which (4.18) holds if ‖sk‖ ≤ 1, whenever

max
i∈{1,...,p}

ϕi,kϕ ≤ min
[
κstep2(σk,max) εmin, δ

(0)
k,min

]q
εmin

where

κstep2(σ)
def
=

ςω (κδ(σ))q

4q!(1 + ω)
min

[
1

max[1, κps]
,
θ(1− ω)

3(1 + ω)

]
.

The algorithm then proceeds to Step 3, and thus k ∈ T . 2

We bring together two results obtained so far regarding bounds on δk,j , namely those in Lemma 4.3

and 4.7.

Lemma 4.8 Suppose that f.D0pL holds, that iteration k of the ARqpEDA2 algorithm is

successful, and that ‖sk‖ < 1. Then

δ
(0)
k+1,j = 1 for j ∈ {1, . . . ,min[2, q]}

and

δ
(0)
k+1,j ≥ min

[
κδ(σk) εj , δ

(0)
k,j

]
for j ∈ {3, . . . , q},

where κδ(σ) is defined in (4.21).

Proof. If iteration k is successful, Step 3 sets δ
(0)
k+1,j = δsk . The stated bound then follows

from (4.19) and (4.20). 2

Gould & Toint — Adaptive regularization for inexact function and derivatives 21

Lemma 4.9 Suppose that f.D0pL holds, and that the ARqpEDA2 algorithm does not termi-

nate at (or before) iteration k. Then

δ
(0)
k+1,j ≥ κδ(σk,max) εj for j ∈ {1, . . . , q}, (4.33)

where κδ(σ) is defined in (4.21) and σk,max = maxi∈{0,...,k} σi. Moreover, k ∈ T whenever

min
i∈{1,...,p}

ϕi,kϕ ≤ κstep2(σk,max)εq+1
min . (4.34)

Proof. We prove this by induction over k for each j ∈ {1, . . . , q}. By assumption, the j-th

initial radius satisfies

δ
(0)
0,j = δ0,j ≥ εj > κδ(σ0) εj = κδ(σ0,max) εj .

Suppose that k = 0. Then, as the algorithm does not terminate during this iteration,

Lemma 4.3 indicates that either control is passed to Step 5, in which case

δ
(0)
1,j = δ

(0)
0,j ≥ κδ(σ0,max) εj (4.35)

as above, or (4.7) holds, i.e.,

δ
(1)
0,j ≥ min

[
ςεj

8(1 + ω) max[Lf , σ0]
, δ

(0)
0,j

]
≥ κδ(σ0,max) εj . (4.36)

Step 2 may then pass control to Step 5 (with the same outcome (4.35) as for Step 1), but if

not Step 3 will either result in

δ
(0)
1,j ≥ min [κδ(σ0) εj , δ0,j] ≥ min [κδ(σ0,max) εj , δ0,j] ≥ κδ(σ0,max)

as per Lemma 4.8 when the iteration is successful and ‖s0‖ < 1, or otherwise

δ
(0)
1,j = δ

(1)
0,j ≥ κδ(σ0,max) εj

because of (4.36). Thus in all cases (4.33) holds for k = 0.

Now suppose that (4.33) holds up to iteration k − 1, i.e.,

δ
(0)
k,j ≥ κδ(σk−1,max) εj ≥ κδ(σk,max) εj . (4.37)

We show it also holds for iteration k. The proof is essentially identical to the k = 0 case.

Once again, as the algorithm does not terminate during iteration k, Lemma 4.3 shows that

either control is passed to Step 5, in which case

δ
(0)
k+1,j = δ

(0)
k,j ≥ κδ(σk,max) εj (4.38)

from (4.37), or (4.7) holds, i.e.,

δ
(1)
k,j ≥ min

[
ςεj

8(1 + ω) max[Lf , σk]
, δ

(0)
k,j

]
≥ min

[
ς

8(1 + ω) max[Lf , σk]
, κδ(σk,max)

]
εj = κδ(σk,max)εj

(4.39)

Gould & Toint — Adaptive regularization for inexact function and derivatives 22

using (4.37). As before, Step 2 may then pass control to Step 5 (and thus (4.38) holds), but

if not Step 3 will either result in

δ
(0)
k+1,j ≥ min

[
κδ(σk) εj , δ

(0)
k,j

]
≥ κδ(σk,max) εj

when the iteration is successful and ‖sk‖ < 1, using Lemma 4.8 and (4.37), or otherwise

δ
(0)
k+1,j = δ

(1)
k,j ≥ κδ(σk,max) εj

because of (4.39). This completes the induction proving (4.33). The inequality (4.34) then

follows by using (4.33) at iteration k (instead of k + 1) in (4.23). 2

4.3 The final complexity bound

We are now poised to consider the evaluation complexity analysis of the fully-formed ARqpEDA2

algorithm. Having stated the necessary inexact variant of the standard bound on model decrease

in (4.13), we next show that the regularization parameter σk generated by the algorithm remains

bounded, even when f and its derivatives are computed inexactly.

Lemma 4.10 Suppose that f.D0pL holds. Then algorithm ARqpEDA2 ensures that

σk ≤ σmax
def
= max

[
σ0, γ3

4Lf,p
1− η2

]
(4.40)

for all k ≥ 0.

Proof. Suppose that k ∈ T , and that

σk ≥
4Lf,p
1− η2

(4.41)

Then the triangle inequality, (4.17) that is guaranteed by Lemma 4.7 as iteration k proceeds

to Step 3, and (3.13) together show that

|T f,`(xk, sk)− Tf,`f(xk, sk)| ≤ |f(xk)− f(xk)|+ |∆T f,`(xk, sk)−∆Tf,`(xk, sk)|

≤ 2ω|∆T f,`(xk, sk)|.

Therefore, again using the triangle inequality, (3.12), standard error bounds for Lipschitz

Gould & Toint — Adaptive regularization for inexact function and derivatives 23

functions (see [7, Corollary A.8.4]), (4.13), (3.3) and (4.41), we deduce that

|ρk − 1| ≤ |f(xk + sk)− T f,p(xk, sk)|
∆T f,p(xk, sk)

≤ 1
∆T f,p(xk, sk)

[
|f(xk + sk)− f(xk + sk)|

+|f(xk + sk)− Tf,p(xk, sk)|+ |T f,p(xk, sk)− Tf,p(xk, sk)|
]

≤ 1
∆T f,p(xk, sk)

[
|f(xk + sk)− Tf,p(xk, sk)|+ 3ω∆T f,p(xk, sk)

]
≤ 1

∆T f,p(xk, sk)

[
Lf,p

(p+ 1)!
‖sk‖p+1

]
+ 3ω

<
Lf,p
σk

+
3(1− η2)

4

≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and, because of

(3.15), σk+1 ≤ σk. As a consequence, the mechanism of the algorithm ensures that (4.40)

holds for all k ∈ T , while if k ∈ A, Step 5 fixes σk+1 = σk. 2

We now state a useful technical inequality.

Lemma 4.11 Suppose that f.D0pL holds. Suppose also that iteration k of the ARqpEDA2

algorithm is successful, that ‖sk‖ < 1, but that iteration k+ is the first iteration after k that

proceeds to Step 2 rather than Step 5. Then there exists j ∈ {1, . . . , q} such that

ς(1− θ)(1− ω)

1 + ω
εj

(
δ

(0)
k+,j

)j
j!

≤ (Lf,p + σmax)

j∑
`=1

(
δ

(0)
k+,j

)`
`!

‖sk‖p−`+1, (4.42)

where σmax is defined by (4.40).

Proof. Observe that our assumption that iteration k+ passes to Step 2 means that it does

not terminate in Step 1, nor does it pass to Step 5. The latter implies that

∆T f,j(xk+ , dk+,j) >

(
ςεj

1 + ω

) (δ(0)
k+,j

)j
j!

must hold for some j ∈ {1, . . . , q}. Furthermore, since any iteration that might occur between

k and k+ must have passed through Step 5, δ
(0)
k+,j

= δsk,j as the radii update rule in Step 5

does not change the input value of δk. Hence (4.8) from Lemma 4.3 ensures that

φ
δ
(0)
k+,j

f,j (xk+) > ς

(
1− ω
1 + ω

)
εj

(
δ

(0)
k+,j

)j
j!

. (4.43)

Gould & Toint — Adaptive regularization for inexact function and derivatives 24

and therefore that

ς
(

1− ω
1 + ω

)
εj

(δ
(0)
+,j)

j

j!
< φ

δ
(0)
+,j

f,j (xk+1) = −
j∑
`=1

1

`!
∇`xf(xk+1)[d]`

= −
j∑
`=1

1

`!
∇`xf(xk+1)[d]` +

j∑
`=1

1

`!
∇`sTf,p(xk, sk)[d]`

−
j∑
`=1

1

`!
∇`sTf,p(xk, sk)[d]` − σk

(p+ 1)!

j∑
`=1

1

`!
∇`s
(
‖sk‖p+1

)
[d]`

+ σk
(p+ 1)!

j∑
`=1

1

`!
∇`s
(
‖sk‖p+1

)
[d]`.

(4.44)

To bound the terms on the right-hand side of (4.44), firstly, using standard approximation

properties for Lipschitz function (once more, see [7, Corollary A.8.4]),

−
j∑
`=1

1

`!
∇`xf(xk+1)[d]` +

j∑
`=1

1

`!
∇`sTf,p(xk, sk)[d]`

≤
j∑
`=1

δ`k+1,j

`!

∥∥∇`xf(xk+1)−∇`sTf,p(xk, sk)
∥∥

≤ Lf,p
j∑
`=1

δ`k+1,j

`!(p− `+ 1)!
‖sk‖p−`+1,

(4.45)

where Lf,p is defined in f.D1pL. Furthermore, because of (3.1) and (3.11),

−
j∑
`=1

1

`!
∇`sTf,p(xk, sk)[d]` − σk

(p+ 1)!

j∑
`=1

1

`!
∇`s
(
‖sk‖p+1

)
[d]`

≤ φδsk,jmk,j
(sk) ≤ θεj

δjsk,j
j!

= θεj
δjk+1,j

j!
,

(4.46)

where the last equality follows as δsk,j = δ
(0)
+,j if iteration k is successful. Moreover, in view of

the form of the derivatives of the regularization term ‖s‖p (see [7, Lemma B.4.1] with β = 1)

and Lemma 4.10, we also have that

σk
(p+ 1)!

j∑
`=1

1

`!
∇`s
(
‖sk‖p+1

)
[d]` ≤ σk

(p+ 1)!

j∑
`=1

1

`!

∥∥∥∇`s (‖sk‖p+1
)∥∥∥ ‖d‖`

= σk

j∑
`=1

‖sk‖p−j+1‖d‖`

`!(p− j + 1)!

≤ σmax

j∑
`=1

δ`k+1,j

`!(p− j + 1)!
‖sk‖p−j+1.

(4.47)

We then observe that,

φ
δ
(0)
k+,j

mk,j
(sk) = φ

δsk,j
mk,j

(sk) ≤ ςθ
(

1− ω
1 + ω

)
εj
δjsk,j
j!

, (4.48)

Gould & Toint — Adaptive regularization for inexact function and derivatives 25

where we have used the fact that δ
(0)
k+,j

= δsk,j for k ∈ S to derive the first inequality and

the fact that ‖sk‖ < 1 to apply the bound (4.18) of Lemma 4.7. The proof is then concluded

by replacing the second inequality in (4.46) by (4.48) and combining the result with (4.44),

(4.45) and (4.47).

2

Our next step is to provide a lower bound on the step at iterations before termination.

Lemma 4.12 Suppose that F.D0pL holds, iteration k is successful, and that the ARqpEDA2

algorithm does not terminate at first iteration after k that proceeds to Step 2 rather than

Step 5. Suppose also that the algorithm chooses δk for each k such that the conclusions of

Lemma 4.8 hold. Then there exists a j ∈ {1, . . . , q} such that

‖sk‖ ≥



(
ς(1− θ)(1− ω)

2j!(Lf,p + σmax)(1 + ω)

) 1
p−j+1

ε
1

p−j+1

j if q ∈ {1, 2},

(
ς(1− θ)(1− ω)κj−1

δ,min

2j!(Lf,p + σmax)(1 + ω)

) 1
p

ε
j
p

j if q > 2,

(4.49)

where κδ,min
def
= κδ(σmax) and σmax is defined by (4.40).

Proof. Either ‖sk‖ ≥ 1 (case (i) in Lemma 4.7) and (4.49) holds automatically because the

two lower bounds on its right-hand side are less than one. So suppose instead that ‖sk‖ ≤ 1.

Because the algorithm does not terminate, Lemma 4.11 ensures that (4.42) holds for some

j ∈ {1, . . . , q}. It is easy to verify that this inequality is equivalent to

τ εj (δ
(0)
+,j)

j ≤ ‖sk‖p+1χj

(
δ

(0)
+,j

‖sk‖

)
(4.50)

where the function χj is defined by

χj(t) =

j∑
`=1

t`

`!
(4.51)

and where we have set

τ =
(1− ω)(1− θ)

j!(1 + ω)(Lf,p + σmax)
.

In particular, since χj(t) ≤ 2tj for t ≥ 1, we have that

τ εj ≤ 2‖sk‖p+1

(
1

‖sk‖

)j
= 2‖sk‖p−j+1 (4.52)

whenever ‖sk‖ ≤ δk+1,j .

If j is 1 or 2, by assumption δ
(0)
+,j = 1 and ‖sk‖ ≤ 1 = δ

(0)
+,j . Thus (4.52) yields the first case of

(4.49). Otherwise, if j ≥ 3, by assumption (4.33) holds. In this case, if ‖sk‖ ≤ δ
(0)
+,j , we may

Gould & Toint — Adaptive regularization for inexact function and derivatives 26

again deduce from (4.52) that the first case of (4.49) holds, and this implies that the second

case also holds since κδ,min < 1 and(2) 1/(p− j + 1) ≤ j/p for p ≥ j ≥ 1. Consider therefore

the alternative for which ‖sk‖ > δ
(0)
+,j . Then (4.50), and noting that χj(t) < 2t for t ∈ [0, 1],

we deduce that

τ εj (δ
(0)
+,j)

j ≤ 2‖sk‖p+1

(
δ

(0)
+,j

‖sk‖

)
,

which, with (4.33), implies the second case of (4.49). 2

We now consolidate the above results by stating lower bounds on the minimal model and function

decreases at successful iterations.

Lemma 4.13 Suppose that f.D1qL holds. Then

∆T f,p(xk, sk) ≥ κ∆m min
j∈{1,...,q}

ε
πj
j , (4.53)

for every iteration of algorithm ARqpEDA2 before termination, where

κ∆m
def
=


σmin

(p+ 1)!

(
ς(1− θ)(1− ω)

2q!(Lf,p + σmax)(1 + ω)

) p+1
p−q+1

if q ∈ {1, 2},

σmin
(p+ 1)!

(
ς(1− θ)(1− ω)κq−1

δ,min

2q!(Lf,p + σmax)(1 + ω)

) q(p+1)
p

if q > 2,

whith κδ,min
def
= κδ(σmax), σmax by (4.40), and

πj
def
=


p+ 1

p− j + 1 if q ∈ {1, 2},

j(p+ 1)
p if q > 2.

If, in addition, k ∈ S,

f(xk)− f(xk+1) ≥ (η1 − 2ω)κ∆m min
j∈{1,...,q}

ε
πj
j . (4.54)

Proof. The bound (4.13), (3.15) and Lemma 4.12 together imply that for every k ∈ S, there

(2)This is easily verified by noting that, if λ(t) = t/(j(t− j + 1)), then λ(j) = 1 and λ(1)(t) ≤ 0 for all t ≥ j.

Gould & Toint — Adaptive regularization for inexact function and derivatives 27

exists a j ∈ {1, . . . , q} such that

∆T f,p(xk, sk) ≥



σmin
(p+ 1)!

(
ς(1− θ)(1− ω)

2j!(Lf,p + σmax)(1 + ω)

) p+1
p−j+1

ε
p+1
p−j+1

j

if q∈{1, 2},

σmin
(p+ 1)!

(
ς(1− θ)(1− ω)κq−1

δ,min

2j!(Lf,p + σmax)(1 + ω)

) j(p+1)
p

ε
j(p+1)
p

j

if q>2,

and (4.53) follows. Suppose now that k is the index of a successful iteration before termination.

Then, using (3.12) and (3.13), the implication that ρk ≥ η1 with (3.14), and (4.13) and (3.15),

f(xk)− f(xk+1) ≥ [f(xk)− f(xk+1)]− 2ω∆T f,p(xk, sk)

≥ (η1 − 2ω)∆T f,p(xk, sk)

≥ (η1 − 2ω)κ∆m min
j∈{1,...,q}

ε
πj
j ,

where we note that η1 − 2ω > 0 from (3.3). This proves (4.54). 2

We are now in position to state formally a bound on the evaluation complexity of the ARqpEDA2

algorithm.

Theorem 4.14 Suppose that f.Bb and f.D0pL hold. Suppose moreover that the ARqpEDA2

algorithm chooses δk for each k so that the conclusions of Lemma 4.8 hold.

1. If q ∈ {1, 2}, then there exist positive constants κS
ARqpEDA2,1, κ

A
ARqpEDA2,1, κ

C
ARqpEDA2,1 κ

E
ARqpEDA2,1

and κF
ARqpEDA2,1 such that, for any ε ∈ (0, 1]q, the ARqpEDA2 algorithm requires at most

#F
ARqpEDA2,1

def
= κA

ARqpEDA2,1

f(x0)− flow
min

j∈{1,...,q}
ε

p+1
p−j+1

j

+ κC
ARqpEDA2,1

= O
(

max
j∈{1,...,q}

ε
− p+1
p−j+1

j

) (4.55)

evaluations of f , and at most

#D
ARqpEDA2,1

def
= κS

ARqpEDA2,1

f(x0)− flow
min

j∈{1,...,q}
ε

p+1
p−j+1

j

+ κE
ARqpEDA2,1

∣∣∣∣log

(
min

j∈{1,...,q}
εj

)∣∣∣∣+ κF
ARqpEDA2,1

= O
(

max
j∈{1,...,q}

ε
− p+1
p−j+1

j

)
(4.56)

evaluations of the derivatives of f of orders one to p to produce an iterate xε for which

φ1
f,j(xε) ≤ εj/j! for all j ∈ {1, . . . , q}.

Gould & Toint — Adaptive regularization for inexact function and derivatives 28

2. If q > 2, then there exist positive constants κS
ARqpEDA2,2, κ

A
ARqpEDA2,2, κ

C
ARqpEDA2,2, κ

E
ARqpEDA2,2

and κF
ARqpEDA2,2 such that, for any ε ∈ (0, 1]q, the ARqpEDA2 algorithm requires at most

#F
ARqEDAp,2

def
= κA

ARqpEDA2,2

f(x0)− flow

min
j∈{1,...,q}

ε
j(p+1)
p

j

+ κC
ARqpEDA2,2

= O
(

max
j∈{1,...,q}

ε
− j(p+1)

p

j

)
evaluations of f , and at most

#D
ARqEDAp,2

def
= κS

ARqpEDA2,2

f(x0)− flow

min
j∈{1,...,q}

ε
j(p+1)
p

j

+ κE
ARqpEDA2,2

∣∣∣∣log

(
min

j∈{1,...,q}
εj

)∣∣∣∣+ κF
ARqpEDA2,2

= O
(

max
j∈{1,...,q}

ε
− j(p+1)

p

j

)
evaluations of the derivatives of f of orders one to p to produce an iterate xε for which

φ
δε,j
f,j (xε) ≤ εj δjε,j/j! for some δε ∈ (0, 1]q and all j ∈ {1, . . . , q}.

Proof. Consider first the case where q ∈ {1, 2}. Using (4.54) in Lemma 4.13, f.Bb and the

fact that the sequence {f(xk)} is non-increasing, we deduce that the algorithm needs at most

κS
ARqpEDA2,1

f(x0)− flow

ε
p+1
p−q+1

min

+ 1 (4.57)

successful iterations to produce a point xε for which φ1
f,j(xε) ≤ εj/j! for all j ∈ {1, . . . , q},

where

κS
ARqpEDA2,1

def
=

(p+ 1)!

(η1 − 2ω)σmin

(
2q!(Lf,p + ϕmax + σmax)(1 + ω)

(1− θ)(1− ω)

)
. (4.58)

We may then invoke Lemma 3.1 to deduce that the total number of iterations required is

bounded by

|Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
+ 1,

where σmax is given by (4.40), and hence the total number of approximate function evaluations

is at most twice this number, which yields (4.55) with the coefficients

κA
ARqpEDA2,1 = 2κS

ARqpEDA2,1

(
1 +
| log γ1|
log γ2

)
and κC

ARqpEDA2,1 =
2

log γ2
log

(
σmax

σ0

)
+ 2.

In order to derive an upper bound on the the number of derivative evaluations, we now have to

count the number of additional evaluations caused by the need to approximate the derivatives

to the desired accuracy. Again, repeated evaluations at a given iterate xk are only needed

when the current values of the required absolute errors are smaller than used previously at xk.

Recall that these required absolute errors are initialised in Step 0 of the ARqpDA algorithm,

and by construction decrease linearly with rate γϕ on every pass to Step 5. We may now use

Gould & Toint — Adaptive regularization for inexact function and derivatives 29

Lemmas 4.3, 4.7, 4.9 and 4.10 to deduce that the maximal accuracy bound maxi∈{1,...,p} ϕi,kϕ
will not be reduced below

κacc ε
q+1
min

def
= min

[
ςω
4q!

[κδ(σmax)]q−1, κstep2(σmax)
]
εq+1
min

≤ min

[
ω
4 min

[
ςεj

8(1 + ω) max[Lf , σk]
, δ

(0)
k,j

]j−1
εj
j!
, κstep2(σk,max)εq+1

min

]

at iteration k. As κacc is independent of k, it follows that no further evaluations of {∇ixf(xk)}pi=1

can possibly be required during iteration k or beyond once the largest initial absolute error

maxj∈{1,...,p} ϕj,0 has been reduced by successive multiplications by γϕ in Step 5 sufficiently

often to ensure that

γ
kϕ
ϕ [max

i∈{1,...,p}
ϕi,0] ≤ κacc ε

q+1
min . (4.59)

Since the ϕi,0 are initialised in the algorithm so that maxi∈{1,...,p} ϕi,0 ≤ ϕmax, the bound (4.59)

is achieved once kϕ, the number of decreases in {ϕi,kϕ}
p
j=1, is large enough to guarantee that

γ
kϕ
ϕ ϕmax ≤ κaccε

q+1
min . (4.60)

Thus we obtain that the number of evaluations of the derivatives of the objective function

that occur during the course of the ARqpEDA2 algorithm is at most

|Sk|+ |Ak| = |Sk|+ kϕ,min,

i.e., the number successful iterations in (4.57) plus

kϕ,min
def
=

⌊
1

log(γϕ)

{
(q + 1) log (εmin) + log

(
κacc
ϕmax

)}⌋
≤ q + 1
| log(γϕ)| |log (εmin)|+ 1

| log(γϕ)|

∣∣∣log
(
κacc
ϕmax

)∣∣∣+ 1,

the smallest value of kϕ that ensures (4.60). This leads to the desired evaluation bound (4.56)

with the coefficients

κE
ARqpEDA2,1

def
=

q + 1

| log γϕ|
and κF

ARqpEDA2,1

def
=

1

| log(γϕ)|

∣∣∣∣log

(
κacc

ϕmax

)∣∣∣∣+ 2.

The reasoning is essentially the same for the case where q > 2, except that, in view of (4.49),

we use

κS
ARqpEDA2,2 =

(p+ 1)!

(η1 − 2ω)σmin

(
2j!(Lf,p + σmax)(1 + ω)

(1− θ)(1− ω)κj−1
δ,min

) p+1
p

instead of (4.58). This then yields

κA
ARqpEDA2,2

def
= κS

ARqpEDA2,2

(
1 +
| log γ1|
log γ2

)
,

all other constants being unchanged, that is

κC
ARqpEDA2,2 = κC

ARqpEDA2,1, κE
ARqpEDA2,2 = κE

ARqpEDA2,1 and κF
ARqpEDA2,2 = κF

ARqpEDA2,1.

2

Gould & Toint — Adaptive regularization for inexact function and derivatives 30

Since the orders in εmin are the same as those derived for the ARqp algorithm using exact evalua-

tions (as defined in [7, Chapter 12]) and because these were proved to be sharp (see Section 12.2.2.4

in this reference), the same conclusion obviously holds for the ARqpEDA2 algorithm using inexact

evaluations.

5 Conclusions

Given the significant complexity of the theory advanced above, the reader will undoubtly un-

derstand why a simpler version of the ARqpEDA has been developed and analyzed in [7, Chapter

13]. However, ARqpEDA2 is not without merits. In particular, its distinguishing feature, the re-

quirement (1.11), may be of interest as it is independent of variable scaling, a sometimes very

desirable property.

References

[1] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov. Accelerating scientific

computations with mixed precision algorithms. Comput. Phys. Commun., 180:25262533, 2009.

[2] S. Bellavia, S. Gratton, and E. Riccietti. A Levenberg-Marquardt method for large nonlinear least-squares

problems with dynamic accuracy in functions and gradients. Numerische Mathematik, 140:791–825, 2018.

[3] S. Bellavia, G. Gurioli, B. Morini, and Ph. L. Toint. Adaptive regularization algorithms with inexact evalua-

tions for nonconvex optimization. SIAM Journal on Optimization, 29(4):2881–2915, 2019.

[4] R. G. Carter. Numerical experience with a class of algorithms for nonlinear optimization using inexact function

and gradient information. SIAM Journal on Scientific and Statistical Computing, 14(2):368–388, 1993.

[5] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic overestimation methods for unconstrained

optimization. Part I: motivation, convergence and numerical results. Mathematical Programming, Series A,

127(2):245–295, 2011.

[6] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Strong evaluation complexity bounds for arbitrary-order opti-

mization of nonconvex nonsmooth composite functions. arXiv:2001.10802, 2020.

[7] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity of algorithms for nonconvex optimization.

to appear in the MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2021.

[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on Optimization.

SIAM, Philadelphia, USA, 2000.

[9] S. Galal and M. Horowitz. Energy-efficient floating-point unit design. IEEE Transactions on Computers,

60(7), 2011.

[10] S. Gratton and Ph. L. Toint. A note on solving nonlinear optimization problems in variable precision. Com-

putational Optimization and Applications, 76(3):917–933, 2020.

[11] A. Griewank. The modification of Newton’s method for unconstrained optimization by bounding cubic terms.

Technical Report NA/12, Department of Applied Mathematics and Theoretical Physics, University of Cam-

bridge, Cambridge, United Kingdom, 1981.

[12] S. Leyffer, S. Wild, M. Fagan, M. Snir, K. Palem, K. Yoshii, and H. Finkel. Moore with less – leapgrogging

Moore’s law with inexactness for supercomputing. arXiv:1610.02606v2, 2016. (to appear in Proceedings of

PMES 2018: 3rd International Workshop on Post Moore’s Era Supercomputing).

[13] Yu. Nesterov. Cubic regularization of newtons method for convex problems with constraints. Technical Report

2006/9, CORE, UCL, Louvain-la-Neuve, Belgium, 2006.

