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Abstract

This paper considers optimization of smooth nonconvex functionals in smooth infinite
dimensional spaces. A Hölder gradient descent algorithm is first proposed for finding
approximate first-order points of regularized polynomial functionals. This method is
then applied to analyze the evaluation complexity of an adaptive regularization method
which searches for approximate first-order points of functionals with β-Hölder continuous
derivatives. It is shown that finding an ε-approximate first-order point requires at most

O(ε−
p+β
p+β−1 ) evaluations of the functional and its first p derivatives.

Keywords: nonlinear optimization, adaptive regularization, evaluation complexity, Hölder gradi-

ents, infinite-dimensional problems.

1 Introduction

The analysis of adaptive regularization (AR) algorithms for nonlinear (and potentially non-
convex) optimization has been a very active field in recent years (see [19, 23, 7, 8, 10, 4, 17,
5, 6, 22, 18, 3, 2, 13], to cite only a few). This sustained interest of the research community
is motivated in part by the fact that these methods not only work well in practice, but also
exhibit excellent worst-case evaluation complexity bounds: one can indeed prove that the
number of function and derivatives evaluations which may be required to find an approxi-
mate critical point is small, at least compared to similar bounds for other standard methods
such as linesearch-based Newton or trust-region algorithms [23, 8]. As it turns out, evaluation
complexity results obtained for AR methods and nonconvex problems have been obtained, to
the best of the authors’ knowledge, in the context of IRn. It is the purpose of this short note
to show that this need not be the case, and that evaluation complexity bounds for computing
approximate first-order critical point can be derived in infinite-dimensional Banach spaces.

The motivation for this generalization is a matter of coherence when optimization al-
gorithms are applied to large-scale discretized problems: it is then important to show that
AR methods continue to make sense in the limit, as the discretization mesh converges to
zero. This coherence, sometimes called “mesh independence”, has long been considered as
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an important feature of numerical optimization methods [21, 1, 16, 20, 25]. For trust-region
methods, this was studied in [24] in the Hilbert space context, and developed for Hilbert and
Banach spaces in [15, Section 8.3]. Considering the question for AR algorithms therefore
seems a natural development in this line of research.

The outline of adaptive regularization methods is today quite well-known for finite dimen-
sional spaces (see [6], for instance), but difficulties arise in the nonconvex infinite dimensional
space case. The main problem is that the existence of a suitable step at a given iteration of
the method typically hinges on approaching a minimizer of the regularized model, which may
no longer exist in infinite dimensions. Our analysis circumvents that problem by proposing a
specialized optimization technique which guarantees an acceptable step.
Contributions. Having set the scene, we now make our contribution more precise.

• We first analyse the convergence of a method for minimizing polynomial functionals
with a general differentiable convex regularization whose gradients satisfy a generalized
Hölder condition. To our knowledge, no such regularization has been considered before,
even in finite dimensional spaces.

• We then propose an adaptive regularization algorithm for finding first-order points of
nonconvex functions having Hölder continuous p-th derivative (in the Fréchet sense) and
analyze its evaluation complexity. We show that the sharp complexity bound known
[11] for the finite-dimensional case is recovered, in that the algorithm requires at most

O
(
ε
− p+β
p+β−1

)
evaluations of the function and its first p derivatives to compute such a

point.

Outline. The paper is organized as follows. Section 2 considers the minimization of regular-
ized polynomials in Banach spaces. Section 3 then introduces the class of Banach spaces of
interest and details our general adaptive regularization algorithm for first-order minimization
in these spaces, while Section 4 analyzes its evaluation complexity. We conclude the paper in
Section 5 with a brief discussion of the new results and perspectives.

Notation Throughout the paper, ‖.‖V denotes the norm over the space V. B(x,B) denotes
the open ball centered at x of radius B. L(V⊗m; IR) denotes the space of multilinear continous
functions from V ×V · · ·×V to IR and Lmsym(V⊗m; IR) the subspace of Lm(V⊗m; IR) that is m-
linear symmetric. For a function f defined from V to IR that is p times Fréchet differentiable,
∇kxf(x) ∈ Lksym(V⊗k; IR) denotes the k-th derivative tensor for k ∈ {1, . . . , p}. ∇1

xf is an
element of the dual space of V denoted V ′. The symbol 〈·, ·〉 denotes the dual pairing between

V and V ′, that is 〈y, x〉 def
= y(x), for y ∈ V ′ and x ∈ V. The norm in the dual space V ′ will

be denoted as ‖.‖V ′ . For S ∈ Lmsym, S[v1, v2 . . . , vm] ∈ IR denotes the result of applying S
to the vectors v1, . . . , vm. S[v]m is the result of applying S to m copies of the vector v and
S[v]l ∈ Lm−lsym (V⊗m−l; IR) the result of applying l times the vector v. We define the norm in
Lmsym(V⊗m; IR) as

‖S‖ def
= sup
‖v1‖V=···=‖vm‖V=1

|S[v1, . . . , vm]|. (1.1)
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2 Gradient descent with a Hölder regularization

We start by considering the minimization, for x in the Banach space V, of the regularized
polynomial functional of the form

φ(x)
def
= φ0 +

p∑
`=1

1

`!
S`[x]` + h(x), (2.1)

where S` ∈ L`sym(V⊗`) for ` ∈ {1, . . . , p} and h is a general regularization term. Note that the
sum of the two first terms of the right-hand side have the form of a Taylor expansion (in the
Fréchet sense). The functions φ and h and the space V are assumed to satisfy the following
assumptions.
AS.1

(i) There exists φmin ∈ IR such that, for all x ∈ V, φ(x) ≥ φmin. Moreover the set

D def
= {x ∈ V , φ(x) ≤ φ(0)} is bounded in the sense that supx∈D ‖x‖V ≤ ω for some

ω <∞.

(ii) h is a convex differentiable function whose gradient satisfies the local Hölder condition

∀δ > 0, ∀x ∈ B(0, δ), ∀y ∈ V, ‖∇1
xh(x)−∇1

xh(y)‖V ′ ≤
k∑
i=1

Li,δ‖x− y‖βi−1V ,

where, for i ∈ {1, . . . , k}, βi > 1 and Li,δ are a positive constants, the latter depending
on δ. Moreover, βi ≤ 2 for at least one i ∈ {1, . . . , k}.

(iii) the space V is reflexive.

Observe that the condition stated in AS.1(ii) reduces to the standard β1−1-Hölder continuity
of the gradients of h whenever k = 1. Also note that, if all βi were strictly larger than two,
h would be affine.

We now use the property that S` ∈ L`sym(V⊗`; IR) to derive an upper bound of φ(x + s)
for all x ∈ D, s ∈ V. We then choose a specific s to obtain the next result.

Lemma 2.1 There exists an integer m ≥ p and constants κi,ω > 0 (i ∈ {1, . . . ,m}) such
that, for all x ∈ D, there exists a vector d in V,

φ(x− td) ≤ φ(x)− ‖∇1
xφ(x)‖V ′t+

m∑
i=1

κi,ωt
γi , (2.2)

where 1 < γ1 ≤ γ2 ≤ . . . ≤ γm and t ∈ IR.

Proof. Successively using the binomial expansion, the convexity of h, (1.1), the fact
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that ‖x‖V ≤ ω because x ∈ D and AS.1(ii), we derive that

φ(x+ s) = φ0 +

p∑
`=1

1

`!
Sl[x+ s]` + h(x+ s),

= φ(x) +

p∑
`=1

1

(`− 1)!
〈S`[x]`−1, s〉+

p∑
`=2

`−2∑
i=0

1

`!

(
`

i

)
S`[x]i[s]`−i + h(x+ s)− h(x),

≤ φ(x) +

p∑
`=1

1

(`− 1)!
〈S`[x]`−1, s〉+

p∑
`=2

`−2∑
i=0

1

`!

(
`

i

)
‖S`‖‖x‖iV‖s‖`−iV + 〈∇1

xh(x+ s), s〉,

≤ φ(x) +

p∑
`=1

1

(`− 1)!
〈S`[x]`−1, s〉+

p∑
`=2

`−2∑
i=0

1

`!

(
`

i

)
‖S`‖ωi‖s‖`−iV + 〈∇1

xh(x+ s), s〉,

≤ φ(x) + 〈∇1
xφ(x), s〉+

p∑
`=2

κ`,ω‖s‖`V + 〈∇1
xh(x+ s)−∇1

xh(x), s〉,

≤ φ(x) + 〈∇1
xφ(x), s〉+

p∑
`=2

κ`,ω‖s‖`V +
k∑
`=1

L`,ω‖s‖β`V .

Rearranging the last equation, we obtain that

φ(x+ s) ≤ φ(x) + 〈∇1
xφ(x), s〉+

m∑
i=1

κi,ω‖s‖γiV ,

where the exponents γi are in ascending order and strictly larger than one. We now use
the reflexivity of V to choose a d ∈ V that verifies both 〈∇1

xφ(x), d〉 = ‖∇1
xφ(x)‖V ′ and

‖d‖V = 1, we choose s = −td in the last inequality so that (2.2) follows. 2

Looking at the steepest descent direction for minimizing (2.1), we are now lead to consider
(2.2) and to charaterize the minima of functions of the form

Ψ(t)
def
= −αt+

m∑
i=1

κit
γi , (2.3)

for t ∈ IR+, α > 0, κi > 0 and 1 < γ1 ≤ γ2 ≤ · · · ≤ γm. This is the object of the next lemma.

Lemma 2.2 A function of the form (2.3) admits a unique minimum t? over IR+ and

Ψ(t?) ≤ −min(κAα
γ1
γ1−1 , κBα

γm
γm−1 ), (2.4)

where κA and κB depend on {κi}mi=1.

Proof. Let us consider Ψ of the form (2.3). Clearly, Ψ is a strictly convex function as
a sum of a linear function and a positive linear combination of powers strictly exceeding
one. In addition, Ψ′(0) < 0 and Ψ′(t) > 0 for t ∈ IR+ sufficiently large. Thus, a unique
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positive minimizer t? exists such that Ψ′(t?) = 0. Suppose first that t? ≥ 1. Our problem
then reduces to the minimization of Ψ for t ≥ 1. Define

t1
def
=

(
α∑m

i=1 κiγi

) 1
γm−1

> 0. (2.5)

Because t? ≥ 1 and ψ′ is a non decreasing function, we obtain that ψ′(1) ≤ ψ′(t?) = 0 and
thus that

−α+
m∑
i=1

κiγi ≤ 0,

which, together with the definition of t1 in (2.5), implies that (t1)
γm−1 ≥ 1, and the

inequality γm > 1 then ensures t1 ≥ 1. Using now the assumption that 1 < γ1 ≤ γ2 ≤
· · · ≤ γm, we deduce that, for t ≥ 1,

Ψ(t) ≤ −αt+

m∑
i=1

κit
γm ,

and thus, since t1 ≥ 1,

Ψ(t1) ≤ −α
γm
γm−1

(
m∑
i=1

κiγi

) −1
γm−1

+ α
γm
γm−1

m∑
i=1

κi(
m∑
i=1

κiγi

) γm
γm−1

,

≤ −α
γm
γm−1

(
m∑
i=1

κiγi

) −1
γm−1

1−

m∑
i=1

κi

m∑
i=1

κiγi

 ,

def
= −α

γm
γm−1 κA.

As κi > 0 and γi > 1 for all i, we obtain that κA > 0 and hence Ψ(t?) ≤ Ψ(t1) ≤
−κAα

γm
γm−1 , which corresponds to the first term in the minimum of (2.4).

Suppose now that t? ≤ 1 and define

t2
def
=

(
α∑m

i=1 κiγi

) 1
γ1−1

> 0. (2.6)

As ψ′(t?) = 0, t? ≤ 1 and 1 < γ1 ≤ γ2 ≤ · · · ≤ γm,

−α+

m∑
i=1

κiγi(t
?)γi−1 = 0,

and thus

−α+

m∑
i=1

κiγi(t
?)γ1−1 ≥ 0,
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which, with the definition of t2 in (2.6) gives that

(t?)γ1−1 ≥ tγ1−12 .

The inequality γ1 > 1 then ensures that t2 ≤ t? ≤ 1. Using an argument similar to that
used above but now for the case t? ≤ 1, we deduce that, for all t ≤ 1,

Ψ(t) ≤ −αt+

m∑
i=1

κit
γ1 ,

and therefore, since t2 ≤ 1,

Ψ(t2) ≤ −α
γ1
γ1−1

(
m∑
i=1

κiγi

) −1
γ1−1

+ α
γ1
γ1−1

m∑
i=1

κi(
m∑
i=1

κiγi

) γ1
γ1−1

,

≤ −α
γ1
γ1−1

(
m∑
i=1

κiγi

) −1
γ1−1

1−

m∑
i=1

κi

m∑
i=1

κiγi

 ,

def
= −α

γ1
γ1−1κB.

Rewriting the last line gives that Ψ(t?) ≤ Ψ(t2) ≤ −κBα
γ1
γ1−1 , which completes the proof.

2

This result suggest the following algorithm for minimizing functions of the form (2.1).

Algorithm 2.1: A First-Order Gradient Algorithm for Minimizing
Regularized Polynomials

Step 0: Initialization. Set x0 = 0 and k = 0.

Step 1: Compute a search direction. Compute ∇1
xφ(xk) ∈ V ′ and select a direction

dk such that ‖∇1
xφ(xk)‖V ′ = 〈∇1

xφ(xk), dk〉 and ‖dk‖ = 1. If ‖∇1
xφ(xk)‖V ′ = 0, stop

and return the sequence (x0, x1 . . . , xk).

Step 2: Stepsize definition. Compute tk a global minimizer of φ(xk − tdk).

Step 3: Define the next iterate. Set xk+1 = xk − tkdk, increment k by one and
return to Step 1.

Note that the selection of dk in Step 1 is possible because V is reflexive, and that the mini-
mization in Step 2 is possible because it occurs in a one-dimensional space.
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We now prove the following convergence result.

Theorem 2.3 Suppose that φ, h and V verify AS.1 and let {xk}k≥0 be the sequence
generated by Algorithm 2.1. Then

φ(xk+1) < φ(xk) for all k ≥ 0

and either the algorithm terminates in a finite number of iterations with an iterate xk
such that ∇1

xφ(xk) = 0, or
lim
k→∞

‖∇1
xφ(xk)‖V ′ = 0.

Proof. Recall that D = {x ∈ V | φ(x) ≤ φ(x0) = φ(0)} and that inequality (2.2)
is valid if x ∈ D. Since the left hand-side of the inequality (2.2) for x = x0 verifies the
conditions of Lemma 2.2, and denote by t?0 the minimizer of Lemma 2.2. We may apply
this lemma and deduce that,

φ(x1) ≤ φ(x0 − t?0d0) ≤ φ(0)−min(κA‖∇1
xφ(0)‖

γ1
γ1−1

V ′ , κB‖∇1
xφ(0)‖

γm
γm−1

V ′ ),

where now κA and κB are strictly positive and depend on ω (the radius of D) and the Lip-
schitz constant Li,ω, themselves depending on ω. As ‖∇1

xφ(x0)‖V ′ > 0, φ(x1) < φ(x0) =
φ(0) and therefore x1 ∈ D.

Suppose now that xk−1 ∈ D and that ‖∇1
xφ(xk−1)‖V ′ > 0. We may again apply Lemma 2.2

to the left handside of inequality (2.2) with x chosen as xk−1 and by denoting t?k−1 the
minimizer of the left hand-side, we deduce that

φ(xk) ≤ φ(xk−1− t?k−1dk−1) ≤ φ(xk−1)−min(κA‖∇1
xφ(xk−1)‖

γ1
γ1−1

V ′ , κB‖∇1
xφ(xk−1)‖

γm
γm−1

V ′ ),

thus xk and the complete sequence {xk}k≥0 belong to D and the first conclusion of the
theorem holds. To prove the second part, we first note that the definition of the algorithm
ensures the identity ∇1

xφ(xk) = 0 whenever termination occurs after a finite number of
iterations. Assume therefore that the algorithm generates an infinite sequence of iterates
and that

‖∇1
xφ(xki)‖V ′ ≥ ε, (2.7)

for some ε > 0 and some subsequence {ki}∞i=1. Summing over all iterations ki and using
AS.1(i), we obtain that

+∞ > φ(0)− φmin ≥
∑
i

min(κA‖∇1
xφ(xki)‖

γ1
γ1−1

V ′ , κB‖∇1
xφ(xki)‖

γm
γm−1

V ′ ),

≥
∑
i

min[κAε
γ1
γ1−1 , κBε

γm
γm−1 ],

which is a contradiction since the right-hand side diverges to +∞. Hence (2.7) cannot
hold and the second conclusion of the theorem is valid. 2
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Thus a vanilla gradient-descent algorithm applied to a p-th degree polynomial augmented
by a convex regularization term with Hölder gradient will yield asymptotic first-order sta-
tionarity.

3 An adaptive regularization algorithm in Banach spaces

We now consider developing an adpative regularization method for finding first-order points
for the problem

min
x∈V

f(x), (3.1)

and make our assumptions on the problem more precise.
AS.2 f is p times continuously Fréchet differentiable with p ≥ 1.
AS.3 There exists a constant flow such that f(x) ≥ flow for all x ∈ V.
AS.4 The p-th derivative tensor ∇pxf(x) ∈ L(Vp; IR) is globally Hölder continuous, that is,
there exist constants L > 0 and β ∈ (0, 1] such that

‖∇pxf(x)−∇pxf(y)‖ ≤ L‖x− y‖βV , for all x, y ∈ V. (3.2)

For brevity, AS.2 and AS.4 will be denoted by f ∈ Cp,β(V; IR).
Let Tf,p(x, s) be the Taylor series of the functional f(x+ s) truncated at order p.

Tf,p(x, s)
def
= f(x) +

p∑
l=1

1

l!
∇lxf(x)[s]l. (3.3)

The gradient ∇1
xf(x) belongs to the dual space V ′ and will be denoted by g(x). Thus, for a

requested accuracy ε ∈ (0, 1], we are interested in finding an ε-approximate first-order critical
point, that is a point xε such that ‖g(xε)‖V ′ ≤ ε.

3.1 Smooth Banach spaces

In a generic Banach space, we can only ensure “a decrease principle” as stated in [14, Theo-
rem 5.22]. To obtain more conclusive results, we need to introduce additional assumptions.
We choose to work with the class of uniformly q smooth Banach spaces. For the sake of
completeness, we briefly recall the context.
Given a Banach space V, we first define its module of smoothness, for t ≥ 0, by

ρV(t)
def
= sup
‖x‖V=1 ,‖y‖V=t

{
‖x+ y‖V + ‖x− y‖V

2
− 1

}
, (3.4)

and immediately deduce from the triangular inequality that ρV(t) ≤ t. We now say that V is

a uniformly smooth Banach space if and only if limt→0
ρV (t)
t = 0. Going one step further, we

say that a Banach space V is uniformly q smooth for some q ∈ (1, 2] if and only if

∃κV > 0, ρV(t) ≤ κVtq. (3.5)

It is easy to see that, if V is uniformly q smooth, it is also uniformly q′ smooth for all
1 < q′ < q. Indeed, one can easily show(1) that ρV(t) ≤ max(1, κV)tq

′
from definition (3.4)

and inequality (3.5).

(1)If t ∈ [0, 1] this follows from (3.5) and q′ < q. If t > 1, ρV(t) ≤ t ≤ tq
′
.
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We motivate our choice of this particular class of Banach spaces by giving a few examples.
Lp(IR), 1 < p < ∞, are uniformly smooth Banach spaces. In particular, Lp(IR) is uniformly
2 smooth for p ≥ 2 and uniformly p smooth for 1 < p ≤ 2. The same results apply for `p and
the Sobolev spaces W p

m(IR) [27]. Moreover, all Hilbert spaces are 2 smooth Banach.

Lemma 3.1 Let H be a Hilbert space. Then H is a 2 smooth Banach space with

ρH(t) ≤ t2

2
. (3.6)

Proof. Because of the definition of ρH in (3.4), we have that

ρH(t) = sup

{
‖x+ y‖V + ‖x− y‖V

2
− 1, ‖x‖V = 1 , ‖y‖V = t

}
,

= sup

{√
1 + t2 + 2〈y, x〉+

√
1 + t2 − 2〈y, x〉

2
− 1 , ‖x‖V = 1 , ‖y‖V = t

}
.

Thus, when maximizing over 〈y, x〉 ∈ [−t, t],

ρH(t) =
√

1 + t2 − 1 =
t2√

1 + t2 + 1
≤ t2

2
.

2

One might wonder if it is possible for the q smooth order to be strictly superior to 2 in
(3.5). We now show that this is impossible. Indeed, for any Banach space V, we have that,

ρV(t) ≥ ρH(t) = t2√
1+t2+1

[27]. Suppose now ρV(t) ≤ ctm with m > 2. Using the last two

inequalities, we obtain that: ctm−2 ≥ 1√
1+t2+1

for all t strictly positive. But this inequality is

impossible for small enough t and hence our supposition about m is false and m ∈ (1, 2].
From here on, we assume that

AS.5 V is a uniformly q smooth space.

Uniformly smooth Banach spaces are also reflexive (See [27, Proposition 1.e.3, p61]), so that
AS.1(iii) automatically holds. Let us now define the set

Jp(x)
def
=
{
v∗ ∈ V∗ , 〈v∗, x〉 = ‖x‖pV , ‖v

∗‖V ′ = ‖x‖p−1V
}
. (3.7)

It is known [26] that Jp(x) is the subdifferential of the functional 1
p‖ · ‖

p
V , p ≥ 1 at x.

We may now introduce another characterization of uniform smoothness.
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Theorem 3.2 Let

F def
= {ψ : IR→ IR | ψ(0) = 0, ψ is convex, non decreasing and ∃κF > 0 | ψ(t) ≤ κFρV(t)}.

Then, for any 1 < p <∞, the following statements are equivalent.

(i) V is a uniformly smooth Banach space.

(ii) Jp is single valued and there exists ϕp(t) =
ψp(t)
t where ψp ∈ F and such that

‖Jp(x)− Jp(y)‖V ′ ≤ max(‖x‖V , ‖y‖V)p−1ϕp

(
‖x− y‖V

max(‖x‖V , ‖y‖V)

)
. (3.8)

Proof. [27, Theorem 2]. 2

As we will be only working with ‖.‖pV for p > 1 in the rest of the paper, we define Jp(x) as
the unique value in the set (3.7). As the subdifferential of ‖.‖pV reduces to a singleton for
p > 1 and ‖.‖pV is a convex function, ‖.‖pV is Fréchet differentiable for p > 1 since it verifies
[14, Condition 4.16]. The reader is referred to [26] or [27] for more extensive coverage of
characterizations of the norm in uniformly smooth Banach spaces.

For all ` > 1, we now prove an upper bound of the norm of ‖J`(x) − J`(y)‖V ′ in terms
of ‖x − y‖V in a uniform q smooth Banach space. Let us first remind the useful inequality
(x+ y)r ≤ max(1, 2r−1)(xr + yr) for all x, y ≥ 0 and all r ≥ 0, before stating the next crucial
lemma.

Lemma 3.3 Suppose that V is a uniformly q smooth Banach space and that x ∈ B(0, ω).
Then for all ` > 1, there exist constants κω, κ` > 0 such that

‖J`(x)− J`(y)‖V ′ ≤ κω‖x− y‖
min[q,`]−1
V + κ`‖x− y‖`−1V , (3.9)

where κω and κ` depend only on ω, `, κF and κV .

Proof. As ` > 1, if q > `, we can use our remark above and decrease the q smooth
order until q′ = min[q, `] ≤ `. We now develop the upper bound (ii) of Theorem 3.2 and
use the definition of the set F to derive that

‖Jl(x)− Jl(y)‖V ′ ≤ max(‖x‖V , ‖y‖V)`−1κFκV

(
‖x− y‖V

max(‖x‖V , ‖y‖V)

)q′−1
,

≤ max(‖x‖V , ‖y‖V)l−q
′
κFκV‖x− y‖q

′−1
V .



Gratton, Jerad, Toint: Adaptive Regularization in Banach Spaces 11

Using now the inequalities max(‖x‖V , ‖y‖V) ≤ ‖x‖V +‖x−y‖V and ` ≥ q′, we obtain that

‖Jl(x)− Jl(y)‖V ′ ≤ κFκV(‖x‖V + ‖x− y‖V)`−q
′‖x− y‖q

′−1
V ,

≤ κFκV max(1, 2`−q
′−1)(‖x‖`−q

′

V + ‖x− y‖`−q
′

V )‖x− y‖q
′−1
V ,

≤ κFκV max(1, 2`−q
′−1)ω`−q

′‖x− y‖q
′−1
V

+ κFκV max(1, 2`−q
′−1)‖x− y‖`−1V ,

≤ κω‖x− y‖q
′−1
V + κ`‖x− y‖`−1V .

2

3.2 The ARp-BS algorithm

Adaptive regularization methods are iterative schemes which compute a step form an iterate
xk by building, for f ∈ Cp,β(V; IR), a regularized model mk(s) of f(xk + s) of the form

mk(s)
def
= Tf,p(xk, s) +

σk
(p+ β)!

‖s‖p+βV , p ≥ 1. (3.10)

As in [11] but at variance with [12], we will assume here that β, the degree of Hölder continuity
of the p-th derivative tensor of f , is known. The p-th order Taylor series is “regularized” by
adding the term σk

(p+β)!‖s‖
p+β
V , where σk is known as the “regularization parameter”. This

term guarantees that the functionnal mk(s) is bounded below and thus makes the procedure
of finding a step sk by (approximately) minimizing mk(s) well-defined. In our uniform q
smooth setting, mk(s) is Fréchet differentiable but this is unfortunately insufficient to derive
results on the Lipschitz continuity of its gradient, which makes the use of more standard
gradient-descent methods impossible.
Our proposed algorithm is similar in spirit to ARC [8] and proceeds as follows. At a given
iterate xk, a step sk is first computed by approximately minimizing (3.10). Once the step is
computed, the value of the objective functional at the trial point xk + sk is then evaluated.
If the decrease in f from xk to xk + sk is comparable to that predicted by the p-th order
Taylor series, the trial point is accepted as the new iterate and the regularization parameter
is (possibly) reduced. If this is not the case, the trial point is rejected and the regularization
parameter is increased. The resulting algorithm is formally stated as the ARp-BS algorithm
on the next page.

While the ARp-BS algorithm follows the main lines of existing ARp methods [8, 6]. Because
we are in an infinite dimensional space, the existence of a minimizer of mk(s) may not be
guaranteed and hence a point s? such that ∇1

smk(s
?) = 0 may not exist. As a consequence,

standard proofs that a step satisfying both (3.13) and (3.14) exists no longer apply. We thus
need to check that this is still the case in our context. This is achieved using Algorithm 2.1.

Theorem 3.4 Suppose that AS.2, AS.4 and AS.5 hold. Suppose also that ‖g(xk)‖V ′ >
0. Then a step satisfying both (3.13) and (3.14) always exists.
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Algorithm 3.1: p-th order adaptive regularization in a uniform q smooth
Banach Space (ARp-BS)

Step 0: Initialization: An initial point x0 ∈ V, a regularization parameter σ0 and a
requested final gradient accuracy ε ∈ (0, 1] are given. The constants η1, η2, γ1, γ2,
γ3, χ ∈ (0, 1), and σmin are also given such that

σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (3.11)

Compute f(x0) and set k = 0.

Step 1: Check for termination: Terminate with xε = xk if

‖g(xk)‖V ′ ≤ ε. (3.12)

Step 2: Step calculation: Compute a step sk which sufficiently reduces the model
mk in the sense that

mk(sk) < mk(0), (3.13)

and
‖∇1

smk(sk)‖V ′ ≤ max
[
χε, θ‖sk‖p+β−1V

]
. (3.14)

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tf,p(xk, 0)− Tf,p(xk, sk)
. (3.15)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(3.16)

Increment k by one and go to Step 1.
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Proof. First note that AS.2 and AS.4 imply that p + β > 1. In order to apply
Algorithm 2.1 to the problem of minimizing (3.10), we just need to prove that mk(s)
satisfies AS.1 of Section 2. We have that

mk(s) ≥ mk(0)−
p∑
i=1

‖∇ixf(x)‖‖s‖iV +
σk

(p+ β)!
‖s‖p+βV →∞ as ‖s‖V →∞,

and thus mk is a coercive functional verifying AS.1(i). Lemma 3.3 (applied with k = 2,
δ = ω, ` = p + β, L1,δ = κ`, β1 = min[q, `] ∈ (1, 2], L2,δ = κω and β2 = ` > 1) then

ensures that ‖.‖p+βV satisfies AS.1(ii). We already noted that, being uniformly smooth,
V must be reflexive, which ensures that AS.1(iii) holds. All the requirements of AS.1
in Section 2 are therefore met and, since ∇1

smk(0) = g(xk), Theorem 2.3 applies to the
functional mk(s). As a consequence, a suitable step sk such that mk(sk) < mk(0) and
‖∇1

smk(sk)‖V ′ ≤ χε exists. 2

Observe that equation (2.2) and the fact that γ1 = min[q, p+β] and γm = p+β (all the other
powers ranging from 2 to p), imply that, for our iterative gradient descent,

lim
i→∞

min

[
κA‖∇1

sm(si)‖
min[q,p+β]

min[q,p+β]−1

V ′ , κB‖∇1
sm(si)‖

p+β
p+β−1

V ′

]
= 0.

As a consequence, the first term in the minimum indicates that the smoother the space, the
faster the convergence for p ≥ 2.
Following well-established practice, we now define

S def
= {k ≥ 0 | xk+1 = xk + sk} = {k ≥ 0 | ρk ≥ η1},

the set of indexes of “successful iterations”, and

Sk
def
= S ∩ {1, . . . , k},

the set of indexes of successful iterations up to iteration k. We also recall a well-known result
bounding the total number of iterations in terms of the number of successful ones.

Lemma 3.5 Suppose that the ARp-BS algorithm is used and that σk ≤ σmax for some
σmax > 0. Then

k ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (3.17)

Proof. See [6, Theorem 2.4]. 2

4 Evaluation complexity for the ARp-BS algorithm

Before discussing our analysis of evaluation complexity, we first restate some classical lemmas
of ARp algorithms, starting with Hölder error bounds.
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Lemma 4.1 Suppose thatf ∈ Cp,β(V; IR) holds and that k ∈ S. Then

|f(xk+1)− Tf,p(xk, sk)| ≤
L

(p+ β)!
‖sk‖p+βV , (4.1)

and

‖gk+1 −∇1
sTf,p(xk, sk)‖V ′ ≤

L

(p− 1 + β)!
‖sk‖p−1+βV . (4.2)

Proof. This is a direct extension of [13, Lemma 2.1] since the proof in this reference
only involves AS.2, AS.4 and unidimensional integrals. 2

From now on, the analysis follows that presented in [6] quite closely.

Lemma 4.2

∆Tf,p(xk, sk)
def
= Tf,p(xk, 0)− Tf,p(xk, sk) ≥

σk
(p+ β)!

‖sk‖p+βV . (4.3)

Proof. Direct from (3.13) and (3.10). 2

Lemma 4.3 Suppose that f ∈ Cp,β(V; IR). Then, for all k ≥ 0,

σk ≤ σmax
def
= γ3 max

[
σ0,

L

(1− η2)

]
. (4.4)

Proof. See [6, Lemma 2.2]. Using (3.15), (4.1), and (4.3), we obtain that

|ρk − 1| ≤
(p+ β)!|f(xk + sk)− Tf,p(xk, sk)|

σk‖sk‖p+βV
≤ L

σk
.

Thus, if σk ≥ L/(1 − η2), then ρk ≥ η2 ensures that iteration k is successful and (3.16)
implies that σk+1 ≤ σk. The mechanism of the algorithm then guarantees that (4.4) holds.
2

The next lemma remains in the spirit of [6, Lemma 2.3], but now takes the condition (3.14)
into account.
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Lemma 4.4 Suppose that f ∈ Cp+β(V; IR) holds and that k ∈ S before termination.
Then

‖sk‖p−1+βV ≥ εmin

[
(1− χ)(p+ β − 1)!

L+ σmax
,

(p+ β − 1)!

L+ σmax + θ(p+ β − 1)!

]
. (4.5)

Proof. Successively using the fact that termination does not occur at iteration k and
condition (3.14), we deduce that

ε < ‖g(xk+1)‖V ′ ,

≤ ‖g(xk+1)−∇1
sTf,p(xk, sk)‖V ′ + ‖∇1

smk(sk)‖V ′ + σk
(p+ β − 1)!

‖Jp+β(sk)‖V ′ ,

≤ L
(p− β + 1)!

‖sk‖p−1+βV + max
[
χε, θ‖sk‖p−β+1

V

]
+ σk

(p+ β − 1)!
‖sk‖p+β−1V .

By treating each case in the maximum separately, we obtain that either

(1− χ)ε ≤
(

L

(p+ β − 1)!
+

σk
(p+ β − 1)!

)
‖sk‖p−1+βV ,

or

ε ≤
(

L

(p+ β − 1)!
+

σk
(p+ β − 1)!

+ θ

)
‖sk‖p−1+βV .

Combining the two last inequalities gives that

‖sk‖p−1+βV ≥ min

[
(1− χ)ε(p+ β − 1)!

L+ σmax
,

(p+ β − 1)!ε

L+ σmax + θ(p+ β − 1)!

]
.

This in turn directly implies (4.5). 2

We may now resort to the standard “telescoping sum” argument to obtain the desired evalu-
ation complexity result.

Theorem 4.5 Suppose that AS.2–AS.5 hold. Then the ARp-BS algorithm requires at
most

κARpBS
f(x0)− flow
ε

p+β
p+β−1

,

successful iterations and evaluations of {∇ixf}i=1,2,...,p and at most

κARpBS
f(x0)− flow
ε

p+β
p+β−1

(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
,

evaluations of f to produce a vector xε ∈ V such that ‖g(xε)‖V ′ ≤ ε, where

κARpBS =
(p+ β − 1)!

η1σmin
min

[
(1− χ)ε(p+ β − 1)!

L+ σmax
,

(p+ β − 1)!ε

L+ σmax + (p+ β − 1)!θ

] p+β
p+β−1

.
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Proof. Let k be the index of an iteration before termination. Then, using AS.3,
the definition of successful iterations, (4.3) and (4.5), and the fact that computing an
appropriate step is of constant order of complexity, we obtain that

f(x0)− flow ≥
k∑

i=0,i∈S
f(xi)− f(xi+1) ≥ η1

∑
i∈Sk

∆Tf,2(xi, si) ≥
|Sk|

κARpBS
ε

p+β
p+β−1 .

Thus

|Sk| ≤ κARpBS
f(x0)− flow
ε

p+β
p+β−1

,

for any k before termination. The first conclusion follows since the derivatives are only
evaluated once per successful iteration. Applying now Lemma 3.5 gives the second con-
clusion.

2

Theorem 4.5 extends the result of [6] in the case β = 1 and some results of [13] to uniform
q smooth Banach spaces. We recall that Lp, `p and W p

m are uniform q smooth spaces for
1 < p <∞, and hence that Lemma 3.3 and Theorem 4.5 apply in these spaces. We may also

consider the finite dimensional case where IRn is equipped with the norm ‖x‖r = (
∑n

i=1 |xi|r)
1
r .

We know that, for all 1 < r < ∞, this is a uniform min(r, 2) smooth space, and therefore
Theorem 3.5 again applies. We could of course have obtained convergence of the adaptive
regularization algorithm in this case using results for the Euclidean norm and introducing
norm-equivalence constants in our proofs and final result, but this is avoided by the ap-
proach presented here. This could be significant when the dimension is large and the norm-
equivalence constants grow.

5 Discussion

We have proposed a generalized Hölder condition and a gradient-descent algorithm for min-
imizing polynomial functionals with a general convex regularization term in Banach spaces,
and have applied this result to show the existence of a suitable step in an adaptive reg-
ularization method for unconstrained minimization in q smooth Banach spaces. We have
also analyzed the evaluation complexity of this latter algorithm and have shown that, un-
der standard assumptions, it will find an ε-approximate first-order critical point in at most

O
(
ε
− p+β
p+β−1

)
evaluations of the functional and its first p derivatives, which is identical to the

bound known for minimization in (finite-dimensional) Euclidean spaces. Since these bounds
are known to be sharp [11], so is ours.

It would be interesting to consider convergence to second-order points, but the infinite
dimensional framework causes more difficulties. Indeed, considering second-order derivatives
as in [9] is impossible since we do not know if a power of the norm is twice differentiable. As
an example, consider Lr([0, 1]) for p > 1, where

∇1
f

(
‖f‖pLr([0,1])

p

)
= ‖f‖p−rLr([0,1])f |f |

r−2.

The right-hand side of the last equation involves an absolute value which is only differentiable
for specific values of r. It is interesting to study the case of r = 2 with the objective of
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extending our analysis to the second order. Another line of future work is to extend these
results to metrizable spaces (using the Bergman divergence or the Wasserstein distance) and
to the complexity of second order adaptive regularization in an infinite-dimensional Hilbert
space.
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